Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies
Abstract
1. Introduction
2. Analysis of the Causes of Thermal Runaway in Lithium Batteries
2.1. Mechanical Abuse of LIBs
2.2. Lithium Battery Thermal Abuse
2.3. Lithium Battery Electrical Abuse
3. Prevention of Thermal Runaway in LIBs
3.1. Thermal Management Technology
3.1.1. Passive Thermal Management
3.1.2. Active Thermal Management
3.2. Battery Management System
3.3. Material Improvements
3.3.1. Cathode Material
3.3.2. Anode Material
3.3.3. Electrolyte Solution
3.3.4. Separator
4. Results
5. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Duah, I.B.; Ming, X.Y.; Yuan, Y.L. Optimization of infrared-drying parameters for Ginkgo biloba L. seed and evaluation of product quality and bioactivity. Ind. Crops Prod. 2020, 160, 113108. [Google Scholar]
- Huang, C.; Zhu, H.; Ma, Y. Evaluation of lithium battery immersion thermal management using a novel pentaerythritol ester coolant. Energy 2023, 284, 129250. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, L. Enhanced cooling design of serpentine mini-channel for optimizing energy consumption in battery thermal management. Therm. Sci. Eng. Prog. 2025, 62, 103625. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, Q.; Cao, G.; Zheng, L.; Zhang, X. An experimental investigation into the thermal management of prismatic lithium battery utilizing liquid-vapor phase change cooling. Therm. Sci. 2025, 29, 427–439. [Google Scholar] [CrossRef]
- Zhu, X.; Liao, X.; Kang, S.; Sun, L.; Zhao, Y. Optimization design of lithium battery management system based on Z-F composite air cooling structure. J. Energy Storage 2024, 102, 114068. [Google Scholar] [CrossRef]
- Liu, H.; Han, X.; Fadiji, T.; Li, Z.; Ni, J. Prediction of the cracking susceptibility of tomato pericarp: Three-point bending simulation using an extended finite element method. Postharvest Biol. Technol. 2022, 187, 111876. [Google Scholar] [CrossRef]
- Chai, Z.; Liu, Z.; Xue, Q.; Xiao, Y.; Tan, P.; Qiu, M. Efficient coupled mechanical-electrical-thermal modeling and safety assessment of lithium-ion battery under mechanical abuse. J. Energy Storage 2025, 114, 115917. [Google Scholar] [CrossRef]
- Gao, R.; Liang, H.; Zhang, Y.; Zhao, H.; Chen, Z. Characterization of lithium-ion batteries after suffering micro short circuit induced by mechanical stress abuse. Appl. Energy 2024, 374, 123931. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Zhang, C.; Yu, Q. Coupling effect of state of charge and loading rate on internal short circuit of lithium-ion batteries induced by mechanical abuse. Appl. Energy 2024, 375, 124138. [Google Scholar] [CrossRef]
- Du, Z.; Hu, Y.; Buttar, N.A. Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression. Sci. Hortic. 2020, 260, 108886. [Google Scholar] [CrossRef]
- Faheem, M.; Liu, J.; Chang, G.; Abbas, I.; Xie, B.; Shan, Z.; Yang, K. Experimental Research on Grape Cluster Vibration Signals during Transportation and Placing for Harvest and Post-Harvest Handling. Agriculture 2021, 11, 902. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Hu, J.; Xu, G.; Liu, W.; Ma, G.; Ding, Q.; He, R. Quantitative Evaluation of Post-Tillage Soil Structure Based on Close-Range Photogrammetry. Agriculture 2024, 14, 2124. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Zhang, B.; Wang, M.; Li, Y. Controlling Rice Leaf Breaking Force by Temperature and Moisture Content to Reduce Breakage. Agronomy 2020, 10, 628. [Google Scholar] [CrossRef]
- Chen, H.; Kalamaras, E.; Abaza, A.; Tripathy, Y.; Page, J.; Barai, A. Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions. Appl. Energy 2023, 349, 121610. [Google Scholar] [CrossRef]
- An, Z.; Shi, T.; Du, X.; An, X.; Zhang, D.; Bai, J. Experimental study on the internal short circuit and failure mechanism of lithium-ion batteries under mechanical abuse conditions. J. Energy Storage 2024, 89, 111819. [Google Scholar] [CrossRef]
- Li, H.; Zhou, D.; Zhang, M.; Liu, B.; Zhang, C. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse. Energy 2023, 263, 126027. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Lin, C.; Zuo, F. High-efficiency multiphysics coupling framework for cylindrical lithium-ion battery under mechanical abuse. J. Clean. Prod. 2021, 286, 125451. [Google Scholar]
- Chai, Z.; Li, J.; Liu, Z.; Liu, Z.; Jin, X. Experimental analysis and safety assessment of thermal runaway behavior in lithium iron phosphate batteries under mechanical abuse. Sci. Rep. 2024, 14, 8673. [Google Scholar] [CrossRef]
- Wang, G.; Guo, X.; Chen, J.; Han, P.; Su, Q.; Guo, M.; Wang, B.; Song, H. Safety Performance and Failure Criteria of Lithium-Ion Batteries under Mechanical Abuse. Energies 2023, 16, 6346. [Google Scholar] [CrossRef]
- Huang, P.; Liu, S.; Ma, J.; Zheng, G.; Li, E.; Wei, M.; Wang, Q.; Bai, Z. Comprehensive investigation on the durability and safety performances of lithium-ion batteries under slight mechanical deformation. J. Energy Storage 2023, 66, 107450. [Google Scholar] [CrossRef]
- Irina, V.-G.; Adrian, P.; Dayana, C.; Alexis, D.; Karla, V.; Isabel, B.; Genoveva, G.-A.; Hugo, R.-M.; Maurizio, B.; Francesca, G. Effect of thermal liquefaction on quality, chemical composition and antibiofilm activity against multiresistant human pathogens of crystallized eucalyptus honey. Food Chem. 2021, 365, 130519. [Google Scholar] [CrossRef]
- Zhang, J.; Yagoub, A.E.A.; Sun, Y.; Arun, M.S.; Ma, H.; Zhou, C. Role of thermal and non-thermal drying techniques on drying kinetics and the physicochemical properties of shiitake mushroom. J. Sci. Food Agric. 2021, 102, 214–222. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X. Thermal and non-thermal processing affect Maillard reaction products, flavor, and phytochemical profiles of Ginkgo biloba seed. Food Biosci. 2021, 41, 101044. [Google Scholar] [CrossRef]
- Gong, C.; Li, Y.; Gao, R. Preservation of sturgeon using a photodynamic non-thermal disinfection technology mediated by curcumin. Food Biosci. 2020, 36, 100594. [Google Scholar] [CrossRef]
- Khan, R.A.; Salam, A.; Li, G. Nanoparticles and their crosstalk with stress mitigators: A novel approach towards abiotic stress tolerance in agricultural systems. Crop J. 2024, 12, 1280–1298. [Google Scholar] [CrossRef]
- Ji, W.; Qian, Z.; Xu, B. Grasping damage analysis of apple by end-effector in harvesting robot. J. Food Process Eng. 2017, 40, e12589.1. [Google Scholar] [CrossRef]
- Su, D.; Sun, W.; Li, B.; Yang, Y.; Wang, Y.; Lv, W.; Li, D.; Wang, L. Influence of Ultrasonic Pretreatments on Microwave Hot-air Flow Rolling Drying Mechanism, Thermal Characteristics and Rehydration Dynamics of Pleurotus eryngii. J. Sci. Food Agric. 2021, 102, 2100–2109. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yan, M.; Naeem, M.; Chen, M.; Chen, Y.; Ni, Z.; Chen, H. Enhancing Manganese Peroxidase: Innovations in Genetic Modification, Screening Processes, and Sustainable Agricultural Applications. J. Agric. Food Chem. 2024, 72, 26040–26056. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Y.; Okoye, C.O.; Gao, L.; Chen, X.; Wang, Y.; Jiang, J. Fermentation profile and bioactive component retention in honeysuckle residue silages inoculated with lactic acid bacteria: A promising feed additive for sustainable agriculture. Ind. Crops Prod. 2025, 224, 120315. [Google Scholar] [CrossRef]
- Zhou, Z.; Fu, Z.; Zhang, L.; Zhao, D.; Yu, S.; Chen, Q. Energy management strategy for low hydrogen consumption in hybrid power systems consisting of dual fuel cells and a single lithium battery. Int. J. Green Energy 2024, 21, 2441–2456. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, H.; Xie, M.; Li, B. Design of energy management for composite energy storage system consisting of lithium battery and flywheel based on adaptive wavelet–fuzzy control strategy. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 434. [Google Scholar] [CrossRef]
- An, Z.; Gao, W.; Zhang, J.; Liu, H.; Gao, Z. Enhancing heat dissipation of thermal management system utilizing modular dual bionic cold plates for prismatic lithium batteries. J. Energy Storage 2024, 87, 111541. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Cheng, D.; Mao, J.; Zhang, K. Numerical investigation and parameter optimization on a rib-grooved liquid-cooled plate for lithium battery thermal management system. J. Energy Storage 2024, 85, 111085. [Google Scholar] [CrossRef]
- Yu, X.; Tao, Y.; Deng, Q. Experimental study on thermal management of batteries based on the coupling of metal foam-paraffin composite phase change materials and air cooling. J. Energy Storage 2024, 84, 110891. [Google Scholar] [CrossRef]
- Yang, T.; Xu, H.; Xie, C.; Xu, L.; Liu, M.; Chen, L.; Xin, Q.; Zeng, J.; Zhang, H.; Xiao, J. A Thermal Runaway Protection Strategy for Prismatic Lithium-Ion Battery Modules Based on Phase Change and Thermal Decomposition of Sodium Acetate Trihydrate. Batteries 2025, 11, 198. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Li, X.; Sun, T.; Li, Q. Investigation of Thermal Runaway in Prismatic Batteries with Dual-Parallel Jelly-Roll Architecture Under Thermal Abuse Conditions. Batteries 2025, 11, 196. [Google Scholar] [CrossRef]
- Osae, R.; Essilfie, G.; Alolga, R.N.; Akaba, S.; Song, X.; Owusu-Ansah, P.; Zhou, C. Application of non-thermal pretreatment techniques on agricultural products prior to drying: A review. J. Sci. Food Agric. 2020, 100, 2585–2599. [Google Scholar] [CrossRef]
- Baakes, F.; Song, R.; Bernet, T.; de Leon, J.V.G.; Jackson, G.; Adjiman, C.S.; Galindo, A.; Krewer, U. Pressure evolution and gas solubility of Li-ion battery electrolytes during thermal abuse conditions. J. Power Sources 2025, 640, 236619. [Google Scholar] [CrossRef]
- Ubaldi, S.; Russo, P. Toxicity Assessment of Gas, Solid and Liquid Emissions from Li-Ion Cells of Different Chemistry Subjected to Thermal Abuse. Energies 2024, 17, 4402. [Google Scholar] [CrossRef]
- Li, K.; Gao, X.; Wang, S.; Peng, S.; Zhang, W.; Wu, W.; Wang, H.; Liu, P.; Han, X.; Cao, Y.C.; et al. Comparative analysis of multidimensional signals evolution in prismatic and pouch LiFePO4 batteries under thermal abuse. Appl. Energy 2024, 372, 123818. [Google Scholar] [CrossRef]
- Salloum, R.; Rabuel, F.; Abada, S.; Morcrette, M. Investigating the internal short-circuit in 18650 cells under thermal abuse conditions. J. Power Sources 2025, 628, 235905. [Google Scholar] [CrossRef]
- Xie, F.; Guo, Z.; Li, T.; Feng, Q.; Zhao, C. Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- Wei, W.; Xiaolan, L.; Zhongyi, Y. Parameter Optimization of Reciprocating Cutter for Chinese Little Greens Based on Finite Element Simulation and Experiment. Agriculture 2022, 12, 2131. [Google Scholar] [CrossRef]
- Hu, X.; Gao, F.; Xiao, Y.; Yang, Y. Passive Thermal Control Strategies for Lithium-Ion Batteries under Thermal Abuse Conditions: An Experimental Study on Thermal Insulation Efficacy. J. Energy Eng. 2025, 151, 04025028. [Google Scholar] [CrossRef]
- Abhilash, K.; Jadhav, A.; Kalamkar, V.R.; Jilte, R.D. Numerical study on thermal runaway in a cell and battery pack at critical heating conditions with variation in heating powers. J. Energy Storage 2024, 90, 111813. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, P.; Li, Z.; Li, J.; Tchuenvou-Magaia, F.; Ni, J. Thermo-biomechanical coupling analysis for preventing tomato fruit cracking during ripening. J. Food Eng. 2023, 341, 111336. [Google Scholar] [CrossRef]
- Chen, K.; Li, T.; Yan, T.; Xie, F.; Feng, Q.; Zhu, Q.; Zhao, C. A Soft Gripper Design for Apple Harvesting with Force Feedback and Fruit Slip Detection. Agriculture 2022, 12, 1802. [Google Scholar] [CrossRef]
- Qiu, S.; Yu, Y.; Feng, Y.; Tang, Z.; Cui, Q.; Yuan, X. Crushing Characteristics of Sorghum Grains Subjected to Compression and Impact Loading at Different Moisture Contents. Agriculture 2022, 12, 1422. [Google Scholar] [CrossRef]
- Allen, J.P.C.; Jones, S.; Marco, J. A deterministic approach to achieving repeatable sidewall rupture failure modes within lithium-ion thermal abuse studies. J. Energy Storage 2025, 105, 114706. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, L.; Zhang, N.; Wei, Z.; Mei, W.; Duan, Q.; Sun, J.; Wang, Q. Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring. J. Energy Chem. 2024, 92, 74–86. [Google Scholar] [CrossRef]
- Xu, J.; Wang, B.; Wang, Y.; Zhang, M.; Chitrakar, B. Effect of Applied Voltage on the Aggregation and Conformational Changes in Peroxidase Under Electrospray. Food Bioprocess Technol. 2020, 13, 245–255. [Google Scholar] [CrossRef]
- Tang, L.; Syed, A.u.A.; Otho, A.R.; Junejo, A.R.; Tunio, M.H.; Hao, L.; Ali, M.N.H.A.; Brohi, S.A.; Otho, S.A.; Channa, J.A. Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach. Agronomy 2024, 14, 2289. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Liu, F.; Zou, X.; Xu, Y.; Xu, X. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem. 2020, 303, 125378. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, H.T.; Jianmin, G.; Mashooque, A.T.; Imran, A.L.; Farman, A.C.; Sher, A.S.; Kashif, A.S. Effects of different irrigation frequencies and incorporation of rice straw on yield and water productivity of wheat crop. Int. J. Agric. Biol. Eng. 2020, 13, 138–145. [Google Scholar] [CrossRef]
- Zhou, M.; Shan, Y.; Xue, X.; Yin, D. Theoretical analysis and development of a mechanism with punching device for transplanting potted vegetable seedlings. Int. J. Agric. Biol. Eng. 2020, 13, 85–92. [Google Scholar] [CrossRef]
- Xia, J.; Liu, F.; Yan, L.; Suo, H.; Qian, J.; Zou, B. Simultaneous determination of tert-butylhydroquinone, butylated hydroxyanisole and phenol in plant oil by metalloporphyrin-based covalent organic framework electrochemical sensor. J. Food Compos. Anal. 2023, 122, 105486. [Google Scholar]
- Zhu, C.; Liu, D.; Li, Y.; Chen, T.; You, T. Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chem. 2022, 373, 131443. [Google Scholar] [CrossRef]
- Cui, B.; Cui, X.; Wei, X.; Zhu, Y.; Ma, Z.; Zhao, Y.; Liu, Y. Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Yu, R.; Wu, Y.; Xing, D. The Differential Response of Intracellular Water Metabolism Derived from Intrinsic Electrophysiological Information in Morus alba L. and Broussonetia papyrifera (L.) Vent. Subjected to Water Shortage. Horticulturae 2022, 8, 182. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, X.; Fu, H.; Tan, H.; Zhai, C.; Chen, L. Design and Experimental Evaluation of a Smart Intra-Row Weed Control System for Open-Field Cabbage. Agronomy 2025, 15, 112. [Google Scholar] [CrossRef]
- Srinivasan, R.; Demirev, P.A.; Carkhuff, B.G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention. J. Power Sources 2018, 405, 30–36. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, X.; Zhang, C.; Shi, J.; Huang, X.; Li, Z.; Zou, X.; Gong, Y.; Holmes, M.; Povey, M.; et al. Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. Food Hydrocoll. 2022, 123, 107187. [Google Scholar] [CrossRef]
- Carla, M.; Stefano, C.; Vincenzo, S.; Livia, D.S.; Roberto, B. Experimental Investigation of Overdischarge Effects on Commercial Li-Ion Cells. Energies 2022, 15, 8440. [Google Scholar] [CrossRef]
- Mei, W.; Zhang, L.; Sun, J.; Wang, Q. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery. Energy Storage Mater. 2020, 32, 91–104. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Lu, L.; He, X.; Ouyang, M. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl. Energy 2019, 250, 323–332. [Google Scholar] [CrossRef]
- Owen, R.E.; Wiśniewska, E.; Braglia, M.; Stocker, R.; Shearing, P.R.; Brett, D.J.L.; Robinson, J.B. Operando Ultrasonic Monitoring of the Internal Temperature of Lithium-ion Batteries for the Detection and Prevention of Thermal Runaway. J. Electrochem. Soc. 2024, 171, 040525. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Lin, C.; Yang, X.; Zuo, F. A Safety Performance Estimation Model of Lithium-ion Batteries for Electric Vehicles under Dynamic Compression. Energy 2020, 215, 119050. [Google Scholar]
- Jin, Y.; Zheng, Z.; Wei, D.; Jiang, X.; Lu, H.; Sun, L.; Tao, F.; Guo, D.; Liu, Y.; Gao, J.; et al. Detection of Micro-Scale Li Dendrite via H2 Gas Capture for Early Safety Warning. Joule 2020, 4, 1714–1729. [Google Scholar] [CrossRef]
- Owusu-Ansah, P.; Yu, X.; Osae, R.; Mustapha, A.T.; Zhang, R.; Zhou, C. Inactivation of Bacillus cereus from pork by thermal, non-thermal and single-frequency/multi-frequency thermosonication: Modelling and effects on physicochemical properties. LWT-Food Sci. Technol. 2020, 133, 109939. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.; Wang, D.; Sun, Z.; Du, L.; Wang, D. The synergistic effects of phenyllactic acid and slightly acid electrolyzed water to effectively inactivate Klebsiella oxytoca planktonic and biofilm cells. Food Control 2021, 125, 107804. [Google Scholar] [CrossRef]
- Wang, L.; Tian, H.; Liu, W.; Zheng, H.; Wu, H.; Guan, Y.; Lu, Q.; Lv, Z. Effects of EPS-producing Leuconostoc mesenteroides XR1 on texture, rheological properties, microstructure and volatile flavor of fermented milk. Food Biosci. 2023, 56, 103371. [Google Scholar] [CrossRef]
- Wu, X.; Wu, C.; Bian, Z.; Ye, Z.; Meng, L.; Xia, L.; Bao, E.; Cao, K. Abscisic acid and reactive oxygen species were involved in slightly acidic electrolyzed water-promoted seed germination in watermelon. Sci. Hortic. 2022, 291, 110581. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Mousa, S.; Zhou, L.; Wang, Y.; Elmasry, G.; Rejaie, S.A.; Elwakeel, A.E.; Wei, Y.; Qiu, Z. Deep Learning-Enabled Dynamic Model for Nutrient Status Detection of Aquaponically Grown Plants. Agronomy 2024, 14, 2290. [Google Scholar] [CrossRef]
- Li, Z.; Guo, D.; Li, X.; Tang, Z.; Ling, X.; Zhou, T.; Zhang, B. Heat-Moisture Treatment Further Reduces In Vitro Digestibility and Enhances Resistant Starch Content of a High-Resistant Starch and Low-Glutelin Rice. Foods 2021, 10, 2562. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Belwal, T.; Lin, X.; Luo, Z. Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2476–2507. [Google Scholar] [CrossRef]
- Li, A.; Wang, C.; Ji, T.; Wang, Q.; Zhang, T. D3-YOLOv10: Improved YOLOv10-Based Lightweight Tomato Detection Algorithm Under Facility Scenario. Agriculture 2024, 14, 2268. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, X.; Zou, X.; Shi, J.; Huang, X.; Li, Z.; Gong, Y.; Holmes, M.; Povey, M.; Xiao, J. Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chem. 2021, 336, 127634. [Google Scholar] [CrossRef]
- Bahrami, H.R.; Ghaedi, M. Strategies for passive thermal management of lithium-ion batteries in microgravity: Combining PCMs, metal foams, fins, and nanoparticles. Case Stud. Therm. Eng. 2025, 71, 106247. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Jia, D.; Yuan, D.; Chang, Y.; Zheng, X.; Zhang, S. Effect of immersion cooling design optimization on thermal management for lithium battery module. Appl. Therm. Eng. 2025, 272, 126401. [Google Scholar] [CrossRef]
- Yi, F.; Gan, Y.; Li, R. Thermal performance analysis of L-shaped ultra-thin vapor chamber for lithium battery thermal management considering tilt angle and vibration. Energy 2025, 320, 135477. [Google Scholar] [CrossRef]
- Li, Z.; Hao, Y.; Cao, F.; Zhang, Y.; Wang, Y.; Zhang, S.; Tang, B. Double-Network Aerogel-Based Composite Phase Change Material Inspired by Beaver Damming for All-Weather Thermal Management of Lithium Batteries. ACS Appl. Mater. Interfaces 2025, 17, 16072–16084. [Google Scholar] [CrossRef]
- Morali, U. Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material. Energy Storage 2025, 7, e70135. [Google Scholar] [CrossRef]
- Bian, X.; Tao, H.; Li, Y.; Chu, Z.; Bai, X.; Xian, Y.; Yang, L.; Zhang, Z. Heat pipe/phase change material passive thermal management of power battery packs under different driving modes. Appl. Therm. Eng. 2024, 248, 123172. [Google Scholar] [CrossRef]
- Gao, C.; Sun, K.; Song, K.; Zhang, K.; Hou, Q. Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe. J. Energy Storage 2024, 82, 110512. [Google Scholar] [CrossRef]
- Sutheesh, P.M.; Nichit, R.B.; Rohinikumar, B. Numerical investigation of thermal management of lithium ion battery pack with nano-enhanced phase change material and heat pipe. J. Energy Storage 2024, 77, 109972. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, T.; Wang, C.; Tang, Y.; Xi, H. Analysis and optimization of thermal management system for cylindrical power battery based on distributed liquid cooling plates. Sci. China Technol. Sci. 2024, 67, 3695–3706. [Google Scholar] [CrossRef]
- Xiao, H.; E, J.; Tian, S.; Huang, Y.; Song, X. Effect of composite cooling strategy including phase change material and liquid cooling on the thermal safety performance of a lithium-ion battery pack under thermal runaway propagation. Energy 2024, 295, 131093. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Guo, P.; Hu, X.; Zhu, J.; Yu, T. Multi-objective optimization of phase change cooling battery module based on optimal support vector machineoptimal support Vector Machine. Appl. Therm. Eng. 2024, 236, 121386. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, L. Research on the performance failure of phase change materials thermal management for lithium battery. Appl. Therm. Eng. 2024, 244, 122743. [Google Scholar] [CrossRef]
- Muhammad, F.M.; Zahoor, A.; Nazir, A.; Emad, K.; Abdur, R.; Rana, M.A.; Ammar, A.; Muhammad, W.I.; Abdul, R.; Zeng, X. Probing the combined impact of pulsed electric field and ultra-sonication on the quality of spinach juice. J. Food Process. Preserv. 2021, 45, e15475. [Google Scholar]
- Xu, M.; Sun, J.; Yao, K.; Wu, X.; Shen, J.; Cao, Y.; Zhou, X. Nondestructive detection of total soluble solids in grapes using VMD-RC and hyperspectral imaging. J. Food Sci. 2021, 87, 326–338. [Google Scholar] [CrossRef]
- Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J.; et al. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit. Rev. Food Sci. Nutr. 2021, 63, 21–29. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, X.; Gao, C.; Gai, Z.; He, Y.; Qian, Z.; Liu, Y.; Lei, H.; Sun, Y.; Xu, Z. Development of a highly sensitive and selective electrochemical immunosensor for controlling of rhodamine B abuse in food samples. Food Control 2022, 133, 108662. [Google Scholar] [CrossRef]
- Ouyang, T.; Zuo, K.; Wang, Z.; Hao, J.; Chen, Y. Enhancing thermal performance for electric vehicle lithium-ion battery pack based on active thermal management. Int. J. Heat Mass Transf. 2025, 245, 127026. [Google Scholar] [CrossRef]
- Maiorano, L.P.; Guidoum, M.; Molina, J.M. Low-porosity aluminum foams with steel guest phases as disruptive materials for active thermal management. Appl. Mater. Today 2025, 42, 102530. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, J.; Hu, F.; Zhang, J.; Jin, H.; Huang, Y. Enhancement in Active Thermal Management Efficiency of Micro/Mini-Pipes Based on Phase Change to Consider Pressure Drop. Int. J. Thermophys. 2024, 45, 171. [Google Scholar] [CrossRef]
- Venkatesh, R.J.; Prasad Bhemuni, V.; Prakash Chinnam, D.S.; Gift, M.D.M. Optimizing Hybrid Active–Passive Thermal Management of Prismatic Li-Ion Batteries Using Phase Change Materials and Porous-Filled Mini-Channels. Energy Storage 2024, 6, e70060. [Google Scholar] [CrossRef]
- He, W.; Zhu, Y.; Liu, Z.; Ying, Z.; Zu, W. Active Thermal Management Method for Improving Current Capability of Power Devices under Influence of Random Convection. Energies 2024, 17, 3249. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, X.; Zhang, M.; Yang, H.; Li, S.; Zhou, T. Research on air-cooled thermal management of energy storage lithium battery. Asia-Pac. J. Chem. Eng. 2023, 18, e2924. [Google Scholar] [CrossRef]
- Lucas, S.; Marian, R.; Lucas, M.; Ogunwa, T.; Chahl, J. Active Thermal Management of Electric Motors and Generators Using Thermoelectric (Peltier Effect) Technology. Energies 2023, 16, 3844. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, H.; Zheng, B.; Wang, Z.; Zhao, G.; Zhang, H.; Liu, H.; Jin, X.; Chen, W.; Ma, A.; et al. Microgel-enhanced thermal-sensitive hydrogel electrolyte enables active heat management, controllable energy storage and mechanical flexibility of supercapacitors. Chem. Eng. J. 2023, 465, 142923. [Google Scholar] [CrossRef]
- Waqas, N.M.; Naseem, I.; Majid, A.; Hassan, N.; Bin, A.M.Z. Thermal management of Li-ion battery by using active and passive cooling method. J. Energy Storage 2023, 61, 106800. [Google Scholar] [CrossRef]
- Xin, F.; Wang, Q.; Yan, Y.; Tian, W. Experimental investigation on the active thermal management of grooved flat heat pipe under the electrohydrodynamic effect. Int. Commun. Heat Mass Transf. 2023, 141, 106604. [Google Scholar] [CrossRef]
- Chen, P.; Ding, X.; Chen, M.; Song, H.; Imran, M. The Impact of Resource Spatial Mismatch on the Configuration Analysis of Agricultural Green Total Factor Productivity. Agriculture 2024, 15, 23. [Google Scholar] [CrossRef]
- Azam, K.; Akhtar, S.; Gong, Y.Y.; Routledge, M.N.; Ismail, A.; Oliveira, C.A.; Iqbal, S.Z.; Ali, H. Evaluation of the impact of activated carbon-based filtration system on the concentration of aflatoxins and selected heavy metals in roasted coffee. Food Control 2021, 121, 107583. [Google Scholar] [CrossRef]
- Rong, Y.; Ali, S.; Ouyang, Q.; Wang, L.; Li, H.; Chen, Q. Development of a Bimodal Sensor based on Upconversion Nanoparticles and Surface Enhance Raman for the Sensitive Determination of Dibutyl Phthalate in Food. J. Food Compos. Anal. 2021, 121, 103929. [Google Scholar] [CrossRef]
- Li, Z.; Mao, H.; Li, L.; Wei, Y.; Yu, Y.; Zhao, M.; Liu, Z. A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information. Agriculture 2024, 14, 2174. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, M.; Zhong, M.; Tao, K.; Wu, Y. State of health estimation for lithium-ion batteries through feature enhanced and genetic algorithm optimized adaptive neuro-fuzzy inference system. Ionics 2025, 31, 6889–6906. [Google Scholar] [CrossRef]
- Hafida, W.; Abiola, F.O.; Taiye, M.A.; Cunshan, Z.; Mokhtar, D. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit. Rev. Food Sci. Nutr. 2022, 64, 21–26. [Google Scholar] [CrossRef]
- Rehman, U.u.; Mahmood, T.; Waqas, H.M. Managing uncertainty in battery energy storage system evaluation using complex hesitant fuzzy multi-criteria decision-making technique with Einstein operators. J. Energy Storage 2025, 125, 116968. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Ali, S.; Haruna, S.A.; He, P.; Li, H.; Ouyang, Q.; Chen, Q. Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 2021, 122, 107808. [Google Scholar] [CrossRef]
- Ofoegbu, E.O. State of charge (SOC) estimation in electric vehicle (EV) battery management systems using ensemble methods and neural networks. J. Energy Storage 2025, 114, 115833. [Google Scholar] [CrossRef]
- Pinter, Z.M.; Rohde, G.; Marinelli, M. Comparative analysis of rule-based and model-predictive control algorithms in reconfigurable battery systems for EV fast-charging stations. J. Energy Storage 2025, 116, 116008. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, A.; Pang, D.; Wang, B. Dynamic performance analysis of a thermoelectric cooling-based thermal management system for lithium-ion power batteries. Case Stud. Therm. Eng. 2025, 72, 106315. [Google Scholar] [CrossRef]
- Qin, J.; Huang, H.; Lu, H.; Li, Z. Energy management strategy for hybrid electric vehicles based on deep reinforcement learning with consideration of electric drive system thermal characteristics. Energy Convers. Manag. 2025, 332, 119697. [Google Scholar] [CrossRef]
- Kumaresan, N.; Rammohan, A. Adaptive neuro fuzzy inference system based optimized energy management strategy for the power integration of battery and supercapacitor in electric vehicle. J. Energy Storage 2025, 126, 117073. [Google Scholar] [CrossRef]
- Jiang, K.; Tian, Z.; Wen, T.; Song, K.; Hillmansen, S.; Ochieng, W.Y. Collaborative optimization strategy of hydrogen fuel cell train energy and thermal management system based on deep reinforcement learning. Appl. Energy 2025, 393, 126057. [Google Scholar] [CrossRef]
- Xu, C.; Lu, C.; Piao, J.; Wang, Y.; Zhou, T.; Zhou, Y.; Li, S. Rice virus release from the planthopper salivary gland is independent of plant tissue recognition by the stylet. Pest. Manag. Sci. 2020, 76, 3208–3216. [Google Scholar] [CrossRef]
- Surendhiran, D.; Li, C.; Cui, H.; Lin, L. Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag. Shelf Life 2020, 23, 100439. [Google Scholar] [CrossRef]
- Xia, J.; Zou, B.; Liu, F.; Wang, P.; Yan, Y. Sensitive glucose biosensor based on cyclodextrin modified carbon nanotubes for detecting glucose in honey. J. Food Compos. Anal. 2022, 105, 104221. [Google Scholar] [CrossRef]
- Shi, N.; Li, S.; He, L.; Feng, Y.; Saeed, M.; Ma, Y.; Ni, Z.; Zhu, D.; Chen, H. High-throughput screening and identification of lignin peroxidase based on spore surface display of Bacillus subtilis. J. Sci. Food Agric. 2024, 105, 2179–2189. [Google Scholar] [CrossRef]
- Lin, H.; Duan, Y.; Man, Z.; Zareef, M.; Wang, Z.; Chen, Q. Quantitation of volatile aldehydes using chemoselective response dyes combined with multivariable data analysis. Food Chem. 2021, 353, 129485. [Google Scholar] [CrossRef]
- Wang, C.; Ni, Y.; Zhu, C.; Li, Y.; Yan, Z.; Lu, Y.; Chen, J. A Highly Crystalline Covalent Organic Framework with Rich Redox Active Sites as Cathode Material for Lithium Batteries. Angew. Chem. 2025, 137, e202423992. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, W.Y.; Kim, S.; Kim, J.; Lee, S.J.; Park, N.; Han, S.P.; Ryu, K.; Kim, J.; Lee, W.B. Kosmotropic aqueous processing solution for green lithium battery cathode manufacturing. Nat. Commun. 2025, 16, 1686. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Kamenskii, M.; Volkov, F.; Eliseeva, S.; Ma, J. Research progress on cathode electrolyte interphase in high-voltage lithium batteries. Acta Phys. Chim. Sin. 2025, 41, 100011. [Google Scholar] [CrossRef]
- Su, Z.; Li, Y.; Dong, Y.; Tang, Z.; Liang, Z. Simulation of rice threshing performance with concentric and non-concentric threshing gaps. Biosyst. Eng. 2020, 197, 270–284. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Li, C.; Naa, Y.O.P.; Cunshan, Z. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Xu, H.; Dai, C.; Tang, Y.; Xu, X.; Umego, E.C.; He, R.; Ma, H. The selective breeding and mutagenesis mechanism of high-yielding surfactin Bacillus subtilis strains with atmospheric and room temperature plasma. J. Sci. Food Agric. 2021, 102, 1851–1861. [Google Scholar] [CrossRef]
- Selva, S.A.; Shujat, A.; Devaraj, S.; Marimuthu, M.; Huanhuan, L.; Quansheng, C. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar]
- Dai, C.; Huang, X.; Sun, J.; Tian, X.; Aheto, J.H.; Niu, S. Development of a portable electronic nose for in-situ detection of submerged fermentation of Tremella aurantialba. J. Food Saf. 2021, 41, e12902. [Google Scholar] [CrossRef]
- Li, J.; Ma, M.; Mao, Y.; Zhang, F.; Feng, J.; Lyu, Y.; Lan, T.; Li, Y.; Liu, Z. Chemical Compatibility of Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolyte Co-Sintered with Li4Ti5O12 Anode for Multilayer Ceramic Lithium Batteries. Materials 2025, 18, 851. [Google Scholar] [CrossRef]
- Li, Y.; Guan, J.; Zhang, X.; Yang, J.; Chen, S.; Guo, Y.; Lin, D.; Xu, Q.; Wu, Y.; Yuan, H.; et al. Conversion of waste photovoltaic silicon into silicon-carbon nanocages for lithium batteries anodes preparation. Mater. Today Sustain. 2024, 28, 101050. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, B.; Liu, X.; Cao, J.; Ge, J.; Men, K.; Jiang, Y.; Wang, X. Synthesis of C@Si composite materials for lithium battery anode using Chinese rose as carbon source. J. Alloys Compd. 2024, 1008, 176742. [Google Scholar] [CrossRef]
- Xu, S.; Xu, J. Three-Dimensional Skeleton Structure Li-B Alloys as Anode for Solid-State Lithium Batteries. High Energy Chem. 2024, 58, 347–356. [Google Scholar] [CrossRef]
- Lu, B.; Han, F.; Aheto, J.H.; Rashed, M.M.; Pan, Z. Artificial bionic taste sensors coupled with chemometrics for rapid detection of beef adulteration. Food Sci. Nutr. 2021, 9, 5220–5228. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Yue, S.; Wu, Y.; Li, H.; Ying, Z.; Xing, D. Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information. Horticulturae 2021, 7, 206. [Google Scholar] [CrossRef]
- Alkassoumi, H.H.; Zhang, J.; Li, H.; Chen, C.; Xu, B. Modulating the glycemic response of starch-based foods using organic nanomaterials: Strategies and opportunities. Crit. Rev. Food Sci. Nutr. 2022, 63, 21–25. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Pan, X.; Zaman, M.; Anjum, S.A.; Yang, F.; Akbar, N.; Azamat, U. Modeling effects of climate change on crop phenology and yield of wheat-maize cropping system and exploring sustainable solutions. J. Sci. Food Agric. 2025, 105, 3679–3700. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Wang, T.; Huang, X.E.; Zou, X.; Li, Z.; Zhang, D.; Zhang, W.; Xu, Y. Effects of pulsed electric field pretreatment on mass transfer kinetics of pickled lotus root (Nelumbo nucifera Gaertn.). LWT-Food Sci. Technol. 2021, 151, 112205. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, H.; Ben, L.; Hao, J.; Sun, Q.; Zhang, X.; Qiao, R.; Cen, G.; Yao, X.; Zhang, H.; et al. Mechanical-electrochemical coupling patterns in all-solid-state lithium batteries employing sulfide- and halide-based solid electrolyte. Solid State Ion. 2025, 427, 116887. [Google Scholar] [CrossRef]
- Ho, N.X.; Dien, P.T.; Viet, C.D.; Tran, N.A.; Do, L.T.; Dao, V.D.; Vu, N.H. Silane-assisted dispersion of TiO2 nanoparticles into PEO matrix as ultra-stable composite polymer electrolytes for solid-state lithium batteries. J. Power Sources 2025, 647, 237205. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, P.; Li, J.; Liu, T.; Wu, J. Mixed liquid-phase synthesis of high voltage halide electrolytes for high-performance all-solid-state lithium batteries. Chem. Eng. J. 2025, 515, 163713. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Hou, H.; Lv, A.; Yu, X.; Rong, J.; Xiong, S. The meticulous equilibrium between the electrochemical performances and liquid electrolyte in the solid-state lithium batteries. J. Energy Storage 2025, 122, 116758. [Google Scholar] [CrossRef]
- Xue, W.; Ahangaran, F.; Wang, H.; Theato, P.; Cheng, Y.J. Gel Polymer Electrolytes for Lithium Batteries: Advantages, Challenges, and Perspectives. Macromol. Rapid Commun. 2025, e2500207. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Luo, S.; Yang, Y.; Zhao, X.; Huang, G.; Jin, X.; Zhong, T.; Guan, M.; Liu, J.; Li, Y. In-situ polymerization formed self-healing quasi-solid electrolyte for high-loading lithium batteries. Energy Storage Mater. 2025, 78, 104250. [Google Scholar] [CrossRef]
- Santis, E.D.; Aurora, A.; Bergamasco, S.; Rinaldi, A.; Araneo, R.; Appetecchi, G.B. Ionic Liquid Electrolyte Technologies for High-Temperature Lithium Battery Systems. Int. J. Mol. Sci. 2025, 26, 3430. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Li, M.; Zou, X.; Shi, J. Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis(2-ethylhexyl) phthalate in pork. Food Chem. 2021, 352, 129352. [Google Scholar] [CrossRef]
- Junyi, M.; Faisal, I.; Ahsan, A.; Rouyi, F.; Fakhir, H.; Ahsan, F.M.; Basharat, A.; Huang, Q.; Sun, R.; Zhou, W. Wood vinegar induces salinity tolerance by alleviating oxidative damages and protecting photosystem II in rapeseed cultivars. Ind. Crops Prod. 2022, 189, 115763. [Google Scholar]
- El-Mesery, H.S.; Sarpong, F.; Atress, A.S. Statistical interpretation of shelf-life indicators of tomato (Lycopersicon esculentum) in correlation to storage packaging materials and temperature. J. Food Meas. Charact. 2021, 16, 366–376. [Google Scholar] [CrossRef]
- Zhu, Z.; Chai, X.; Xu, L.; Li, Q.; Yuan, C.; Tian, S. Design and performance of a distributed electric drive system for a series hybrid electric combine harvester. Biosyst. Eng. 2023, 236, 160–174. [Google Scholar] [CrossRef]
- Muhammad, N.M.; Boateng, F.E.; Umair, M.; Jing, Q.; Taiye, M.A.; Yan, W.; Zhuang, H.; Zhang, J. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2626–2659. [Google Scholar] [CrossRef]
- Shao, A.; Wang, H.; Zhang, M.; Liu, J.; Cheng, L.; Li, Y.; Guo, Y.; Wang, Z.; Jia, Q.; Wang, X.; et al. Multiscale interfacial stabilization via prelithiation separator engineering for Ah-level anode-free lithium batteries. Nat. Commun. 2025, 16, 4145. [Google Scholar] [CrossRef]
- Chaykina, D.; Ghosh, M.; Kudu, Ö.U. Critical outlook on separator layers for solid-state lithium batteries: Solid electrolyte materials, anode interface engineering,; scalable separator production. J. Power Sources 2025, 643, 237014. [Google Scholar] [CrossRef]
- He, J.; Hu, G.; Chen, J.; Wu, X.; Li, Y. Ultrahigh stability of lithium batteries improved by methoxy-modified graphdiyne composite separators. Chem. Eng. J. 2025, 511, 161941. [Google Scholar] [CrossRef]
- Vinci, V.; Flachard, D.; Henke, H.; Bouchet, R.; Drockenmuller, E. Enhancing the Performances of Lithium Batteries through Functionalization of Porous Polyolefin Separators with Cross-Linked Single-Ion Polymer Electrolytes. ACS Appl. Mater. Interfaces 2025, 17, 25742–25753. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, S.; Jiang, Z.; Tang, X.; Tian, T.; Hu, Z.; Du, P.; Wang, Y.; Tang, H. Dual in-situ curing gel polymer electrolyte for solid-state lithium battery. Mater. Today Commun. 2025, 451, 12414. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, J.; Cai, S.; Ren, H.; Wu, B.; Hua, Y.; Wei, Z.; Zhao, Y. Ionic transport regulation separator co-functionalized by conductive nanoparticles and nonconductive nanorods for high performance lithium battery. J. Power Sources 2025, 640, 236725. [Google Scholar] [CrossRef]
Categorization | Methodologies | Principle | Advantages | Limitations |
---|---|---|---|---|
Passive thermal management | Phase change materials cooling | Utilizing the absorption or release of large amounts of latent heat during phase transitions of materials to regulate battery temperature. | Simple, low cost, no external energy required. | Limited heat dissipation capacity; may not be able to meet the heat dissipation requirements for high-power batteries. |
Heat pipe cooling | Rapid heat transfer through phase change circulation of the working fluid inside the heat pipe. | High heat transfer efficiency reduces the maximum cell-surface temperature and improves temperature uniformity. | Relatively complex structure and high cost. | |
Cooling fins cooling | Increasing the heat dissipation area to dissipate heat to the surroundings through natural or forced convection. | Simple structure and low cost. | The heat dissipation effect is greatly affected by the ambient air flow, and the heat dissipation capacity is limited. | |
Active thermal management | Liquid cooling | Circulating coolant in the battery pack to absorb and dissipate heat. | Strong heat dissipation ability, good cooling effect, can effectively maintain the working temperature of the battery within the set range. | Complex system, high cost, requires external energy consumption. |
Air cooling | Using a fan to force the air to flow and take away the heat generated by the battery. | Simple structure, low cost, easy to implement. | Relatively low heat dissipation efficiency, which may be insufficient for high-power batteries. | |
Electrothermal cooling | Directional heat transfer by direct current input using the semiconductor Peltier effect. | Precise control of battery temperature, no moving parts, high reliability. | Higher energy consumption and costs. | |
BMS | Algorithm-based monitoring and control | Balances the charge of each cell in the battery pack by monitoring the voltage, current, and temperature of the cells, providing a protection mechanism in case of abnormal conditions. | Ensure that batteries operate in a safe and efficient manner, improving battery performance and life. | Limited ability to directly control chemical reactions within the battery, dependent on accurate monitoring and control algorithms. |
Material improvements | Cathode material | Improves the chemical and thermal stability of cathode materials through surface coating, doping modification, and other strategies to reduce interfacial side reactions. | Reduces the risk of thermal runaway caused by cathode materials, improving the overall safety and reliability of the battery. | Material modification processes can increase costs, and new materials take longer to develop and apply. |
Anode material | Improves the chemical and thermal stability of anode materials and inhibits the growth of lithium dendrites through strategies such as surface coating, doping modification, and the development of new anode materials. | Reduces the risk of thermal runaway caused by anode materials, improve the overall safety and reliability of the battery. | Some modification methods may affect the energy density and cycle life of the battery, requiring balancing the relationship between performance and safety. | |
Electrolyte solution | Development of new electrolyte materials, such as solid-state electrolytes, composite polymer electrolytes, gel polymer electrolytes, etc., to improve the thermal and interfacial stability of electrolytes. | Improves battery safety and thermal stability, reduces the risk of electrolyte-induced thermal runaway. | The ionic conductivity and interfacial compatibility of new electrolyte materials requires further improvement; cost of some materials is high. | |
Separator | Improvement of thermal stability and lithium ion transport performance of diaphragms through strategies such as surface modification, functionalization, development of new diaphragm materials, and preparation of multifunctional composite diaphragms. | Reduces the risk of thermal runaway caused by the diaphragm and improves the overall safety and reliability of the battery. | Modification of the diaphragm may increase the manufacturing cost; process complexity of the cell. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Liu, H.; Wang, W.; Jiang, W.; Xu, Y.; Zhu, S.; Sheng, Q. Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies. Processes 2025, 13, 2499. https://doi.org/10.3390/pr13082499
Wang T, Liu H, Wang W, Jiang W, Xu Y, Zhu S, Sheng Q. Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies. Processes. 2025; 13(8):2499. https://doi.org/10.3390/pr13082499
Chicago/Turabian StyleWang, Tiansi, Haoran Liu, Wanlin Wang, Weiran Jiang, Yixiang Xu, Simeng Zhu, and Qingliang Sheng. 2025. "Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies" Processes 13, no. 8: 2499. https://doi.org/10.3390/pr13082499
APA StyleWang, T., Liu, H., Wang, W., Jiang, W., Xu, Y., Zhu, S., & Sheng, Q. (2025). Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies. Processes, 13(8), 2499. https://doi.org/10.3390/pr13082499