Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (575)

Search Parameters:
Keywords = element circulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1644 KB  
Article
Omicron Subvariants Infection Kinetics and Nirmatrelvir Efficacy in Transgenic K18-hACE2 Mice
by Vijeta Sharma, Enriko Dolgov, Taylor Tillery, Camila Mendez Romero, Alberto Rojas-Triana, Diana M. Villalba Guzman, Kira Goldgirsh, Risha Rasheed, Irene Gonzalez-Jimenez, Nadine Alvarez, Steven Park, Madhuvika Murugan, Andrew M. Nelson and David S. Perlin
Int. J. Mol. Sci. 2025, 26(19), 9509; https://doi.org/10.3390/ijms26199509 - 29 Sep 2025
Abstract
The persistent evolution of SARS-CoV-2 has led to the emergence of antigenically distinct Omicron subvariants exhibiting increased transmissibility, immune evasion, and altered pathogenicity. Among these, recent subvariants such as JN.1, KP.3.1.1, and LB.1 possess unique antigenic and virological features, underscoring the need for [...] Read more.
The persistent evolution of SARS-CoV-2 has led to the emergence of antigenically distinct Omicron subvariants exhibiting increased transmissibility, immune evasion, and altered pathogenicity. Among these, recent subvariants such as JN.1, KP.3.1.1, and LB.1 possess unique antigenic and virological features, underscoring the need for continued surveillance and therapeutic evaluation. As vaccines and commercial monoclonal antibodies show reduced effectiveness against these variants, the role of direct-acting antivirals, such as Nirmatrelvir, targeting conserved viral elements like the main protease inhibitor, becomes increasingly crucial. In this study, we investigated the replication kinetics, host immune responses, and therapeutic susceptibility of three recently circulating Omicron subvariants in the K18-hACE2 transgenic mouse model, using the SARS-CoV-2 parent WA1/2020 strain as a reference. Omicron subvariants exhibited a marked temporal shift in viral infection kinetics characterized by an early lung viral titer peak (~7–8 Log PFU) at 2 days post-infection (dpi), followed by a decline (1–3 Log PFU) by 4 dpi. Pulmonary cytokine and chemokine responses (GM-CSF, TNF-α, IL-1β, IL-6) showed an earlier increase in subvariant-infected mice compared to a gradual response in WA1/2020 infection. Notably, Nirmatrelvir treatment led to significant reductions in lung viral titers in subvariant-infected mice compared to WA1/2020, surpassing its efficacy against the parent strain. These findings highlight that infection with Omicron subvariants yields a broad dynamic range in viral burden with minimum variability, while retaining a prominent therapeutic response to Nirmatrelvir. This study provides insights into the emerging subvariants’ pathogenesis and therapeutic responsiveness, reinforcing the importance of continued variant monitoring and the development of effective countermeasures. Full article
Show Figures

Graphical abstract

48 pages, 12849 KB  
Article
Analysis of the Functional Efficiency of a Prototype Filtration System Dedicated for Natural Swimming Ponds
by Wojciech Walczak, Artur Serafin, Tadeusz Siwiec, Jacek Mielniczuk and Agnieszka Szczurowska
Water 2025, 17(19), 2816; https://doi.org/10.3390/w17192816 - 25 Sep 2025
Abstract
Water treatment systems in swimming ponds support the natural self-cleaning capabilities of water based on the functions of repository macrophytes in their regeneration zone and the regulation of the internal metabolism of the reservoirs. As part of the project, a functional modular filtration [...] Read more.
Water treatment systems in swimming ponds support the natural self-cleaning capabilities of water based on the functions of repository macrophytes in their regeneration zone and the regulation of the internal metabolism of the reservoirs. As part of the project, a functional modular filtration chamber with system multiplication capabilities was designed and created. This element is dedicated to water treatment systems in natural swimming ponds. The prototype system consisted of modular filtration chambers and pump sections, as well as equipment adapted to the conditions prevailing in the eco-pool. An innovative solution for selective shutdown of the filtration chamber without closing the circulation circuit was also used, which forms the basis of a patent application. A verified high-performance adsorbent, Rockfos® modified limestone, was used in the filtration chamber. In order to determine the effective filtration rate for three small test ponds with different flow rates (5 m/h, 10 m/h and 15 m/h), the selected physicochemical parameters of water (temperature, pH, electrolytical conductivity, oxygen saturation, total hardness, nitrites, nitrates, and total phosphorus, including adsorption efficiency and bed absorption capacity) were researched before and after filtration. Tests were also carried out on the composition of fecal bacteria and phyto- and zooplankton. Based on high effective phosphorus filtration efficiency of 32.65% during the operation of the bed, the following were determined: no exceedances of the standards for the tested parameters in relation to the German standards for eco-pools (FLL—Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e. V., 2011); lower number of fecal pathogens (on average 393—coliform bacteria; 74—Escherichia coli; 34—fecal enterococci, most probably number/100 mL); the lowest share of problematic cyanobacteria in phytoplankton (<250,000 individuals/dm3 in number and <0.05 µg/dm3—biomass); low chlorophyll a content (2.2 µg/dm3—oligotrophy) and the presence of more favorable smaller forms of zooplankton, an effective filtration speed of 5 m/h. This velocity was recommended in the FLL standards for swimming ponds, which were adopted in this study as a reference for rapid filters. In testing the functional efficiency of a dedicated filtration system for a Type II test pond (50 m2—area and 33 m3—capacity), at a filtration rate of 5 m/h, an average effective phosphorus adsorption efficiency of 18.28–53.98% was observed under the bed work-in-progress conditions. Analyses of other physicochemical water parameters, with appropriate calculations and statistical tests, indicated progressive functional efficiency of the system under bathing conditions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 9764 KB  
Article
Modelling of the Present Oceanographic Situation of the Gulfs of Patras and Corinth
by Basile Caterina, Aurélia Hubert-Ferrari, Alexander Barth and Jean-Marie Beckers
J. Mar. Sci. Eng. 2025, 13(9), 1827; https://doi.org/10.3390/jmse13091827 - 21 Sep 2025
Viewed by 182
Abstract
In our study we investigated the hydrodynamic circulation of the Gulfs of Patras and Corinth through modelling. To this end, ROMS was used to numerically calculate the parameters of the waters for these peculiar semi-enclosed basins. Several oceanographic forcings were used with an [...] Read more.
In our study we investigated the hydrodynamic circulation of the Gulfs of Patras and Corinth through modelling. To this end, ROMS was used to numerically calculate the parameters of the waters for these peculiar semi-enclosed basins. Several oceanographic forcings were used with an emphasis on the tides and the winds. With several simulations, each focusing on a specific element, we were able to describe more accurately the dynamics under the surface to complete what was previously done. The high velocity currents (0.6 m/s at the Patraic end of the strait) were validated through ADCP and satellite data, proving that modelling can be trusted to fill the gap in the in situ data over these two gulfs. Our simulations, mainly based on the month of May 2023, allowed us to understand the importance of the tides, especially in the Rio–Antirio Strait. There, the bottom currents are the strongest while the center of the Corinthian Gulf remains quiet. The surface dynamics were observed to be sensitive to the tides, the winds and the season, but general patterns were still highlighted for the oceanographic circulation of the gulfs. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

42 pages, 2279 KB  
Review
From Farm to Fork: Antimicrobial-Resistant Bacterial Pathogens in Livestock Production and the Food Chain
by Ayman Elbehiry and Eman Marzouk
Vet. Sci. 2025, 12(9), 862; https://doi.org/10.3390/vetsci12090862 - 4 Sep 2025
Viewed by 668
Abstract
Antimicrobial resistance (AMR) in livestock production systems has emerged as a major global health concern, threatening not only animal welfare and agricultural productivity but also food safety and public health. The widespread, and often poorly regulated, use of antimicrobials for growth promotion, prophylaxis, [...] Read more.
Antimicrobial resistance (AMR) in livestock production systems has emerged as a major global health concern, threatening not only animal welfare and agricultural productivity but also food safety and public health. The widespread, and often poorly regulated, use of antimicrobials for growth promotion, prophylaxis, and metaphylaxis has accelerated the emergence and dissemination of resistant bacteria and resistance genes. These elements circulate across interconnected animal, environmental, and human ecosystems, driven by mobile genetic elements and amplified through the food production chain. It is estimated that more than two-thirds of medically important antimicrobials are used in animals, and AMR could cause millions of human deaths annually by mid-century if unchecked. In some livestock systems, multidrug-resistant E. coli prevalence already exceeds half of isolates, particularly in poultry and swine in low- and middle-income countries (LMICs). This narrative review provides a comprehensive overview of the molecular epidemiology, ecological drivers, and One Health implications of AMR in food-producing animals. We highlight key zoonotic and foodborne bacterial pathogens—including Escherichia coli, Salmonella enterica, and Staphylococcus aureus—as well as underappreciated reservoirs in commensal microbiota and livestock environments. Diagnostic platforms spanning phenotypic assays, PCR, MALDI-TOF MS, whole-genome sequencing, and CRISPR-based tools are examined for their roles in AMR detection, surveillance, and resistance gene characterization. We also evaluate current antimicrobial stewardship practices, global and regional surveillance initiatives, and policy frameworks, identifying critical implementation gaps, especially in low- and middle-income countries. Emerging sectors such as aquaculture and insect farming are considered for their potential role as future AMR hotspots. Finally, we outline future directions including real-time genomic surveillance, AI-assisted resistance prediction, and integrated One Health data platforms as essential innovations to combat AMR. Mitigating the threat of AMR in animal agriculture will require coordinated scientific, regulatory, and cross-sectoral responses to ensure the long-term efficacy of antimicrobial agents for both human and veterinary medicine. Full article
Show Figures

Figure 1

14 pages, 336 KB  
Article
United Under the Dao: Facets of Integration Between Wang Yangming and Daoism
by Yongtao Yang and Zhenren Ouyang
Religions 2025, 16(9), 1137; https://doi.org/10.3390/rel16091137 - 31 Aug 2025
Viewed by 650
Abstract
This article examines the interactions between Wang Yangming’s School of Mind and Daoist traditions, focusing on specific instances of contact, adaptation, and reinterpretation. Drawing on both historically attested events and later hagiographical narratives—treated here as cultural representations rather than literal biographies—the study traces [...] Read more.
This article examines the interactions between Wang Yangming’s School of Mind and Daoist traditions, focusing on specific instances of contact, adaptation, and reinterpretation. Drawing on both historically attested events and later hagiographical narratives—treated here as cultural representations rather than literal biographies—the study traces how Wang encountered Daoist religious sites, imagery, and technical vocabulary over the course of his life. Particular attention is given to parallels between Wang’s use of concepts such as liangzhi (innate moral knowledge) and Daoist terms from inner alchemy, as well as his adaptation of practices like stillness-sitting (jingzuo) and the metaphor of “forming the sacred embryo” (jie shengtai). The analysis shows that these elements were selectively reframed within his own intellectual framework, often shifting their emphasis from physical cultivation or longevity to moral and practical self-cultivation. Such a reorientation may have something to do with the Jingming Sect 淨明道. By situating Wang’s reinterpretations within the broader religious and philosophical environment of early sixteenth-century China, the article contributes to a more nuanced understanding of cross-tradition engagement and the circulation of ideas between Confucianism and Daoism. Full article
(This article belongs to the Special Issue The Diversity and Harmony of Taoism: Ideas, Behaviors and Influences)
14 pages, 657 KB  
Article
Pretrained Models Against Traditional Machine Learning for Detecting Fake Hadith
by Jawaher Alghamdi, Adeeb Albukhari and Thair Al-Dala’in
Electronics 2025, 14(17), 3484; https://doi.org/10.3390/electronics14173484 - 31 Aug 2025
Viewed by 653
Abstract
The proliferation of fake news, particularly in sensitive domains like religious texts, necessitates robust authenticity verification methods. This study addresses the growing challenge of authenticating Hadith, where traditional methods relying on the analysis of the chain of narrators (Isnad) and the content (Matn) [...] Read more.
The proliferation of fake news, particularly in sensitive domains like religious texts, necessitates robust authenticity verification methods. This study addresses the growing challenge of authenticating Hadith, where traditional methods relying on the analysis of the chain of narrators (Isnad) and the content (Matn) are increasingly strained by the sheer volume in circulation. To combat this issue, machine learning (ML) and natural language processing (NLP) techniques, specifically through transfer learning, are explored to automate Hadith classification into Genuine and Fake categories. This study utilizes an imbalanced dataset of 8544 Hadiths, with 7008 authentic and 1536 fake Hadiths, to systematically investigate the collective impact of both linguistic and contextual features, particularly the chain of narrators (Isnad), on Hadith authentication. For the first time in this specialized domain, state-of-the-art pre-trained language models (PLMs) such as Multilingual BERT (mBERT), CamelBERT, and AraBERT are evaluated alongside classical algorithms like logistic regression (LR) and support vector machine (SVM) for Hadith authentication. Our best-performing model, AraBERT, achieved a 99.94% F1score when including the chain of narrators, demonstrating the profound effectiveness of contextual elements (Isnad) in significantly improving accuracy, providing novel insights into the indispensable role of computational methods in Hadith authentication and reinforcing traditional scholarly emphasis. This research represents a significant advancement in combating misinformation in this important field. Full article
Show Figures

Figure 1

32 pages, 8958 KB  
Review
An Overview of Natural Cooling and Ventilation in Vernacular Architectures
by Amineddin Salimi, Ayşegül Yurtyapan, Mahmoud Ouria, Zihni Turkan and Nuran K. Pilehvarian
Wind 2025, 5(3), 21; https://doi.org/10.3390/wind5030021 - 29 Aug 2025
Cited by 1 | Viewed by 852
Abstract
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind [...] Read more.
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind catchers. Originating in Mesopotamian, Egyptian, Caucasia, and Iranian architectural traditions, these structures have adapted over centuries to maximize air circulation, thermal regulation, and humidity control, ensuring comfortable indoor environments without reliance on mechanical ventilation. This study analyzes traditional wind catcher designs, highlighting their geometric configurations, airflow optimization, and integration with architectural elements such as courtyards and solar chimneys. Through a comparative assessment, this paper contrasts passive cooling systems with modern HVAC technologies, emphasizing their energy neutrality, low-carbon footprint, and long-term sustainability benefits. A SWOT analysis evaluates their strengths, limitations, opportunities for technological integration, and challenges posed by urbanization and regulatory constraints. This study adopts a comparative analytical method, integrating a literature-based approach with qualitative assessments and a SWOT analysis framework to evaluate passive cooling strategies against modern HVAC systems. Methodologically, the research combines historical review, typological classification, and sustainability-driven performance comparisons to derive actionable insights for climate-responsive design. The research is grounded in a comparative assessment of traditional and modern cooling strategies, supported by typological analysis and evaluative frameworks. Looking toward the future, the research explores hybrid adaptations incorporating solar energy, AI-driven airflow control, and retrofitting strategies for smart cities, reinforcing the enduring relevance of vernacular cooling techniques in contemporary architecture. By bridging historical knowledge with innovative solutions, this paper contributes to ongoing discussions on climate-responsive urban planning and sustainable architectural development. Full article
Show Figures

Figure 1

22 pages, 17668 KB  
Article
Enhancing the Aerodynamic Performance of Airfoils Using DBD Plasma Actuators: An Experimental Approach
by Eder Ricoy-Zárate, Horacio Martínez, Erik Rosado-Tamariz, Andrés Blanco-Ortega and Rafael Campos-Amezcua
Processes 2025, 13(9), 2725; https://doi.org/10.3390/pr13092725 - 26 Aug 2025
Viewed by 970
Abstract
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes [...] Read more.
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes were configured asymmetrically, with a 2 mm gap and copper electrodes that are 0.20 mm in thickness. A high voltage of 6 kV was applied, resulting in a current of 0.071 mA and a power output of 0.426 W. Optical emission spectroscopy identified the excited components through the interaction of the high-voltage AC electric field with air molecules: N2, N2+, O2+, and O. The electrohydrodynamic force mainly results from the observed charged ions that, when accelerated by the electric field, transfer momentum to neutral molecules via collisions, leading to the formation of the observed jet plasma. The findings indicated a notable enhancement in aerodynamic performance attributable to the electrohydrodynamic (EHD) flow generated by the plasma. The estimated electrohydrodynamic force (8.712×104 N) is capable of maintaining the flow attached to the airfoil surface, thereby augmenting flow circulation and, consequently, enhancing the lift force. According to blade element theory, the lift and drag coefficients directly influence the torque and mechanical power generated by the wind turbine rotor. Schlieren imaging was utilized to observe alterations in air density and flow patterns. Lissajous curve analysis was used to examine the electrical discharge behavior, showing that only 7.04% of the input power was converted into heat. This indicates that nearly all input electric energy was transformed into EHD force by the atmospheric pressure plasma. Compared to traditional aerodynamic control methods, DBD actuators are a feasible alternative for small wind turbines due to their lightweight design, absence of moving parts, ability to be surface-embedded without altering blade geometry, and capacity to generate active, dynamic flow control with reduced energy consumption. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

21 pages, 21776 KB  
Article
Seismic Safety Analysis of Nuclear Power Plant Pumping Stations Using the Compact Viscous-Spring Boundary via Maximum Initial Time-Step Method
by Xunqiang Yin, Min Zhao, Weilong Yang, Junkai Zhang and Jianbo Li
Buildings 2025, 15(16), 2951; https://doi.org/10.3390/buildings15162951 - 20 Aug 2025
Viewed by 407
Abstract
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and [...] Read more.
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and implements a novel, efficient, and accurate viscous-spring boundary methodology within the ANSYS 19.1 finite element software to assess the seismic safety of NPP pumping station structures. The Maximum Initial Time-step (MIT) method, based on Newmark’s integration scheme, is employed for nonlinear analysis under coupled static–dynamic excitation. To account for radiation damping in the infinite foundation, a Compact Viscous-Spring (CVs) element is developed. This element aggregates stiffness and damping contributions to interface nodes defined at the outer border of the soil domain. Implementation leverages of ANSYS User Programmable Features (UPFs), and a comprehensive static–dynamic coupled analysis toolkit is developed using APDL scripting and the GUI. Validation via two examples confirms the method’s accuracy and computational efficiency. Finally, a case study applies the technique to an NPP pumping station under actual complex Chinese site conditions. The results demonstrate the method’s capability to provide objective seismic response and stability indices, enabling a more reliable assessment of seismic safety during a Safety Shutdown Earthquake (SSE). Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 689 KB  
Review
The Role of Zinc in Pediatric Asthma and Allergic Rhinitis: Mechanisms and Clinical Implications
by Giulio Dinardo, Cristiana Indolfi, Angela Klain, Carolina Grella, Maria Angela Tosca, Eleonora Ruocco, Michele Miraglia del Giudice and Giorgio Ciprandi
Nutrients 2025, 17(16), 2660; https://doi.org/10.3390/nu17162660 - 17 Aug 2025
Viewed by 1305
Abstract
Pediatric asthma and allergic rhinitis are prevalent chronic inflammatory diseases ruled by complex interactions among genetic, environmental, and nutritional factors. Zinc, an essential trace element, plays a crucial role in immune modulation, oxidative stress regulation, and epithelial barrier maintenance, all of which are [...] Read more.
Pediatric asthma and allergic rhinitis are prevalent chronic inflammatory diseases ruled by complex interactions among genetic, environmental, and nutritional factors. Zinc, an essential trace element, plays a crucial role in immune modulation, oxidative stress regulation, and epithelial barrier maintenance, all of which are significant in the context of allergic airway diseases. This review aimed to explore and synthesize current evidence on the biological mechanisms and clinical implications of zinc in pediatric asthma and allergic rhinitis. A comprehensive literature search was conducted through PubMed and the Cochrane Library for studies published between 2015 and 2025. Eligible studies included observational and interventional research focused on zinc status or supplementation in children with asthma or allergic rhinitis. Numerous observational studies and meta-analyses indicated reduced circulating zinc levels in children with asthma, often correlating with poor symptom control, increased oxidative stress, and lower pulmonary function. In allergic rhinitis, zinc depletion in nasal mucosa was associated with elevated local inflammation, although paradoxical increases in zinc concentrations have been observed in nasal secretions during active disease. Interventional trials in pediatric asthma populations showed that zinc supplementation may improve clinical symptoms, reduce inflammation, and enhance lung function, although the results were inconsistent and limited by methodological variability. In conclusion, zinc plays a multifactorial role in modulating immune responses and maintaining mucosal health in pediatric allergic airway diseases. While zinc supplementation holds promise as a safe and accessible adjunctive therapy, further high-quality randomized controlled trials are needed to define its clinical utility and establish evidence-based guidelines. Full article
(This article belongs to the Special Issue Anti-Inflammatory Diet and Chronic Disease)
Show Figures

Figure 1

18 pages, 12874 KB  
Article
Diagnosing Tibetan Plateau Summer Monsoon Variability Through Temperature Advection
by Xueyi Xun, Zeyong Hu, Fei Zhao, Zhongqiang Han, Min Zhang and Ruiqing Li
Atmosphere 2025, 16(8), 973; https://doi.org/10.3390/atmos16080973 - 16 Aug 2025
Viewed by 584
Abstract
It has always been a research topic for some meteorologists to design a new and reasonable calculation scheme of the intensity of the Tibetan Plateau (TP) summer monsoon (TPSM). Existing indices are defined based on dynamic factors. However, the intensity of the TPSM [...] Read more.
It has always been a research topic for some meteorologists to design a new and reasonable calculation scheme of the intensity of the Tibetan Plateau (TP) summer monsoon (TPSM). Existing indices are defined based on dynamic factors. However, the intensity of the TPSM can also be influenced by thermal factors. We therefore propose defining a TPMI in terms of horizontal temperature advection within the main body of the TP. This provides a new index that directly quantifies the extent to which the thermal forcing in the TP region regulates the monsoon system. The new index emphasizes the importance of the atmospheric asymmetry structure in measuring TPSM strength, represents the variability of the TPSM circulation system, effectively reflects the meteorological elements, and accurately represents the climate variation. Tropospheric temperature (TT) and TPSM are linked by the new index. These significant centers of correlation are characterized by alternating positive and negative phases along the Eastern European Plain, across the Turan Plain, and into southwestern and northeastern China. The correlation coefficients are found to be significantly out of phase between high and low altitudes in the vertical direction. This research broadens our minds and helps us to develop a new approach to measuring TPSM strength. It can also predict extreme weather events in advance based on TPMI changes, providing a scientific basis for disaster warnings and the management of agriculture and water resources. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 3886 KB  
Article
Bio-Desilication of Coal Fly Ash and the Impacts on Critical Metal Recovery
by Shulan Shi, Ting Chen, Simeng Ren and Jinhe Pan
Metals 2025, 15(8), 891; https://doi.org/10.3390/met15080891 - 8 Aug 2025
Viewed by 582
Abstract
Critical metals such as rare earth elements (REEs) are primarily associated with silicates and aluminosilicates in coal fly ash, resulting in poor REE recovery. Silicate bacteria can decompose silicate minerals and release silicon, but their impact on REE extraction remains unclear. In this [...] Read more.
Critical metals such as rare earth elements (REEs) are primarily associated with silicates and aluminosilicates in coal fly ash, resulting in poor REE recovery. Silicate bacteria can decompose silicate minerals and release silicon, but their impact on REE extraction remains unclear. In this study, two coal fly ash samples with different origins and combustion methods were bioleached by Paenibacillus mucilaginosus, and the effects of bio-desilication on REE leaching were examined. First, the optimal bio-desilication conditions were determined as a pulp density of 1%, an initial pH of 7.0 and an initial cell concentration OD600 = 0.2. Compared to circulating fluidized bed (CFB) coal fly ash, silicon in pulverized coal furnace (PCF) coal fly ash was more difficult to dissolve by P. mucilaginosus. After bio-desilication, the acid leaching rate of REEs improved by 8–15% for CFB coal fly ash but only 4–5% for the PCF sample. Further investigation found that the surface turned rough and the specific surface area of coal fly ash increased after bio-desilication, which are conducive to REE extraction. Additionally, there was more quartz and mullite in PCF coal fly ash, which are more resistant to biological corrosion than amorphous silicate. The results demonstrate that bio-desilication can improve REE recovery, providing new perspectives for the low-cost green utilization of coal fly ash. Full article
Show Figures

Figure 1

23 pages, 4687 KB  
Article
Mineralogical and Geochemical Characterization of the Benavila (Portugal) Bentonites
by Javier García-Rivas, Maria Isabel Dias, Isabel Paiva, Paula G. Fernandes, Rosa Marques, Emilia García-Romero and Mercedes Suárez
Minerals 2025, 15(8), 836; https://doi.org/10.3390/min15080836 - 7 Aug 2025
Viewed by 416
Abstract
This work aims to perform a detailed mineralogical, crystal-chemical, and geochemical characterization of bentonites from the Benavila outcrop, the largest known deposit of bentonites in continental Portugal. Bulk samples and different size fractions were characterized through X-Ray Diffraction (XRD). Structural formulae of the [...] Read more.
This work aims to perform a detailed mineralogical, crystal-chemical, and geochemical characterization of bentonites from the Benavila outcrop, the largest known deposit of bentonites in continental Portugal. Bulk samples and different size fractions were characterized through X-Ray Diffraction (XRD). Structural formulae of the smectites were fitted from point analyses acquired by analytical electron microscopy (AEM) with transmission electron microscopy (TEM). Smectites are the major component with variable amounts of calcite and minor amounts of quartz, feldspar, illite, and chlorite. Occasionally, amphiboles and dolomite have also been identified. The high content of carbonates in different parts of the sampling area is related to the circulation of carbonate-rich fluids. The smectites present high-layer charge, are intermediate terms of the montmorillonite–beidellite series, and also show an intermediate cisvacant–transvacant configuration. Major and trace elements concentrations were determined by ICP-MS. The geochemical analysis of the samples indicates an enrichment in SiO2 and Al2O3 and a depletion of the more clayey materials in REE, HFSE, and Y, among others. The calculation of the PIA and CIA alteration indices, along with other parameters observed, shows the possible alteration pathways of the Benavila deposit. Research to evaluate the ability of these bentonites to be used as engineering barrier systems (EBS) and sealing materials for radioactive waste repositories is ongoing. Full article
Show Figures

Figure 1

29 pages, 3455 KB  
Review
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review
by Dorota Bartusik-Aebisher, Mohammad A. Saad, Agnieszka Przygórzewska and David Aebisher
Cancers 2025, 17(15), 2572; https://doi.org/10.3390/cancers17152572 - 4 Aug 2025
Viewed by 686
Abstract
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in [...] Read more.
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in the body, hypoxia in the tumor microenvironment, and limited light penetration. Recent advances in nanoparticle and nanocomposite platforms have addressed these challenges by integrating multiple functional components into a single delivery system. By encapsulating or conjugating photosensitizers in biodegradable matrices, such as mesoporous silica, organometallic structures and core–shell construct nanocarriers increase stability in water and extend circulation time, enabling both passive and active targeting through ligand decoration. Up-conversion and dual-wavelength responsive cores facilitate deep light conversion in tissues, while simultaneous delivery of hypoxia-modulating agents alleviates oxygen deprivation to sustain reactive oxygen species generation. Controllable “motor-cargo” constructs and surface modifications improve intratumoral diffusion, while aggregation-induced emission dyes and plasmonic elements support real-time imaging and quantitative monitoring of therapeutic response. Together, these multifunctional nanosystems have demonstrated potent cytotoxicity in vitro and significant tumor suppression in vivo in mouse models of cervical cancer. Combining targeted delivery, controlled release, hypoxia mitigation, and image guidance, engineered nanoparticles provide a versatile and powerful platform to overcome the current limitations of PDT and pave the way toward more effective, patient-specific treatments for cervical malignancies. Our review of the literature summarizes studies on nanoparticles and nanocomposites used in PDT monotherapy for cervical cancer, published between 2023 and July 2025. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

24 pages, 8445 KB  
Article
DEM-Based Simulation Study on the Operational Performance of a Single Horizontal Shaft Forced-Action Mixer
by Haipeng Yang, Guanguo Ma and Wei Zhao
Buildings 2025, 15(15), 2627; https://doi.org/10.3390/buildings15152627 - 24 Jul 2025
Cited by 1 | Viewed by 475
Abstract
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the [...] Read more.
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the mixing uniformity. A 1:2 scale model was developed, incorporating Newton’s laws of motion and a soft-sphere contact model to simulate the particle trajectories and interactions during mixing. The results indicate that top–bottom feeding enhances mixing efficiency significantly by forming vertical convective circulation, achieving a mixing uniformity above 0.9. A moderate rotation speed of 30 rpm provides the best balance between energy consumption and mixing performance. As the coarse aggregate size increases (from 9 mm to 15 mm), the enhanced particle inertia leads to a decrease in mixing uniformity (from 0.9 to 0.6). Additionally, the discrepancy between simulation and experimental results is less than 0.1, validating the reliability of the model. This research offers theoretical guidance for the structural optimization and parameter selection of single-shaft mixers, contributing to improved mixing efficiency and concrete quality in engineering applications. Full article
Show Figures

Figure 1

Back to TopTop