From Farm to Fork: Antimicrobial-Resistant Bacterial Pathogens in Livestock Production and the Food Chain
Simple Summary
Abstract
1. Introduction
2. Major AMR Bacterial Pathogens in Livestock
2.1. E. coli and Salmonella enterica: High-Risk Zoonotic Enterobacteriaceae
2.2. Campylobacter jejuni and Listeria monocytogenes: AMR in Foodborne Pathogens
2.3. S. aureus: The Rise in Livestock-Associated MRSA
2.4. Opportunistic and Commensal Reservoirs: Enterococcus spp. and K. pneumoniae
2.5. S. pseudintermedius: An Emerging Zoonotic Threat
2.6. Host-Specific Dynamics and Transmission Pathways
3. Drivers of AMR in Primary Animal Production
3.1. Non-Therapeutic Use of Antimicrobials: Growth Promotion, Prophylaxis, and Metaphylaxis
3.2. Environmental Stressors and Farm Management Practices
3.3. Horizontal Gene Transfer via Mobile Genetic Elements
3.4. Co-Selection Pressures from Heavy Metals and Disinfectants
3.5. Summary and One Health Implications
3.6. Insects as Emerging AMR Reservoirs
4. Farm-to-Fork Transmission Pathways of AMR Staphylococcus spp.
4.1. Pre-Harvest Contamination: Fecal Shedding, Biofilms, and Milking Environments
4.2. Harvest and Post-Harvest Contamination: Slaughter, Processing, and Packaging
4.3. Retail and Consumer Exposure: Raw Products, Undercooked Meats, and Poor Hygiene
4.4. One Health Implications and Risk Mitigation Strategies
5. Detection and Surveillance Tools for AMR Pathogens
5.1. Phenotypic Detection Methods
5.2. Molecular Diagnostics
5.3. Advanced Genomic and Proteomic Technologies
5.4. Integration into Surveillance Networks
5.5. Comparative Utility of AMR Detection Tools
6. Regional and Global Epidemiological Trends
7. Public Health Implications and One Health Integration
7.1. Foodborne Illness Burden from AMR Pathogens
7.2. Human Colonization with Livestock-Associated Strains
7.3. Occupational Risks (Farmers, Veterinarians, Slaughterhouse Workers)
7.4. Resistance Spillover into Human Hospitals (e.g., ST398 MRSA)
7.5. One Health Barriers in LMICs and the Need for Integrated Antimicrobial Stewardship
8. Mitigation Strategies and Innovation
9. Future Directions and Research Gaps
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Meat, Eggs and Milk Essential Source of Nutrients Especially for Most Vulnerable Groups, New FAO Report Says. 2023. Available online: https://www.fao.org/newsroom/detail/meat-eggs-and-milk-essential-source-of-nutrients-new-fao-report-says-250423/en?utm_source=chatgpt.com (accessed on 25 July 2025).
- Trinchera, M.; De Gaetano, S.; Sole, E.; Midiri, A.; Silvestro, S.; Mancuso, G.; Catalano, T.; Biondo, C. Antimicrobials in Livestock Farming and Resistance: Public Health Implications. Antibiotics 2025, 14, 606. [Google Scholar] [CrossRef]
- Enshaie, E.; Nigam, S.; Patel, S.; Rai, V. Livestock Antibiotics Use and Antimicrobial Resistance. Antibiotics 2025, 14, 621. [Google Scholar] [CrossRef]
- Ritchie, H.; Spooner, F. Large Amounts of Antibiotics Are Used in Livestock, but Several Countries Have Shown this Doesn’t Have to Be the Case. Available online: https://ourworldindata.org/antibiotics-livestock (accessed on 28 August 2025).
- NRDC. U.S. Livestock Industries Persist in High-Intensity Antibiotic Use. Available online: https://www.nrdc.org/resources/us-livestock-industries-persist-high-intensity-antibiotic-use (accessed on 28 August 2025).
- Reuters. Antibiotic-Resistance Deaths to Surge from 2025–2050, Study Says. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/antibiotic-resistance-deaths-surge-2025-2050-study-says-2024-09-16/ (accessed on 28 August 2025).
- Nyolimati, C.A.; Mayito, J.; Obuya, E.; Acaye, A.S.; Isingoma, E.; Kibombo, D.; Byonanebye, D.; Walwema, R.; Musoke, D.; Orach, C.G. Prevalence and factors associated with multidrug resistant Escherichia coli carriage on chicken farms in west Nile region in Uganda: A cross-sectional survey. PLoS Glob. Public Health 2025, 5, e0003802. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Fedorka-Cray, P.J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 2002, 34, S93–S106. [Google Scholar] [CrossRef]
- El Baz, S.; Zaher, H.A.; Ragab, W. Pan-drug, colistin, streptomycin, erythromycin, clindamycin resistant Salmonella enterica serovars isolated from slaughtered cattle and human in mansoura, Egypt. Ann. Clin. Microbiol. Antimicrob. 2025, 24, 40. [Google Scholar] [CrossRef]
- Islam, M.A.; Bose, P.; Rahman, M.Z.; Muktaruzzaman, M.; Sultana, P.; Ahamed, T.; Khatun, M.M. A review of antimicrobial usage practice in livestock and poultry production and its consequences on human and animal health. J. Adv. Vet. Anim. Res. 2024, 11, 675. [Google Scholar] [CrossRef]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics overuse in animal agriculture: A call to action for health care providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef] [PubMed]
- Bava, R.; Castagna, F.; Lupia, C.; Poerio, G.; Liguori, G.; Lombardi, R.; Naturale, M.D.; Mercuri, C.; Bulotta, R.M.; Britti, D. Antimicrobial resistance in livestock: A serious threat to public health. Antibiotics 2024, 13, 551. [Google Scholar] [CrossRef] [PubMed]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef]
- Napit, R.; Gurung, A.; Poudel, A.; Chaudhary, A.; Manandhar, P.; Sharma, A.N.; Raut, S.; Pradhan, S.M.; Joshi, J.; Poyet, M. Metagenomic analysis of human, animal, and environmental samples identifies potential emerging pathogens, profiles antibiotic resistance genes, and reveals horizontal gene transfer dynamics. Sci. Rep. 2025, 15, 12156. [Google Scholar] [CrossRef]
- Paul, D.; Verma, J.; Banerjee, A.; Konar, D.; Das, B. Antimicrobial resistance traits and resistance mechanisms in bacterial pathogens. In Antimicrobial Resistance: Underlying Mechanisms and Therapeutic Approaches; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–27. [Google Scholar]
- Viana, G.G.F.; Cardozo, M.V.; Pereira, J.G.; Rossi, G.A.M. Antimicrobial Resistant Staphylococcus spp., Escherichia coli, and Salmonella spp. in Food Handlers: A Global Review of Persistence, Transmission, and Mitigation Challenges. Pathogens 2025, 14, 496. [Google Scholar] [CrossRef]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- WHO. One Health Joint Plan of Action (2022–2026): Working Together for the Health of Humans, Animals, Plants and the Environment. Available online: https://www.woah.org/app/uploads/2022/04/one-health-joint-plan-of-action-final.pdf?utm_source=chatgpt.com (accessed on 21 July 2025).
- Cella, E.; Giovanetti, M.; Benedetti, F.; Scarpa, F.; Johnston, C.; Borsetti, A.; Ceccarelli, G.; Azarian, T.; Zella, D.; Ciccozzi, M. Joining forces against antibiotic resistance: The one health solution. Pathogens 2023, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Delpy, L.; Astbury, C.C.; Aenishaenslin, C.; Ruckert, A.; Penney, T.L.; Wiktorowicz, M.; Ciss, M.; Benko, R.; Bordier, M. Integrated surveillance systems for antibiotic resistance in a One Health context: A scoping review. BMC Public Health 2024, 24, 1717. [Google Scholar] [CrossRef] [PubMed]
- Agency, E.E. Veterinary Antimicrobials in Europe’s Environment: A One Health Perspective. 2024. Available online: https://www.eea.europa.eu/publications/veterinary-antimicrobials-in-europes-environment (accessed on 21 July 2025).
- Lopes Antunes, A.C.; Jensen, V.F. Close to a decade of decrease in antimicrobial usage in Danish pig production–evaluating the effect of the yellow card scheme. Front. Vet. Sci. 2020, 7, 109. [Google Scholar]
- Morgan, A.L.; Moran, D.; Van Boeckel, T.P. Taxation of veterinary antibiotics to reduce antimicrobial resistance. One Health 2023, 17, 100650. [Google Scholar] [CrossRef]
- Olaru, I.D.; Walther, B.; Schaumburg, F. Zoonotic sources and the spread of antimicrobial resistance from the perspective of low and middle-income countries. Infect. Dis. Poverty 2023, 12, 73–87. [Google Scholar] [CrossRef]
- Kluz, M.I.; Waszkiewicz-Robak, B.; Kačániová, M. The Applications of MALDI-TOF MS in the Diagnosis of Microbiological Food Contamination. Appl. Sci. 2025, 15, 7863. [Google Scholar] [CrossRef]
- Ferreira, I.; Beisken, S.; Lueftinger, L.; Weinmaier, T.; Klein, M.; Bacher, J.; Patel, R.; von Haeseler, A.; Posch, A.E. Species identification and antibiotic resistance prediction by analysis of whole-genome sequence data by use of ARESdb: An analysis of isolates from the Unyvero lower respiratory tract infection trial. J. Clin. Microbiol. 2020, 58, e00273-20. [Google Scholar] [CrossRef]
- Kaprou, G.D.; Bergšpica, I.; Alexa, E.A.; Alvarez-Ordonez, A.; Prieto, M. Rapid methods for antimicrobial resistance diagnostics. Antibiotics 2021, 10, 209. [Google Scholar] [CrossRef]
- Loy, J.D.; Clawson, M.L.; Adkins, P.R.; Middleton, J.R. Current and emerging diagnostic approaches to bacterial diseases of ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 93–114. [Google Scholar] [CrossRef]
- Cho, J.-h.; Lee, G.M.; Ko, S.; Kim, Y.; Kim, D. Characterization and therapeutic potential of newly isolated bacteriophages against Staphylococcus species in bovine mastitis. J. Virol. 2025, 99, e01901-24. [Google Scholar] [CrossRef]
- Sachdeva, A.; Tomar, T.; Malik, T.; Bains, A.; Karnwal, A. Exploring probiotics as a sustainable alternative to antimicrobial growth promoters: Mechanisms and benefits in animal health. Front. Sustain. Food Syst. 2025, 8, 1523678. [Google Scholar] [CrossRef]
- Chindelevitch, L.; Jauneikaite, E.; Wheeler, N.E.; Allel, K.; Ansiri-Asafoakaa, B.Y.; Awuah, W.A.; Bauer, D.C.; Beisken, S.; Fan, K.; Grant, G. Applying data technologies to combat AMR: Current status, challenges, and opportunities on the way forward. arXiv 2022, arXiv:2208.04683. [Google Scholar] [CrossRef]
- FAO. The FAO Action Plan on Antimicrobial Resistance 2021–2025; FAO: Rome, Italy, 2020. [Google Scholar]
- Wang, H.; Qi, J.-F.; Qin, R.; Ding, K.; Graham, D.W.; Zhu, Y.-G. Intensified livestock farming increases antibiotic resistance genotypes and phenotypes in animal feces. Commun. Earth Environ. 2023, 4, 123. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Q.E.; Zhou, X.; Wang, F.-H.; Muurinen, J.; Virta, M.P.; Brandt, K.K.; Zhu, Y.-G. Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2159–2196. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Munk, P.; Brinch, C.; Møller, F.D.; Petersen, T.N.; Hendriksen, R.S.; Seyfarth, A.M.; Kjeldgaard, J.S.; Svendsen, C.A.; Van Bunnik, B.; Berglund, F. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 2022, 13, 7251. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, S.P.; Jarocki, V.M.; Seemann, T.; Cummins, M.L.; Watt, A.E.; Drigo, B.; Wyrsch, E.R.; Reid, C.J.; Donner, E.; Howden, B.P. Genomic surveillance for antimicrobial resistance—A One Health perspective. Nat. Rev. Genet. 2024, 25, 142–157. [Google Scholar] [CrossRef]
- Watt, A.E.; Cummins, M.L.; Donato, C.M.; Wirth, W.; Porter, A.F.; Andersson, P.; Donner, E.; Jennison, A.V.; Seemann, T. Parameters for one health genomic surveillance of Escherichia coli from Australia. Nat. Commun. 2025, 16, 17. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.; Xu, J.; Wang, Y.; Zhang, Q.; Walsh, T.R.; Shao, B.; Wu, C.; Hu, Y.; Yang, L. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nat. Microbiol. 2018, 3, 1054–1062. [Google Scholar] [CrossRef]
- Ramatla, T.; Mileng, K.; Ndou, R.; Mphuti, N.; Syakalima, M.; Lekota, K.E.; Thekisoe, O.M. Molecular detection of integrons, colistin and β-lactamase resistant genes in Salmonella enterica serovars enteritidis and typhimurium isolated from chickens and rats inhabiting poultry farms. Microorganisms 2022, 10, 313. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.K.; Dahal, P.; Parajuli, R.; Giri, G.R.; Tuladhar, E. Prevalence of blaCTX-M and blaTEM Genes in Cefotaxime-Resistant Escherichia coli Recovered from Tertiary Care at Central Nepal: A Descriptive Cross-Sectional Study. Can. J. Infect. Dis. Med. Microbiol. 2024, 2024, 5517662. [Google Scholar] [CrossRef] [PubMed]
- Valiakos, G.; Kapna, I. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. A systematic review. Vet. Sci. 2021, 8, 265. [Google Scholar] [CrossRef]
- Bastidas-Caldes, C.; de Waard, J.H.; Salgado, M.S.; Villacís, M.J.; Coral-Almeida, M.; Yamamoto, Y.; Calvopiña, M. Worldwide prevalence of mcr-mediated colistin-resistance Escherichia coli in isolates of clinical samples, healthy humans, and livestock—A systematic review and meta-analysis. Pathogens 2022, 11, 659. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Odumosu, B.T.; Oluseyi, A.E.; Ruppitsch, W. Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. J. Pharm. Bioallied Sci. 2016, 8, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Rempel, H.; Champagne, J.; Masson, L.; Pritchard, J.; Topp, E. Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of isolates from broiler chickens. Appl. Environ. Microbiol. 2010, 76, 8033–8043. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res. Int. 2013, 2013, 340605. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic resistance profiles and molecular mechanisms of Campylobacter from chicken and pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef]
- Benites, C.; Anampa, D.; Torres, D.; Avalos, I.; Rojas, M.; Conte, C.; Lázaro, C. Prevalence, tetracycline resistance and Tet (O) gene identification in pathogenic Campylobacter strains isolated from chickens in retail markets of Lima, Peru. Antibiotics 2022, 11, 1580. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.E.; Lues, R. Listeria monocytogenes and Listeriosis: The Global Enigma. Foods 2025, 14, 1266. [Google Scholar] [CrossRef] [PubMed]
- Obaidat, M.M.; AlShehabat, I.A. High multidrug resistance of Listeria monocytogenes and association with water sources in sheep and goat dairy flocks in Jordan. Prev. Vet. Med. 2023, 215, 105922. [Google Scholar] [CrossRef]
- Haubert, L.; Mendonça, M.; Lopes, G.; de Itapema Cardoso, M.; Da Silva, W. Listeria monocytogenes isolates from food and food environment harbouring tetM and ermB resistance genes. Lett. Appl. Microbiol. 2016, 62, 23–29. [Google Scholar] [CrossRef]
- Fetsch, A.; Etter, D.; Johler, S. Livestock-associated meticillin-resistant Staphylococcus aureus—Current situation and impact from a One Health perspective. Curr. Clin. Microbiol. Rep. 2021, 8, 103–113. [Google Scholar] [CrossRef]
- Sharma, M.; Nunez-Garcia, J.; Kearns, A.M.; Doumith, M.; Butaye, P.R.; Argudín, M.A.; Lahuerta-Marin, A.; Pichon, B.; AbuOun, M.; Rogers, J. Livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) clonal complex (CC) 398 isolated from UK animals belong to European lineages. Front. Microbiol. 2016, 7, 1741. [Google Scholar] [CrossRef]
- Silva, V.; Araújo, S.; Monteiro, A.; Eira, J.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Lemsaddek, T.S.; Poeta, P. Staphylococcus aureus and MRSA in livestock: Antimicrobial resistance and genetic lineages. Microorganisms 2023, 11, 124. [Google Scholar] [CrossRef]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-associated MRSA: The impact on humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef]
- Larsen, J.; Petersen, A.; Sørum, M.; Stegger, M.; van Alphen, L.; Valentiner-Branth, P.; Knudsen, L.K.; Larsen, L.S.; Feingold, B.; Price, L.B. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Euro Surveill 2015, 20, 30021. [Google Scholar] [CrossRef]
- Bosch, T.; Verkade, E.; Van Luit, M.; Landman, F.; Kluytmans, J.; Schouls, L. Transmission and persistence of livestock-associated methicillin-resistant Staphylococcus aureus among veterinarians and their household members. Appl. Environ. Microbiol. 2015, 81, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Narongpun, P.; Chanchaithong, P.; Yamagishi, J.; Thapa, J.; Nakajima, C.; Suzuki, Y. Whole-genome investigation of zoonotic transmission of livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 isolated from pigs and humans in Thailand. Antibiotics 2023, 12, 1745. [Google Scholar] [CrossRef]
- Talim, J.; Martins, I.; Messias, C.; Sabino, H.; Oliveira, L.; Pinto, T.; Albuquerque, J.; Cerqueira, A.; Dolores, Í.; Moreira, B. Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398. Antibiotics 2024, 13, 767. [Google Scholar] [CrossRef]
- Sieber, R.N.; Larsen, A.R.; Urth, T.R.; Iversen, S.; Møller, C.H.; Skov, R.L.; Larsen, J.; Stegger, M. Genome investigations show host adaptation and transmission of LA-MRSA CC398 from pigs into Danish healthcare institutions. Sci. Rep. 2019, 9, 18655. [Google Scholar] [CrossRef]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Sparo, M.; Delpech, G.; García Allende, N. Impact on public health of the spread of high-level resistance to gentamicin and vancomycin in enterococci. Front. Microbiol. 2018, 9, 3073. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, S.; Pitino, R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital. J. Food Saf. 2019, 8, 7956. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Castillo, F.Y.; Guerrero-Barrera, A.L.; Avelar-González, F.J. An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Front. Vet. Sci. 2023, 10, 1158588. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Nguyen, T.N.; Lam, M.M.; Judd, L.M.; van Vinh Chau, N.; Dance, D.A.; Ip, M.; Karkey, A.; Ling, C.L.; Miliya, T. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 2020, 12, 11. [Google Scholar] [CrossRef]
- Kopotsa, K.; Mbelle, N.M.; Osei Sekyere, J. Epigenomics, genomics, resistome, mobilome, virulome and evolutionary phylogenomics of carbapenem-resistant Klebsiella pneumoniae clinical strains. Microb. Genom. 2020, 6, e000474. [Google Scholar] [CrossRef]
- Moodley, A.; Damborg, P.; Nielsen, S.S. Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin: Literature review from 1980 to 2013. Vet. Microbiol. 2014, 171, 337–341. [Google Scholar] [CrossRef]
- Guimarães, L.; Teixeira, I.M.; da Silva, I.T.; Antunes, M.; Pesset, C.; Fonseca, C.; Santos, A.L.; Côrtes, M.F.; Penna, B. Epidemiologic case investigation on the zoonotic transmission of Methicillin-resistant Staphylococcus pseudintermedius among dogs and their owners. J. Infect. Public Health 2023, 16, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, K.; Schwarz, S. Antimicrobial resistance of Staphylococcus pseudintermedius. Vet. Dermatol. 2012, 23, 276-e255. [Google Scholar] [CrossRef]
- Moses, I.B.; Santos, F.F.; Gales, A.C. Human colonization and infection by Staphylococcus pseudintermedius: An emerging and underestimated zoonotic pathogen. Microorganisms 2023, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Sawhney, S.S.; Vargas, R.C.; Wallace, M.A.; Muenks, C.E.; Lubbers, B.V.; Fritz, S.A.; Burnham, C.-A.D.; Dantas, G. Diagnostic and commensal Staphylococcus pseudintermedius genomes reveal niche adaptation through parallel selection of defense mechanisms. Nat. Commun. 2023, 14, 7065. [Google Scholar] [CrossRef]
- Sierra-Arguello, Y.M.; Quedi Furian, T.; Perdoncini, G.; Moraes, H.L.; Salle, C.T.; Rodrigues, L.B.; Ruschel dos Santos, L.; Pereira Gomes, M.J.; Pinheiro do Nascimento, V. Fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli from poultry and human samples assessed by PCR-restriction fragment length polymorphism assay. PLoS ONE 2018, 13, e0199974. [Google Scholar] [CrossRef]
- Lemlem, M.; Aklilu, E.; Mohamed, M.; Kamaruzzaman, N.F.; Devan, S.S.; Lawal, H.; Kanamma, A.A. Prevalence and molecular characterization of ESBL-producing Escherichia coli isolated from broiler chicken and their respective farms environment in Malaysia. BMC Microbiol. 2024, 24, 499. [Google Scholar] [CrossRef]
- Ventero, M.P.; Marin, C.; Migura-Garcia, L.; Tort-Miro, C.; Giler, N.; Gomez, I.; Escribano, I.; Marco-Fuertes, A.; Montoro-Dasi, L.; Lorenzo-Rebenaque, L. Identification of antimicrobial-resistant zoonotic bacteria in swine production: Implications from the One Health perspective. Antibiotics 2024, 13, 883. [Google Scholar] [CrossRef]
- Song, J.; Xiang, W.; Wang, Q.; Yin, J.; Tian, T.; Yang, Q.; Zhang, M.; Ge, G.; Li, J.; Diao, N. Prevalence and risk factors of Klebsiella spp. in milk samples from dairy cows with mastitis—A global systematic review. Front. Vet. Sci. 2023, 10, 1143257. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Lucena, A.; Slowey, R. Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. J. Dairy Sci. 2023, 106, 1–23. [Google Scholar] [CrossRef]
- Abdi, R.D.; Gillespie, B.E.; Ivey, S.; Pighetti, G.M.; Almeida, R.A.; Kerro Dego, O. Antimicrobial resistance of major bacterial pathogens from dairy cows with high somatic cell count and clinical mastitis. Animals 2021, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Osman, K.M.; Kappell, A.D.; Elhadidy, M.; ElMougy, F.; El-Ghany, W.A.A.; Orabi, A.; Mubarak, A.S.; Dawoud, T.M.; Hemeg, H.A.; Moussa, I.M. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci. Rep. 2018, 8, 5859. [Google Scholar] [CrossRef]
- Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef]
- Zhao, X.; Ye, C.; Chang, W.; Sun, S. Serotype distribution, antimicrobial resistance, and class 1 integrons profiles of Salmonella from animals in slaughterhouses in Shandong Province, China. Front. Microbiol. 2017, 8, 1049. [Google Scholar] [CrossRef]
- Díaz-Martínez, C.; Bolívar, A.; Mercanoglu Taban, B.; Kanca, N.; Pérez-Rodríguez, F. Exploring the antibiotic resistance of Listeria monocytogenes in food environments—A review. Crit. Rev. Microbiol. 2024, 51, 731–754. [Google Scholar] [CrossRef]
- Tahoun, A.B.; Abou Elez, R.M.; Abdelfatah, E.N.; Elsohaby, I.; El-Gedawy, A.A.; Elmoslemany, A.M. Listeria monocytogenes in raw milk, milking equipment and dairy workers: Molecular characterization and antimicrobial resistance patterns. J. Glob. Antimicrob. Resist. 2017, 10, 264–270. [Google Scholar] [CrossRef]
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock. MBio 2012, 3, e00305-11. [Google Scholar] [CrossRef] [PubMed]
- Belhout, C.; Elgroud, R.; Butaye, P. Methicillin-Resistant Staphylococcus aureus (MRSA) and other methicillin-resistant staphylococci and Mammaliicoccus (MRNaS) associated with animals and food products in Arab countries: A review. Vet. Sci. 2022, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Braun, S.D.; Collatz, M.; Diezel, C.; Müller, E.; Reinicke, M.; Cabal Rosel, A.; Feßler, A.T.; Hanke, D.; Loncaric, I. Molecular characterization of chimeric Staphylococcus aureus strains from waterfowl. Microorganisms 2024, 12, 96. [Google Scholar] [CrossRef]
- Yahia, H.B.; Chairat, S.; Hamdi, N.; Gharsa, H.; Sallem, R.B.; Ceballos, S.; Torres, C.; Slama, K.B. Antimicrobial resistance and genetic lineages of faecal enterococci of wild birds: Emergence of vanA and vanB2 harbouring Enterococcus faecalis. Int. J. Antimicrob. Agents 2018, 52, 936–941. [Google Scholar] [CrossRef]
- Novais, C.; Freitas, A.R.; Silveira, E.; Antunes, P.; Silva, R.; Coque, T.M.; Peixe, L. Spread of multidrug-resistant Enterococcus to animals and humans: An underestimated role for the pig farm environment. J. Antimicrob. Chemother. 2013, 68, 2746–2754. [Google Scholar] [CrossRef]
- Bonardi, S.; Cabassi, C.; Fiaccadori, E.; Cavirani, S.; Parisi, A.; Bacci, C.; Lamperti, L.; Rega, M.; Conter, M.; Marra, F. Detection of carbapenemase-and ESBL-producing Klebsiella pneumoniae from bovine bulk milk and comparison with clinical human isolates in Italy. Int. J. Food Microbiol. 2023, 387, 110049. [Google Scholar] [CrossRef]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Grönlund Andersson, U.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: An international multicentre study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef]
- Wall, B.; Marshall, L.; Mateus, A.; Pfeiffer, D. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production. 2016. Available online: https://disarmproject.eu/resources/research-report-drivers-dynamics-and-epidemiology-of-antimicrobial-resistance-in-animal-production/ (accessed on 23 July 2025).
- Hazards, E.P.o.B.; Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. Efsa J. 2021, 19, e06651. [Google Scholar]
- Brito, I.L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 2021, 19, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Aidara-Kane, A.; Angulo, F.J.; Conly, J.M.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J.; WHO Guideline Development Group. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control 2018, 7, 7. [Google Scholar] [CrossRef]
- Perry, M.R.; Lepper, H.C.; McNally, L.; Wee, B.A.; Munk, P.; Warr, A.; Moore, B.; Kalima, P.; Philip, C.; de Roda Husman, A.M. Secrets of the hospital underbelly: Patterns of abundance of antimicrobial resistance genes in hospital wastewater vary by specific antimicrobial and bacterial family. Front. Microbiol. 2021, 12, 703560. [Google Scholar] [CrossRef]
- Luiken, R.E.; Van Gompel, L.; Munk, P.; Sarrazin, S.; Joosten, P.; Dorado-García, A.; Borup Hansen, R.; Knudsen, B.E.; Bossers, A.; Wagenaar, J.A. Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. J. Antimicrob. Chemother. 2019, 74, 2596–2604. [Google Scholar] [CrossRef] [PubMed]
- Redman-White, C.J.; Moran, D.; Peters, A.R.; Muwonge, A. A review of the predictors of antimicrobial use and resistance in European food animal production. Front. Antibiot. 2023, 2, 1209552. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, J.; Meng, J.; Zhang, J.; Zhuang, H.; Zheng, G.; Xie, W.; Ping, L.; Shan, S. Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. Sci. Total Environ. 2021, 759, 143473. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, M.; Błażejewska, A.; Czapko, A.; Popowska, M. Antibiotics and antibiotic resistance genes in animal manure–consequences of its application in agriculture. Front. Microbiol. 2021, 12, 610656. [Google Scholar] [CrossRef]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Manaia, C.M.; Macedo, G.; Fatta-Kassinos, D.; Nunes, O.C. Antibiotic resistance in urban aquatic environments: Can it be controlled? Appl. Microbiol. Biotechnol. 2016, 100, 1543–1557. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Zhao, Y.; Li, B.; Huang, C.-L.; Zhang, S.-Y.; Yu, S.; Chen, Y.-S.; Zhang, T.; Gillings, M.R.; Su, J.-Q. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2017, 2, 16270. [Google Scholar] [CrossRef]
- Xia, X.; Wang, Z.; Fu, Y.; Du, X.-d.; Gao, B.; Zhou, Y.; He, J.; Wang, Y.; Shen, J.; Jiang, H. Association of colistin residues and manure treatment with the abundance of mcr-1 gene in swine feedlots. Environ. Int. 2019, 127, 361–370. [Google Scholar] [CrossRef]
- Rega, M. Risk Analysis of the Transmission of Antimicrobial Resistant Escherichia coli in Pork Food Chain: A “Farm-to-Fork” Perspective. 2023. Available online: https://hdl.handle.net/1889/5413 (accessed on 25 July 2025).
- Razavi, M.; Kristiansson, E.; Flach, C.-F.; Larsson, D.J. The association between insertion sequences and antibiotic resistance genes. Msphere 2020, 5, e00418-20. [Google Scholar] [CrossRef]
- Jiang, H.; Ran, M.; Wang, X.; Chen, Q.; Wang, J.; Ruan, Z.; Wang, J.; Tang, B.; Fang, J. Prevalence and characterization of class I integrons in multidrug-resistant Escherichia coli isolates from humans and food-producing animals in Zhejiang Province, China. BMC Microbiol. 2025, 25, 76. [Google Scholar] [CrossRef]
- Yang, F.; Han, B.; Gu, Y.; Zhang, K. Swine liquid manure: A hotspot of mobile genetic elements and antibiotic resistance genes. Sci. Rep. 2020, 10, 15037. [Google Scholar] [CrossRef]
- James, C.; James, S.J.; Onarinde, B.A.; Dixon, R.A.; Williams, N. A critical review of AMR risks arising as a consequence of using biocides and certain metals in food animal production. Antibiotics 2023, 12, 1569. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.I.R.; Kadu, P.; Bawane, P.; Nakhate, K.T.; Yele, S.; Ojha, S.; Goyal, S.N. Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: A state-of-the-art review. J. Antibiot. 2023, 76, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef]
- Viñes, J.; Cuscó, A.; Napp, S.; Gonzalez, J.; de Rozas, A.P.; Francino, O.; Migura-Garcia, L. Applying Nanopore sequencing to a One-Health scenario for colistin resistance transmission among pigs, cows and the farmer. bioRxiv 2019. [Google Scholar] [CrossRef]
- Xie, W.Y.; Shen, Q.; Zhao, F.-J. Antibiotics and antibiotic resistance from animal manures to soil: A review. Eur. J. Soil Sci. 2018, 69, 181–195. [Google Scholar] [CrossRef]
- Yazdankhah, S.; Rudi, K.; Bernhoft, A. Zinc and copper in animal feed–development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis. 2014, 25, 25862. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.; Qin, X.; Xu, Y.; Wang, J.; Wu, G.; Feng, H.; Ye, J.; Zhu, C.; Li, X. Profiles of antibiotic-and heavy metal-related resistance genes in animal manure revealed using a metagenomic analysis. Ecotoxicol. Environ. Saf. 2022, 239, 113655. [Google Scholar] [CrossRef]
- Rhouma, M.; Soufi, L.; Cenatus, S.; Archambault, M.; Butaye, P. Current insights regarding the role of farm animals in the spread of antimicrobial resistance from a one health perspective. Vet. Sci. 2022, 9, 480. [Google Scholar] [CrossRef]
- Robinson, T.P.; Bu, D.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. Antimicrob. Resist. Bact. Livest. Companion Anim. 2018, 6, 521–547. [Google Scholar]
- Singer, A.C.; Thompson, J.R.; Filho, C.R.M.; Street, R.; Li, X.; Castiglioni, S.; Thomas, K.V. A world of wastewater-based epidemiology. Nat. Water 2023, 1, 408–415. [Google Scholar] [CrossRef]
- Papakonstantinou, G.I.; Voulgarakis, N.; Terzidou, G.; Fotos, L.; Giamouri, E.; Papatsiros, V.G. Precision livestock farming technology: Applications and challenges of animal welfare and climate change. Agriculture 2024, 14, 620. [Google Scholar] [CrossRef]
- Van Huis, A. Insects as food and feed, a new emerging agricultural sector: A review. J. Insects Food Feed 2020, 6, 27–44. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- De Smet, J.; Wynants, E.; Cos, P.; Van Campenhout, L. Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Appl. Environ. Microbiol. 2018, 84, e02722-17. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Garofalo, C.; Clementi, F.; Ruschioni, S.; Riolo, P.; Isidoro, N.; Loreto, N.; Galarini, R. Distribution of transferable antibiotic resistance genes in laboratory-reared edible mealworms (Tenebrio molitor L.). Front. Microbiol. 2018, 9, 2702. [Google Scholar] [CrossRef]
- Raka, R.N.; Zhang, L.; Chen, R.; Xue, X. Antibiotic resistance genes in global food transformation system: Edible insects vs. livestock. Foods 2024, 13, 3257. [Google Scholar] [CrossRef] [PubMed]
- Crippen, T.L.; Sullivan, J.P.; Anderson, R.C. Bacterial proximity effects on the transfer of antibiotic resistance genes within the alimentary tract of yellow mealworm larvae. J. Econ. Entomol. 2024, 117, 417–426. [Google Scholar] [CrossRef]
- Zurek, L.; Ghosh, A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014, 80, 3562–3567. [Google Scholar] [CrossRef]
- Butaye, P.; Argudín, M.; Smith, T. Livestock-associated MRSA and its current evolution. Curr. Clin. Microbiol. Rep. 2016, 3, 19–31. [Google Scholar] [CrossRef]
- Kang, H.J.; You, J.-Y.; Hong, S.; Moon, J.-S.; Kim, H.-Y.; Choi, J.-H.; Kim, J.-M.; Lee, Y.J.; Kang, H.-M. Prevalence of pathogens and antimicrobial resistance of isolated Staphylococcus spp. in bovine mastitis milk in South Korea, 2018–2022. J. Vet. Med. Sci. 2024, 86, 1219–1226. [Google Scholar] [CrossRef]
- Oliveira, C.A.F.d. On the relevance of microbial biofilms for persistence of Staphylococcus aureus in dairy farms. Adv. Dairy Res. 2014, 2, e109. [Google Scholar] [CrossRef]
- Latorre, A.A.; Oliva, R.; Pugin, J.; Estay, A.; Nualart, F.; Salazar, K.; Garrido, N.; Muñoz, M.A. Biofilms in hoses utilized to divert colostrum and milk on dairy farms: A report exploring their potential role in herd health, milk quality, and public health. Front. Vet. Sci. 2022, 9, 969455. [Google Scholar] [CrossRef]
- Vargová, M.; Zigo, F.; Výrostková, J.; Farkašová, Z.; Rehan, I.F. Biofilm-producing ability of Staphylococcus aureus obtained from surfaces and milk of mastitic cows. Vet. Sci. 2023, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Léguillier, V.; Pinamonti, D.; Chang, C.-M.; Mukherjee, R.; Cossetini, A.; Manzano, M.; Anba-Mondoloni, J.; Malet-Villemagne, J.; Vidic, J. A review and meta-analysis of Staphylococcus aureus prevalence in foods. Microbe 2024, 4, 100131. [Google Scholar] [CrossRef]
- Ren, X.; Yang, D.; Yang, Z.; Li, Y.; Yang, S.; Li, W.; Qiao, X.; Xue, C.; Chen, M.; Zhang, L. Prevalence and antimicrobial susceptibility of foodborne pathogens from raw livestock meat in China, 2021. Microorganisms 2024, 12, 2157. [Google Scholar] [CrossRef] [PubMed]
- Titouche, Y.; Akkou, M.; Djaoui, Y.; Mechoub, D.; Fatihi, A.; Campaña-Burguet, A.; Bouchez, P.; Bouhier, L.; Houali, K.; Torres, C. Nasal carriage of Staphylococcus aureus in healthy dairy cows in Algeria: Antibiotic resistance, enterotoxin genes and biofilm formation. BMC Vet. Res. 2024, 20, 247. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shi, W.; Meng, N.; Zhao, Y.; Ding, X.; Li, Q. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front. Microbiol. 2023, 14, 1190790. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Correia, S.; Pereira, J.E.; Igrejas, G.; Poeta, P. Surveillance and environmental risk assessment of antibiotics and AMR/ARGs related with MRSA: One health perspective. In Antibiotics and Antimicrobial Resistance Genes: Environmental Occurrence and Treatment Technologies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 271–295. [Google Scholar]
- Thwala, T.; Madoroba, E.; Basson, A.; Butaye, P. Prevalence and characteristics of Staphylococcus aureus associated with meat and meat products in African countries: A review. Antibiotics 2021, 10, 1108. [Google Scholar] [CrossRef] [PubMed]
- Hachemi, A.; Zenia, S.; Denia, M.F.; Guessoum, M.; Hachemi, M.M.; Ait-Oudhia, K. Epidemiological study of sausage in Algeria: Prevalence, quality assessment, and antibiotic resistance of Staphylococcus aureus isolates and the risk factors associated with consumer habits affecting foodborne poisoning. Vet. World 2019, 12, 1240. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhao, X.; Yang, Q.; Wu, Y.; Zhang, S.; Huang, J. Genome-based assessment of antimicrobial resistance reveals the lineage specificity of resistance and resistance gene profiles in Riemerella anatipestifer from China. Microbiol. Spectr. 2024, 12, e03132-23. [Google Scholar] [CrossRef]
- Xing, L.; Cheng, M.; Jiang, J.; Li, T.; Zhang, X.; Tian, Y.; Liu, W. Methicillin-Resistant Staphylococcus aureus Contamination in Meat and Meat Products: A Systematic Review and Meta-Analysis. Front. Microbiol. 2025, 16, 1636622. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Zhang, F.; Wu, Q.; Zhang, J.; Pang, R.; Zeng, H.; Yang, X.; Chen, M.; Wang, J. Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China. Front. Microbiol. 2019, 10, 304. [Google Scholar] [CrossRef]
- Martinez-Laorden, A.; Arraiz-Fernandez, C.; Ibañez-Torija, G.; Gonzalez-Fandos, E. Microbiological Quality and Safety of Fresh Pork Meat with Special Reference to Methicillin-Resistant S. aureus and Other Staphylococci. Vet. Sci. 2025, 12, 568. [Google Scholar] [CrossRef] [PubMed]
- Basanisi, M.; La Bella, G.; Nobili, G.; Tola, S.; Cafiero, M.; La Salandra, G. Prevalence and characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates from retail meat in south Italy. Ital. J. Food Sci./Riv. Ital. Di Sci. Degli Aliment. 2020, 32, 410–419. [Google Scholar]
- Plaza-Rodríguez, C.; Kaesbohrer, A.; Tenhagen, B.A. Probabilistic model for the estimation of the consumer exposure to methicillin-resistant Staphylococcus aureus due to cross-contamination and recontamination. MicrobiologyOpen 2019, 8, e900. [Google Scholar] [CrossRef]
- Raji, M.A.; Garaween, G.; Ehricht, R.; Monecke, S.; Shibl, A.M.; Senok, A. Genetic characterization of Staphylococcus aureus isolated from retail meat in Riyadh, Saudi Arabia. Front. Microbiol. 2016, 7, 911. [Google Scholar] [CrossRef]
- Fanelli, F.; Chieffi, D.; Cho, G.-S.; Schubert, J.; Mekhloufi, O.A.; Bania, J.; Franz, C.M.; Fusco, V. First genome-based characterisation and staphylococcal enterotoxin production ability of methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains isolated from ready-to-eat foods in Algiers (Algeria). Toxins 2022, 14, 731. [Google Scholar] [CrossRef]
- Ak, N.O.; Cliver, D.O.; Kaspar, C.W. Decontamination of plastic and wooden cutting boards for kitchen use. J. Food Prot. 1994, 57, 23–30. [Google Scholar] [CrossRef]
- Ryan, C.; Guéret, C.; Berry, D.; Corcoran, M.; Keane, M.T.; Mac Namee, B. Predicting illness for a sustainable dairy agriculture: Predicting and explaining the onset of mastitis in dairy cows. arXiv 2021, arXiv:2101.02188. [Google Scholar] [CrossRef]
- Asai, T. One Health approach to antimicrobial resistance. All About Swine 2017, 51, 24–26. [Google Scholar]
- Pandey, P.K.; Biswas, S.; Kass, P. Microbial pathogen quality criteria of rendered products. Appl. Microbiol. Biotechnol. 2016, 100, 5247–5255. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Maheswary, D.; Leela, K.; Damodharan, N. Impact of clinical pharmacist’s educational intervention tools in enhancing public awareness and perception of antibiotic use: A randomized control trial. Clin. Epidemiol. Glob. Health 2023, 19, 101191. [Google Scholar] [CrossRef]
- Brown, C.; Tseng, D.; Larkin, P.M.; Realegeno, S.; Mortimer, L.; Subramonian, A.; Di Carlo, D.; Garner, O.B.; Ozcan, A. Automated, cost-effective optical system for accelerated antimicrobial susceptibility testing (AST) using deep learning. ACS Photonics 2020, 7, 2527–2538. [Google Scholar] [CrossRef]
- Zhang, M.; Hong, W.; Abutaleb, N.S.; Li, J.; Dong, P.T.; Zong, C.; Wang, P.; Seleem, M.N.; Cheng, J.X. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv. Sci. 2020, 7, 2001452. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fan, X.; Tang, X.; Zhao, X.; Hao, Q.; Li, J.; Qiu, T. Challenges and Prospects of Personalized Healthcare Based on Surface-Enhanced Raman Spectroscopy. Research 2024, 7, 0572. [Google Scholar] [CrossRef] [PubMed]
- Zagajewski, A.; Turner, P.; Feehily, C.; El Sayyed, H.; Andersson, M.; Barrett, L.; Oakley, S.; Stracy, M.; Crook, D.; Nellåker, C. Deep Learning and Single Cell Phenotyping for Rapid Antimicrobial Susceptibility Testing. medRxiv 2022. [Google Scholar] [CrossRef]
- Roschanski, N.; Fischer, J.; Guerra, B.; Roesler, U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS ONE 2014, 9, e100956. [Google Scholar] [CrossRef]
- Velasco, V.; Sherwood, J.S.; Rojas-García, P.P.; Logue, C.M. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) genes from selective enrichments from animals and retail meat. PLoS ONE 2014, 9, e97617. [Google Scholar] [CrossRef]
- Köser, C.U.; Ellington, M.J.; Peacock, S.J. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014, 30, 401–407. [Google Scholar] [CrossRef]
- Pulido, M.R.; García-Quintanilla, M.; Martín-Peña, R.; Cisneros, J.M.; McConnell, M.J. Progress on the development of rapid methods for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2013, 68, 2710–2717. [Google Scholar] [CrossRef]
- Cui, S.; Wei, Y.; Li, C.; Zhang, J.; Zhao, Y.; Peng, X.; Sun, F. Visual loop-mediated isothermal amplification (LAMP) assay for rapid on-site detection of Escherichia coli O157: H7 in milk Products. Foods 2024, 13, 2143. [Google Scholar] [CrossRef] [PubMed]
- Long, L.-J.; Lin, M.; Chen, Y.-R.; Meng, X.; Cui, T.-T.; Li, Y.-P.; Guo, X.-G. Evaluation of the loop-mediated isothermal amplification assay for Staphylococcus aureus detection: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 27. [Google Scholar] [CrossRef]
- Chertow, D.S. Next-generation diagnostics with CRISPR. science 2018, 360, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Silva-de-Jesus, A.C.; Ferrari, R.G.; Panzenhagen, P.; Dos Santos, A.M.; Portes, A.B.; Conte-Junior, C.A. Distribution of Antimicrobial Resistance and Biofilm Production Genes in the Genomic Sequences of S. aureus: A Global In Silico Analysis. Antibiotics 2025, 14, 364. [Google Scholar] [CrossRef]
- Motlhalamme, T.; Paul, L.; Singh, V. Environmental Reservoirs, Genomic Epidemiology, and Mobile Genetic Elements. In Antimicrobial Resistance: Factors to Findings: Omics and Systems Biology Approaches; Springer: Berlin/Heidelberg, Germany, 2024; pp. 239–273. [Google Scholar]
- Su, J.Q.; Wei, B.; Xu, C.Y.; Qiao, M.; Zhu, Y.G. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ. Int. 2014, 65, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Timofte, D.; Overesch, G.; Spergser, J. MALDI-TOF MS Analysis for Identification of Veterinary Pathogens from Companion Animals and Livestock Species. Microbiol. Identif. Using MALDI-TOF Tandem Mass Spectrom. Ind. Environ. Appl. 2023, 12, 303–331. [Google Scholar]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef]
- Franklin, A.M.; Weller, D.L.; Durso, L.M.; Bagley, M.; Davis, B.C.; Frye, J.G.; Grim, C.J.; Ibekwe, A.M.; Jahne, M.A.; Keely, S.P. A one health approach for monitoring antimicrobial resistance: Developing a national freshwater pilot effort. Front. Water 2024, 6, 1359109. [Google Scholar] [CrossRef]
- Tyson, G.H.; Ceric, O.; Guag, J.; Nemser, S.; Borenstein, S.; Slavic, D.; Lippert, S.; McDowell, R.; Krishnamurthy, A.; Korosec, S. Genomics accurately predicts antimicrobial resistance in Staphylococcus pseudintermedius collected as part of Vet-LIRN resistance monitoring. Vet. Microbiol. 2021, 254, 109006. [Google Scholar] [CrossRef]
- Ceric, O.; Tyson, G.H.; Goodman, L.B.; Mitchell, P.K.; Zhang, Y.; Prarat, M.; Cui, J.; Peak, L.; Scaria, J.; Antony, L. Enhancing the one health initiative by using whole genome sequencing to monitor antimicrobial resistance of animal pathogens: Vet-LIRN collaborative project with veterinary diagnostic laboratories in United States and Canada. BMC Vet. Res. 2019, 15, 130. [Google Scholar] [CrossRef] [PubMed]
- Mader, R.; Damborg, P.; Amat, J.-P.; Bengtsson, B.; Bourély, C.; Broens, E.M.; Busani, L.; Crespo-Robledo, P.; Filippitzi, M.-E.; Fitzgerald, W. Building the European antimicrobial resistance surveillance network in veterinary medicine (EARS-Vet). Eurosurveillance 2021, 26, 2001359. [Google Scholar] [CrossRef]
- Mader, R.; Muñoz Madero, C.; Aasmäe, B.; Bourély, C.; Broens, E.M.; Busani, L.; Callens, B.; Collineau, L.; Crespo-Robledo, P.; Damborg, P. Review and analysis of national monitoring systems for antimicrobial resistance in animal bacterial pathogens in Europe: A basis for the development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front. Microbiol. 2022, 13, 838490. [Google Scholar] [CrossRef]
- EFSA/ECDC. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021–2022. EFSA J. 2024, 22, e8583. [Google Scholar] [PubMed]
- Ondoa, P.; Kapoor, G.; Alimi, Y.; Shumba, E.; Osena, G.; Maina, M.; Batra, D.; Sow, A.; Matu, M.; Moreira, M. Bacteriology testing and antimicrobial resistance detection capacity of national tiered laboratory networks in sub-Saharan Africa: An analysis from 14 countries. Lancet Microbe 2025, 6, 100976. [Google Scholar] [CrossRef]
- Tuat, C.; Hue, P.; Loan, N.; Thuy, N.; Hue, L.; Giang, V.; Erickson, V.I.; Padungtod, P. Antimicrobial resistance pilot surveillance of pigs and chickens in Vietnam, 2017–2019. Front. Vet. Sci. 2021, 8, 618497. [Google Scholar] [CrossRef] [PubMed]
- Argimón, S.; David, S.; Underwood, A.; Abrudan, M.; Wheeler, N.E.; Kekre, M.; Abudahab, K.; Yeats, C.A.; Goater, R.; Taylor, B. Rapid genomic characterization and global surveillance of Klebsiella using Pathogenwatch. Clin. Infect. Dis. 2021, 73, S325–S335. [Google Scholar] [CrossRef]
- David, S.; Caballero, J.D.; Couto, N.; Abudahab, K.; Fareed-Alikhan, N.; Yeats, C.; Underwood, A.; Molloy, A.; Connor, D.; Shane, H.M. amr.watch–monitoring antimicrobial resistance trends from global genomics data. bioRxiv 2025. [Google Scholar] [CrossRef]
- Florio, W.; Baldeschi, L.; Rizzato, C.; Tavanti, A.; Ghelardi, E.; Lupetti, A. Detection of antibiotic-resistance by MALDI-TOF mass spectrometry: An expanding area. Front. Cell. Infect. Microbiol. 2020, 10, 572909. [Google Scholar] [CrossRef]
- Lorente-Leal, V.; Liandris, E.; Bezos, J.; Pérez-Sancho, M.; Romero, B.; Juan, L.d. MALDI-TOF mass spectrometry as a rapid screening alternative for non-tuberculous mycobacterial species identification in the veterinary laboratory. Front. Vet. Sci. 2022, 9, 827702. [Google Scholar] [CrossRef]
- EFSA, E. The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [PubMed]
- Institut, S.S. MRSA Annual Report for Denmark. 2023. Available online: https://www.ssi.dk/ (accessed on 24 July 2025).
- Grøntvedt, C.A.; Elstrøm, P.; Stegger, M.; Skov, R.L.; Skytt Andersen, P.; Larssen, K.W.; Urdahl, A.M.; Angen, Ø.; Larsen, J.; Åmdal, S. Methicillin-resistant Staphylococcus aureus CC398 in humans and pigs in Norway: A “One Health” perspective on introduction and transmission. Clin. Infect. Dis. 2016, 63, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Edrees, H.M.; Ellethy, A.T.; Almuzaini, A.M.; Ibrahem, M.; Almujaidel, A.; Alzaben, F.; Alqrni, A. Microbial Food Safety and Antimicrobial Resistance in Foods: A Dual Threat to Public Health. Microorganisms 2025, 13, 1592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lv, L.; Huang, X.; Huang, Y.; Zhuang, Z.; Lu, J.; Liu, E.; Wan, M.; Xun, H.; Zhang, Z. Rapid increase in carbapenemase-producing Enterobacteriaceae in retail meat driven by the spread of the bla NDM-5-carrying IncX3 plasmid in China from 2016 to 2018. Antimicrob. Agents Chemother. 2019, 63, e00573-19. [Google Scholar] [CrossRef]
- Wang, J.; Lu, M.-J.; Wang, Z.-Y.; Jiang, Y.; Wu, H.; Pan, Z.-M.; Jiao, X. Tigecycline-resistant Escherichia coli ST761 carrying tet (X4) in a pig farm, China. Front. Microbiol. 2022, 13, 967313. [Google Scholar] [CrossRef]
- Lambraki, I.A.; Chadag, M.V.; Cousins, M.; Graells, T.; Léger, A.; Henriksson, P.J.G.; Troell, M.F.; Harbarth, S.; Wernli, D.; Jørgensen, P.S. Factors impacting antimicrobial resistance in the South East Asian food system and potential places to intervene: A participatory, one health study. Front. Microbiol. 2023, 13, 992507. [Google Scholar] [CrossRef]
- Fall, C.; Seck, A.; Richard, V.; Ndour, M.; Sembene, M.; Laurent, F.; Breurec, S. Epidemiology of Staphylococcus aureus in pigs and farmers in the largest farm in Dakar, Senegal. Foodborne Pathog. Dis. 2012, 9, 962–965. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Okpala, C.O.R.; Njoga, E.O.; Okafor, N.A.; Oguttu, J.W. Mobile colistin resistance (mcr) gene-containing organisms in poultry sector in low-and middle-income countries: Epidemiology, characteristics, and one health control strategies. Antibiotics 2023, 12, 1117. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Xu, X.; Huang, H.; Lyu, N.; Ma, S.; Chen, L.; Mao, M.; Hu, Y.; Song, X. Detection of plasmid-mediated tigecycline resistance gene tet (X4) in a Salmonella enterica serovar Llandoff Isolate. Infect. Microbes Dis. 2021, 3, 198–204. [Google Scholar] [CrossRef]
- He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ai, W.; Cao, Y.; Guo, Y.; Wu, X.; Wang, B.; Rao, L.; Xu, Y.; Zhao, H.; Wang, X. The co-occurrence of NDM-5, MCR-1, and FosA3-encoding plasmids contributed to the generation of extensively drug-resistant Klebsiella pneumoniae. Front. Microbiol. 2022, 12, 811263. [Google Scholar] [CrossRef]
- WOAH. Towards a Healthier Future for All: 2024 Progress Report on Antimicrobial Resistance. World Organisation for Animal Health. Available online: https://www.woah.org/app/uploads/2024/10/towards-a-healthier-future-for-all-amr-progress-report-en.pdf (accessed on 27 July 2025).
- Kujat Choy, S.; Neumann, E.-M.; Romero-Barrios, P.; Tamber, S. Contribution of food to the human health burden of antimicrobial resistance. Foodborne Pathog. Dis. 2024, 21, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, F. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) colonisation and infection among livestock workers and veterinarians: A systematic review and meta-analysis. Occup. Environ. Med. 2021, 78, 530–540. [Google Scholar] [CrossRef]
- Reynaga, E.; Navarro, M.; Vilamala, A.; Roure, P.; Quintana, M.; Garcia-Nuñez, M.; Figueras, R.; Torres, C.; Lucchetti, G.; Sabrià, M. Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. BMC Infect. Dis. 2016, 16, 716. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.; Petersen, A.; Larsen, A.R.; Sieber, R.N.; Stegger, M.; Koch, A.; Aarestrup, F.M.; Price, L.B.; Skov, R.L.; Danish MRSA Study Group. Emergence of livestock-associated methicillin-resistant Staphylococcus aureus bloodstream infections in Denmark. Clin. Infect. Dis. 2017, 65, 1072–1076. [Google Scholar] [CrossRef]
- Sieber, R.N.; Skov, R.L.; Nielsen, J.; Schulz, J.; Price, L.B.; Aarestrup, F.M.; Larsen, A.R.; Stegger, M.; Larsen, J. Drivers and dynamics of methicillin-resistant livestock-associated Staphylococcus aureus CC398 in pigs and humans in Denmark. MBio 2018, 9, e02142-18. [Google Scholar] [CrossRef]
- Milazzo, A.; Liu, J.; Multani, P.; Steele, S.; Hoon, E.; Chaber, A.-L. One health implementation: A systematic scoping review using the quadripartite one health joint plan of action. One Health 2025, 20, 101008. [Google Scholar] [CrossRef]
- Grace, D. Food safety in low and middle income countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Microbiological Risk Assessment Guidance for Food. Food and Agriculture Organization of the United Nations and World Health Organization. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/386242c8-5184-4ec0-8ff4-431dd6ad7cd6/content (accessed on 25 July 2025).
- Bos, M.E.; Verstappen, K.M.; Van Cleef, B.A.; Dohmen, W.; Dorado-García, A.; Graveland, H.; Duim, B.; Wagenaar, J.A.; Kluytmans, J.A.; Heederik, D.J. Transmission through air as a possible route of exposure for MRSA. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 263–269. [Google Scholar] [CrossRef]
- Smith, T.; Gebreyes, W.; Abley, M.; Harper, A.; Forshey, B. Methicillin-Resistant Staphylococcus aureus in Pigs and Farm Workers on. PLoS ONE 2013, 8, e63704. [Google Scholar]
- Muloi, D.; Ward, M.J.; Pedersen, A.B.; Fevre, E.M.; Woolhouse, M.E.; van Bunnik, B.A. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathog. Dis. 2018, 15, 467–474. [Google Scholar] [CrossRef]
- Marquardt, R.R.; Li, S. Antimicrobial resistance in livestock: Advances and alternatives to antibiotics. Anim. Front. 2018, 8, 30–37. [Google Scholar] [CrossRef]
- Ekiri, A.; Haesler, B.; Mays, N.; Staerk, K.; Mateus, A. Impact of Guidelines and Recommendations on the Level and Patterns of Antimicrobial Use in Livestock and Companion Animals: Systematic Review; Royal Veterinary College: London, UK, 2019. [Google Scholar]
- Li, Y.; Cui, X.; Yang, X.; Liu, G.; Zhang, J. Artificial intelligence in predicting pathogenic microorganisms’ antimicrobial resistance: Challenges, progress, and prospects. Front. Cell. Infect. Microbiol. 2024, 14, 1482186. [Google Scholar] [CrossRef]
- Moura, P.; Sandberg, M.; Høg, B.B.; Niza-Ribeiro, J.; Nielsen, E.O.; Alban, L. Characterisation of antimicrobial usage in Danish pigs in 2020. Front. Vet. Sci. 2023, 10, 1155811. [Google Scholar] [CrossRef]
- Dupont, N.; Diness, L.H.; Fertner, M.; Kristensen, C.S.; Stege, H. Antimicrobial reduction measures applied in Danish pig herds following the introduction of the “Yellow Card” antimicrobial scheme. Prev. Vet. Med. 2017, 138, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.B.; Kristensen, C.S.; Lavlund, U.; Stege, H. Antimicrobial prescription data in Danish national database validated against treatment records in organic pig farms and analysed for associations with lesions found at slaughter. BMC Vet. Res. 2019, 15, 218. [Google Scholar] [CrossRef] [PubMed]
- Glavind, A.-S.; Kruse, A.B.; Stege, H.; Alban, L. Association between antimicrobial use levels and meat inspection lesions in Danish finishers. Prev. Vet. Med. 2025, 240, 106524. [Google Scholar] [CrossRef] [PubMed]
- Pightling, A.W.; Petronella, N.; Pagotto, F. Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses. PLoS ONE 2014, 9, e104579. [Google Scholar] [CrossRef]
- Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 2019, 57, e01405-18. [Google Scholar] [CrossRef]
- Arango-Argoty, G.; Garner, E.; Pruden, A.; Heath, L.S.; Vikesland, P.; Zhang, L. DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 2018, 6, 23. [Google Scholar] [CrossRef]
- Bello Gonzalez, T.d.J.; van Gelderen, B.; Harders, F.; Bossers, A.; Brouwer, M.S.; Haenen, O.L. An Insight into the Presence of Antimicrobial Resistance Genes in Opportunistic Pathogenic Bacteria Isolated from Farm-Reared Crickets. Microorganisms 2025, 13, 391. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.A.H.; Kovács, B.; Kuunya, R.; Mustafa, E.O.A.; Abbo, A.S.H.; Pál, K. Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotics 2025, 14, 598. [Google Scholar] [CrossRef]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.-C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; De Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870. [Google Scholar] [CrossRef]
Resistance Gene | Major Hosts | Regions with High Prevalence | Key Notes | References |
---|---|---|---|---|
blaCTX-M | E. coli (poultry, cattle, swine) | Asia, Africa, Europe, Americas | Most widespread ESBL gene family; blaCTX-M-15 and blaCTX-M-14 dominate in livestock; disseminated via plasmids and integrons | [44,45] |
mcr-1 | E. coli (poultry, swine) | China, Southeast Asia, Latin America, Africa, Europe | First plasmid-mediated colistin resistance gene; pooled prevalence ~15–16% in chickens and pigs worldwide | [46,47] |
tetM | Enterococcus, S. aureus (poultry, cattle) | Europe, North America, Africa | Most frequent transferable tetracycline resistance gene; associated with Tn916/Tn1545 transposons | [48,49] |
Pathogen | Host Species | Key Resistance Genes | Clinical Relevance in Animals | Zoonotic Risk/Transmission Route | References |
---|---|---|---|---|---|
E. coli (STEC, ExPEC) | Poultry, Cattle, Swine | bla_CTX-M, bla_SHV, mcr-1 | Enteritis, septicemia, urinary infections | Meat, feces, direct contact | [40,41] |
S. enterica | Poultry, Swine | bla_TEM, bla_CTX-M, qnrB | Enteritis, systemic salmonellosis | Foodborne, fecal contamination | [43,83,84] |
C. jejuni | Poultry | gyrA, 23S rRNA, tet(O) | Asymptomatic in birds; diarrhea in animals | Undercooked meat, environment | [50,51] |
L. monocytogenes | Dairy Cattle, Goats | tetM, tetS, ermB | Mastitis, encephalitis | Raw milk, cheese | [85,86] |
S. aureus (LA-MRSA, ST398) | Pigs, Cattle, Poultry | mecA, tetM, ermC | Mastitis, wound infections | Occupational exposure, meat | [87,88,89] |
E. faecalis, E. faecium | Swine, Poultry | vanA, vanB, aac(6′)-Ie-aph(2″)-Ia | Gut colonization, opportunistic infections | Manure, cross-species transmission | [66,90,91] |
K. pneumoniae | Dairy Cattle, Poultry | bla_KPC, bla_OXA-48, mcr-1 | Mastitis, respiratory infections | Contaminated milk, nosocomial potential | [92] |
S. pseudintermedius | Dogs, Ruminants | mecA, aadD | Pyoderma, otitis, wound infections | Direct contact with pets or livestock | [72,93] |
Detection Method | Key Features | Strengths | Limitations | Application Settings | References |
---|---|---|---|---|---|
Disk Diffusion and Broth Microdilution (AST) | Standardized phenotypic testing (CLSI/EUCAST) | Cost-effective, globally accepted, easy to perform | Time-consuming; requires viable isolates | Farm, clinical, food labs | [2,8] |
PCR/qPCR | DNA-based detection of resistance genes | High sensitivity and specificity; fast turnaround | Requires skilled personnel and equipment | Farm, food labs, veterinary clinics | [164,165] |
LAMP | Isothermal amplification without thermocycler | Rapid, field-deployable, visual readouts | Limited multiplexing; primer design sensitive | On-farm, LMICs, point-of-care | [168,169] |
CRISPR-based Diagnostics (e.g., SHERLOCK/DETECTR) | Cas enzyme-guided nucleic acid detection | Ultra-sensitive; portable formats emerging | Not yet widely validated/commercialized | Research, prototype diagnostics | [170,177] |
WGS | Comprehensive resistome and MGE detection | Source tracking; high resolution | High cost, infrastructure intensive | Reference labs, outbreak response | [38,39] |
Shotgun Metagenomics | Culture-independent resistome profiling | Captures uncultivable/rare taxa; ARG landscape | Expensive; complex bioinformatics | Environmental, food, manure, wastewater | [14,35] |
MALDI-TOF MS (±functional resistance assays) | Protein spectral ID; adjunct resistance workflows | Rapid, cost-effective ID; expanding AMR applications | Limited to known databases; phenotypic confirmation needed | Clinical and food microbiology labs | [186,187] |
Optical/Imaging-based Rapid AST (e.g., DL-enhanced microscopy, Raman/SERS) | Growth/metabolic readouts within hours | Rapid phenotypic detection; high categorical agreement | Expensive instrumentation; early-stage validation | Clinical research, pilot veterinary settings | [160,162] |
Risk Domain | Key Findings | References |
---|---|---|
Foodborne Illness | Resistance detected in Salmonella, Campylobacter, and E. coli along the food chain; however, the quantitative human health burden attributable specifically to foodborne AMR remains poorly resolved. | [208,209] |
Human Colonization | High LA-MRSA ST398 colonization among livestock workers; environmental reservoirs (e.g., barn dust) sustain transmission pressure. | [210,211] |
Occupational Exposure | Farmers, veterinarians, transporters, and slaughterhouse workers show increased carriage and occasional infections with LA-MRSA, ESBL-producing Enterobacterales, and fluoroquinolone-resistant Campylobacter. | [212] |
Hospital Spillover | Rising clinical infections with LA-MRSA CC398 (including bloodstream infections) closely related to porcine isolates in Europe. | [59,205] |
One Health Barriers in LMICs | Fragmented governance and budgets, limited laboratory and genomic capacity, poor cross-sector data interoperability, and underregulated veterinary antimicrobial access/use. | [19] |
Stewardship Needs | Tiered diagnostics (LAMP/qPCR to WGS/metagenomics), interoperable AMR/AMU data systems, harmonized CIA restriction lists, veterinary prescription auditing, farm-level alternatives (vaccines, probiotics, phages, precision husbandry), and sustained, multi-ministry financing with joint accountability indicators. | [99] |
Pillar/Domain | Specific Interventions | Evidence/Outcome | Reference(s) |
---|---|---|---|
Biological alternatives | Vaccines (e.g., Salmonella, E. coli, Pasteurella) | Reduced disease incidence and AMU; supports removal of antibiotic growth promoters (AGPs). | [213] |
Farm-level AMS and biosecurity | Enhanced hygiene and biosecurity; targeted diagnostics; veterinary oversight; strict withdrawal periods | 25–28% reduction in total AMU per pig in Danish farms; improved animal health outcomes | [23,217] |
Precision agriculture and AI | Farm sensors; metagenomic surveillance; ML models for AMR prediction and targeted intervention | Early detection of resistance hotspots; real-time stewardship guidance; data-enabled decision-making | [215] |
Policy and Regulation | EU AGP bans; Codex AMR risk frameworks; national AMU monitoring (e.g., VetStat in Denmark) | Regulatory enforcement paired with benchmarking tools; global adoption of best practice models | [218] |
Case Study: Yellow Card | Benchmarking AMU per farm; thresholds for intervention; veterinary audits when limits exceeded | Demonstrated effectiveness in reducing AMU sustainably; scalable model for AMR control | [23,216,219] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbehiry, A.; Marzouk, E. From Farm to Fork: Antimicrobial-Resistant Bacterial Pathogens in Livestock Production and the Food Chain. Vet. Sci. 2025, 12, 862. https://doi.org/10.3390/vetsci12090862
Elbehiry A, Marzouk E. From Farm to Fork: Antimicrobial-Resistant Bacterial Pathogens in Livestock Production and the Food Chain. Veterinary Sciences. 2025; 12(9):862. https://doi.org/10.3390/vetsci12090862
Chicago/Turabian StyleElbehiry, Ayman, and Eman Marzouk. 2025. "From Farm to Fork: Antimicrobial-Resistant Bacterial Pathogens in Livestock Production and the Food Chain" Veterinary Sciences 12, no. 9: 862. https://doi.org/10.3390/vetsci12090862
APA StyleElbehiry, A., & Marzouk, E. (2025). From Farm to Fork: Antimicrobial-Resistant Bacterial Pathogens in Livestock Production and the Food Chain. Veterinary Sciences, 12(9), 862. https://doi.org/10.3390/vetsci12090862