Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = electrical and automotive engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2035 KB  
Proceeding Paper
Nanostructured Semiconductors for Enhanced Waste Heat-to-Electricity Conversion
by Pabina Rani Boro, Rupam Deka, Pranjal Sarmah, Partha Protim Borthakur and Nayan Medhi
Mater. Proc. 2025, 25(1), 21; https://doi.org/10.3390/materproc2025025021 - 20 Jan 2026
Viewed by 244
Abstract
Nanostructured semiconductors have emerged as transformative materials for enhancing the efficiency of waste heat-to-electricity conversion through thermoelectric (TE) processes. By altering structural features at the nanoscale, these materials can simultaneously reduce lattice thermal conductivity and optimize electronic transport properties, thereby significantly improving the [...] Read more.
Nanostructured semiconductors have emerged as transformative materials for enhancing the efficiency of waste heat-to-electricity conversion through thermoelectric (TE) processes. By altering structural features at the nanoscale, these materials can simultaneously reduce lattice thermal conductivity and optimize electronic transport properties, thereby significantly improving the thermoelectric figure of merit (ZT). Recent studies have demonstrated that introducing periodic twin planes in III–V semiconductor nanowires can achieve a tenfold reduction in thermal conductivity while maintaining excellent electrical performance. Similarly, Pb1−xGexTe alloys, through controlled spinodal decomposition, form stable nanostructures that maintain low thermal conductivity even after thermal cycling, crucial for high-temperature applications. Enhancing electrical properties is another key advantage of nanostructuring. PbTe-based materials, when heavily doped and engineered with nanoscale inclusions, have achieved a ZT of approximately 1.9 and a thermoelectric efficiency of around 12% over a 590 K temperature difference. Single-walled carbon nanotubes (SWCNTs) also show strong correlations between their electronic structure and thermoelectric conductivity, highlighting their potential for next-generation devices. Two-dimensional silicon–germanium (SixGeγ) compounds offer ultra-low lattice thermal conductivity and high Seebeck coefficients, providing a promising pathway for future TE applications. Despite these advancements, challenges remain, particularly regarding scalability and integration into existing energy recovery systems. Techniques such as focused ion beam milling and solution-based synthesis of porous nanostructures are being developed to fabricate high-performance materials on a commercial scale. Moreover, integrating nanostructured semiconductors into real-world systems, such as automotive exhaust heat recovery units, requires improvements in material durability, fabrication efficiency, and device compatibility. In conclusion, nanostructured semiconductors offer a powerful route for enhancing waste heat-to-electricity conversion. Their ability to decouple electrical and thermal transport at the nanoscale opens new opportunities for high-efficiency, sustainable energy harvesting technologies. Continued research into scalable manufacturing techniques, material stability, and system integration is essential to fully unlock their potential for commercial thermoelectric applications. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

25 pages, 2072 KB  
Article
Research on Torque Estimation Methods for Permanent Magnet Synchronous Motors Considering Dynamic Inductance Variations
by Mingzhan Chen, Jie Zhang and Jie Hong
Energies 2026, 19(2), 346; https://doi.org/10.3390/en19020346 - 10 Jan 2026
Viewed by 165
Abstract
Precise electromagnetic torque estimation for permanent magnet synchronous motors (PMSMs) is crucial for enhancing the dynamic performance and energy efficiency of electric vehicles. To address the dynamic variations in dq-axis inductance caused by magnetic cross-coupling and saturation effects during motor operation—which lead to [...] Read more.
Precise electromagnetic torque estimation for permanent magnet synchronous motors (PMSMs) is crucial for enhancing the dynamic performance and energy efficiency of electric vehicles. To address the dynamic variations in dq-axis inductance caused by magnetic cross-coupling and saturation effects during motor operation—which lead to significant torque estimation errors in traditional fixed-parameter models under variable torque and speed conditions—this paper proposes a dynamic torque estimation method that integrates online dq-axis inductance identification based on a variable-step adaptive linear neural network (ADALINE) with an extended flux observer. The online identified inductance values are embedded into the extended flux observer in real time, forming a closed-loop torque estimation system with adaptive parameter updating. Experimental results demonstrate that, under complex operating conditions with varying torque and speed, the proposed method maintains electromagnetic torque estimation errors within ±3%, with a convergence time of less than 20 ms, while achieving inductance identification accuracy also within ±3%. These results significantly outperform conventional methods that do not incorporate inductance identification. This study provides a highly adaptive and engineering-practical solution for high-precision torque control of interior permanent magnet synchronous motors (IPMSMs) in automotive applications. Full article
(This article belongs to the Special Issue Advances in Control Strategies of Permanent Magnet Motor Drive)
Show Figures

Figure 1

16 pages, 2104 KB  
Article
Evaluation and Comparison of Multi-Power Source Coupling Technologies for Vehicles Based on Driving Dynamics
by Haoyi Zhang, Hong Tan, Linjie Ren and Xinglong Liu
Sustainability 2026, 18(2), 602; https://doi.org/10.3390/su18020602 - 7 Jan 2026
Viewed by 172
Abstract
With the growing consumer demand for enhanced driving dynamics in vehicles, optimizing powertrain configurations to balance performance, energy efficiency, and cost has become a critical challenge. Traditional internal combustion engine vehicles (ICEVs) suffer from significant energy consumption and cost penalties when improving acceleration [...] Read more.
With the growing consumer demand for enhanced driving dynamics in vehicles, optimizing powertrain configurations to balance performance, energy efficiency, and cost has become a critical challenge. Traditional internal combustion engine vehicles (ICEVs) suffer from significant energy consumption and cost penalties when improving acceleration performance. This study systematically evaluates the trade-offs between dynamic performance, energy consumption, and direct manufacturing costs across six powertrain configurations: ICEV, 48 V mild hybrid (48 V), hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), range-extended electric vehicle (REV), and battery electric vehicle (BEV). By developing a comprehensive parameterized model, we quantify the impacts of acceleration improvement on vehicle mass, energy consumption, and costs. Key findings reveal that electrified powertrains (PHEV, REV, BEV) exhibit superior cost-effectiveness and energy efficiency. For instance, improving 0–100 km/h acceleration time from 9 to 5 s reduces direct manufacturing costs by only 5.72% for BEV versus 13.38% for ICEV, while PHEV achieves a balanced compromise with 3.40% lower fuel consumption and 10.43% cost increase compared to conventional counterparts. Mechanistic analysis attributes these advantages to higher power density of electric motors and simplified energy transmission in electrified systems. This work provides data-driven insights for consumers and automakers to prioritize powertrain technologies under dynamic performance requirements, highlighting PHEV with driving range of 50 km as the optimal choice for harmonizing driving experience, energy economy, and affordability. The results of this study assist automakers in optimizing the technology pathways of vehicle powertrain, within the consumer demand for dynamic performance. This plays a crucial role in advancing the automotive industry’s overall fuel consumption and energy consumption, thereby contributing to sustainable development. Full article
Show Figures

Figure 1

16 pages, 2150 KB  
Article
A New Simulation Method to Assess Temperature and Radiation Effects on SiC Resonant-Converter Reliability
by Zhuowen Feng, Pengyu Lai, Abu Shahir Md Khalid Hasan, Fuad Fatani, Alborz Alaeddini, Liling Huang, Zhong Chen and Qiliang Li
Materials 2026, 19(2), 228; https://doi.org/10.3390/ma19020228 - 6 Jan 2026
Viewed by 289
Abstract
Silicon carbide (SiC) power converters are increasingly used in automotive, renewable energy, and industrial applications. While reliability assessments are typically performed at either the device or system level, an integrative approach that simultaneously evaluates both levels remains underexplored. This article presents a novel [...] Read more.
Silicon carbide (SiC) power converters are increasingly used in automotive, renewable energy, and industrial applications. While reliability assessments are typically performed at either the device or system level, an integrative approach that simultaneously evaluates both levels remains underexplored. This article presents a novel system-level simulation method with two strategies to evaluate the reliability of power devices and a resonant converter under varying temperatures and total ionizing doses (TIDs). Temperature-sensitive electrical parameters (TSEPs), such as on-state resistance (RON) and threshold voltage shift (ΔVTH), are calibrated and analyzed using a B1505A curve tracer. These parameters are incorporated into the system-level simulation of a 300 W resonant converter with a boosting cell. Both Silicon (Si) and SiC-based power resonant converters are assessed for power application in space engineering and harsh environments. Additionally, gate-oxide degradation and ΔVTH-related issues are discussed based on the simulation results. The thermal-strategy results indicate that SiC MOSFETs maintain a more stable conduction loss at elevated temperatures, exhibiting higher reliability due to their high thermal conductivity. Conversely, increased TIDs result in a negative shift in conduction losses across all SiC devices under the radiation strategy, affecting the long-term reliability of the power converter. Full article
Show Figures

Figure 1

34 pages, 1550 KB  
Review
A Comprehensive Review of Lubricant Behavior in Internal Combustion, Hybrid, and Electric Vehicles: Thermal Demands, Electrical Constraints, and Material Effects
by Subin Antony Jose, Erick Perez-Perez, Terrence D. Silva, Kaden Syme, Zane Westom, Aidan Willis and Pradeep L. Menezes
Lubricants 2026, 14(1), 14; https://doi.org/10.3390/lubricants14010014 - 28 Dec 2025
Viewed by 712
Abstract
The global transition from internal combustion engines (ICEs) to hybrid (HEVs) and electric vehicles (EVs) is fundamentally reshaping lubricant design requirements, driven by evolving thermal demands, electrical constraints, and material compatibility challenges. Conventional ICE lubricants are primarily formulated to withstand high operating temperatures, [...] Read more.
The global transition from internal combustion engines (ICEs) to hybrid (HEVs) and electric vehicles (EVs) is fundamentally reshaping lubricant design requirements, driven by evolving thermal demands, electrical constraints, and material compatibility challenges. Conventional ICE lubricants are primarily formulated to withstand high operating temperatures, mechanical stresses, and combustion-derived contaminants through established additive chemistries such as zinc dialkyldithiophosphate (ZDDP), with thermal stability and wear protection as dominant considerations. In contrast, HEV lubricants must accommodate frequent start–stop operation, pronounced thermal cycling, and fuel dilution while maintaining performance across coupled mechanical and electrical subsystems. EV lubricants represent a paradigm shift, where requirements extend beyond tribological protection to include electrical insulation and conductivity control, thermal management of electric motors and battery systems, and compatibility with copper windings, polymers, elastomers, and advanced coatings, alongside mitigation of noise, vibration, and harshness (NVH). This review critically examines lubricant behavior, formulation strategies, and performance requirements across ICE, HEV, and EV powertrains, with specific emphasis on heat transfer, electrical performance, and lubricant–material interactions, covering mineral, synthetic, and bio-based fluids. Additionally, regulatory drivers, sustainability considerations, and emerging innovations such as nano-additives, multifunctional and smart lubricants, and AI-assisted formulation are discussed. By integrating recent research into industrial practice, this work highlights the increasingly interdisciplinary role of tribology in enabling efficient, durable, and sustainable mobility for next-generation automotive systems. Full article
(This article belongs to the Special Issue Tribology in Vehicles, 2nd Edition)
Show Figures

Figure 1

47 pages, 2127 KB  
Article
Overcoming Challenges in the Transition Towards Battery Electric and Software-Intensive Modular Heavy-Duty Vehicles
by Rakesh Kadaba Jayaprakash, Ellen Bergseth, Martin Törngren and David Williamsson
Systems 2026, 14(1), 24; https://doi.org/10.3390/systems14010024 - 25 Dec 2025
Viewed by 523
Abstract
The automotive industry is undergoing a significant transition, where the development of Battery Electric Vehicles (BEV) and the increasing use of intelligent vehicle functions are transforming vehicles into advanced Cyber-Physical Systems. For heavy-duty OEMs, this transition challenges a Product Development (PD) heritage inherent [...] Read more.
The automotive industry is undergoing a significant transition, where the development of Battery Electric Vehicles (BEV) and the increasing use of intelligent vehicle functions are transforming vehicles into advanced Cyber-Physical Systems. For heavy-duty OEMs, this transition challenges a Product Development (PD) heritage inherent in an ecosystem of established processes, IT systems, and organization structures. This study primarily comprises semi-structured interviews, conducted at a heavy-duty OEM, and a focused literature search. The study contributes by the following: (i) identifying key PD challenges in the ICE–BEV transition, (ii) outlining obstacles in adopting Model-Based Systems Engineering (MBSE) for managing architectural complexity, and (iii) synthesizing recommendations for architecture-driven collaboration. Interview findings, highlighted intertwined challenges such as fragmented architecture descriptions across physical and software domains, weak continuity between early-phase system context and detailed design, and collaboration constrained by inconsistent terminologies, strained communication channels, and manual reconciliation of architectural information through documents and disconnected tools. These factors hinder function-component traceability and concurrent development across domains. While MBSE is often recommended to address such issues, practical obstacles are noted, including trade-offs between modeling effort and fidelity, limited support for early spatial layout integration, difficulties in bridging physical and software architectures, and the limited integration of document-based practices preferred in early conceptual phases. Based on these insights, the study recommends architecture-driven collaboration anchored in a federated vehicle-architecture description, supported by a distributed systems-engineering function. A layered development approach combining document artifacts with progressively rigorous MBSE is advised for early-phase agility, later-stage traceability, and structured information flow. Full article
(This article belongs to the Special Issue Advanced Model-Based Systems Engineering)
Show Figures

Figure 1

42 pages, 5456 KB  
Review
Advances in Graphene Oxide-Based Composites and Membranes: Structural Engineering, Multifunctional Performance, and Emerging Applications
by Duska Kleut and Jovana Prekodravac Filipovic
Processes 2026, 14(1), 13; https://doi.org/10.3390/pr14010013 - 19 Dec 2025
Viewed by 777
Abstract
Graphene oxide (GO), with its high surface area, tunable chemistry, and exceptional mechanical, thermal, and electrical properties, is rapidly advancing as a transformative material in both composite engineering and membrane technology. In composite systems, GO serves as a multifunctional reinforcement, significantly improving strength, [...] Read more.
Graphene oxide (GO), with its high surface area, tunable chemistry, and exceptional mechanical, thermal, and electrical properties, is rapidly advancing as a transformative material in both composite engineering and membrane technology. In composite systems, GO serves as a multifunctional reinforcement, significantly improving strength, stiffness, thermal stability, and conductivity when integrated into polymeric, ceramic, or metallic matrices. These enhancements are enabling high-performance solutions across electronics, aerospace, automotive, and construction sectors, where lightweight yet durable materials are in demand. In addition, GO-based membranes are revolutionizing water purification, desalination, and other high-end separation technologies. The layered structure, adjustable interlayer spacing, and abundant oxygen-containing functional groups of GO allow precise control over permeability and selectivity, enabling efficient transport of desired molecules while blocking contaminants. Tailoring GO morphology and surface chemistry offers a pathway to optimized membrane performance for both industrial and environmental applications. This paper gives a comprehensive overview of the latest developments in GO-based composites and membranes, highlighting the interplay between structure, morphology, and functionality. Future research directions toward scalable fabrication, performance optimization, and integration into sustainable technologies are discussed, underscoring GO’s pivotal role in shaping next-generation advanced materials. Full article
(This article belongs to the Special Issue Graphene Oxide: From Synthesis to Applications)
Show Figures

Figure 1

21 pages, 12257 KB  
Article
The Characterization of the Installation Effects on the Flow and Sound Field of Automotive Cooling Modules
by Tayyab Akhtar, Safouane Tebib, Stéphane Moreau and Manuel Henner
Int. J. Turbomach. Propuls. Power 2026, 11(1), 1; https://doi.org/10.3390/ijtpp11010001 - 19 Dec 2025
Viewed by 284
Abstract
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to [...] Read more.
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to analyze noise generation mechanisms and flow characteristics across four configurations. The study highlights the challenges of adapting classical cooling module components to EV setups, emphasizing the influence of heat exchanger (HE) placement and duct geometry on noise levels and flow dynamics. The results show that the presence of the HE smooths the upstream flow, improves rotor loading distribution and disrupts long, coherent vortical structures, thereby reducing tonal noise. However, the additional resistance introduced by the HE leads to increased rotor loading and enhanced leakage flow through the shroud-rotor gap. Despite these effects, the overall sound pressure level (OASPL) remains largely unchanged, maintaining a similar magnitude and dipolar directivity pattern as the configuration without the HE. In EV modules, the inclusion of ducts introduces significant flow disturbances and localized pressure fluctuations, leading to regions of high flow rate and rotor loading. These non-uniform flow conditions excite duct modes, resulting in troughs and humps in the acoustic spectrum and potentially causing resonance at the blade-passing frequency, which increases the amplitude in the lower frequency range. Analysis of the loading force components reveals that rotor loading is primarily driven by thrust forces, while duct loading is dominated by lateral forces. Across all configurations, fluctuations at the leading and trailing edges of the rotor are observed, originating from the blade tip and extending to approximately mid-span. These fluctuations are more pronounced in the EV module, identifying it as the dominant source of pressure disturbances. The numerical results are validated against experimental data obtained in the anechoic chamber at the University of Sherbrooke and show good agreement. The relative trends are accurately predicted at lower frequencies, with slight over-prediction, and closely match the experimental data at mid-frequencies. Full article
(This article belongs to the Special Issue Advances in Industrial Fan Technologies)
Show Figures

Figure 1

15 pages, 12323 KB  
Article
Research on Machining Characteristics of C/SiC Composite Material by EDM
by Peng Yu, Ziyang Yu, Lize Wang, Yongcheng Gao, Qiang Li and Yiquan Li
Micromachines 2025, 16(12), 1423; https://doi.org/10.3390/mi16121423 - 18 Dec 2025
Viewed by 362
Abstract
Carbon fiber reinforced silicon carbide (C/SiC) composite material exhibits exceptional properties, including high strength, high stiffness, low density, outstanding high-temperature performance, and corrosion resistance. Consequently, they are widely used in aerospace, defense, and automotive engineering. However, their anisotropic, high hardness, and brittle characteristics [...] Read more.
Carbon fiber reinforced silicon carbide (C/SiC) composite material exhibits exceptional properties, including high strength, high stiffness, low density, outstanding high-temperature performance, and corrosion resistance. Consequently, they are widely used in aerospace, defense, and automotive engineering. However, their anisotropic, high hardness, and brittle characteristics make them a typical difficult-to-machine material. This paper focuses on achieving high-quality micro hole machining of C/SiC composite material via electrical discharge machining. It systematically investigates electrical discharge machining characteristics and innovatively develops a hollow internal flow helical electrode reaming process. Experimental results reveal four typical chip morphologies: spherical, columnar, blocky, and molten. The study uncovers a multi-mechanism cutting process: the EDM ablation of the composite involves material melting and explosive vaporization, the intact extraction and fracture of carbon fibers, and the brittle fracture and spalling of the SiC matrix. Discharge energy correlates closely with surface roughness: higher energy removes more SiC, resulting in greater roughness, while lower energy concentrates on m fibers, yielding higher vaporization rates. C fiber orientation significantly impacts removal rates: processing time is shortest at θ = 90°, longest at θ = 0°, and increases as θ decreases. Typical defects such as delamination were observed between alternating 0° and 90° fiber bundles or at hole entrances. Cracks were also detected at the SiC matrix–C fiber interface. The proposed hole-enlargement process enhances chip removal efficiency through its helical structure and internal flushing, reduces abnormal discharges, mitigates micro hole taper, and thereby improves forming quality. This study provides practical references for the EDM of C/SiC composite material. Full article
Show Figures

Figure 1

28 pages, 695 KB  
Review
Recent Advances in Vibration Analysis for Predictive Maintenance of Modern Automotive Powertrains
by Rajesh Shah, Vikram Mittal and Michael Lotwin
Vibration 2025, 8(4), 68; https://doi.org/10.3390/vibration8040068 - 3 Nov 2025
Cited by 1 | Viewed by 2871
Abstract
Vibration-based predictive maintenance is an essential element of reliability engineering for modern automotive powertrains including internal combustion engines, hybrids, and battery-electric platforms. This review synthesizes advances in sensing, signal processing, and artificial intelligence that convert raw vibration into diagnostics and prognostics. It characterizes [...] Read more.
Vibration-based predictive maintenance is an essential element of reliability engineering for modern automotive powertrains including internal combustion engines, hybrids, and battery-electric platforms. This review synthesizes advances in sensing, signal processing, and artificial intelligence that convert raw vibration into diagnostics and prognostics. It characterizes vibration signatures unique to engines, transmissions, e-axles, and power electronics, emphasizing order analysis, demodulation, and time–frequency methods that extract weak, non-stationary fault content under real driving conditions. It surveys data acquisition, piezoelectric and MEMS accelerometry, edge-resident preprocessing, and fleet telemetry, and details feature engineering pipelines with classical machine learning and deep architectures for fault detection and remaining useful life prediction. In contrast to earlier reviews focused mainly on stationary industrial systems, this review unifies vibration analysis across combustion, hybrid, and electric vehicles and connects physics-based preprocessing to scalable edge and cloud implementations. Case studies show that this integrated perspective enables practical deployment, where physics-guided preprocessing with lightweight models supports robust on-vehicle inference, while cloud-based learning provides cross-fleet generalization and model governance. Open challenges include disentangling overlapping sources in compact e-axles, coping with domain and concept drift from duty cycles, software updates, and aging, addressing data scarcity through augmentation, transfer, and few-shot learning, integrating digital twins and multimodal fusion of vibration, current, thermal, and acoustic data, and deploying scalable cloud and edge AI with transparent governance. By emphasizing inverter-aware analysis, drift management, and benchmark standardization, this review uniquely positions vibration-based predictive maintenance as a foundation for next-generation vehicle reliability. Full article
Show Figures

Figure 1

21 pages, 4803 KB  
Article
Top-Down Design Approach of Lightweight Composite Battery Pack Enclosure for Electric Vehicles Based on Numerical Modeling and Topology Optimization
by Xin Zhang, Qiang Lin, Ying Xiao, Liyong Jia, Tiantian Yang, Lei Wang, Quanjin Ma and Bing Wang
Polymers 2025, 17(21), 2897; https://doi.org/10.3390/polym17212897 - 29 Oct 2025
Cited by 1 | Viewed by 2290
Abstract
To meet the increasing demands for structural lightweighting in electric vehicles (EVs), carbon fiber reinforced plastic (CFRP) has been gradually introduced to reduce weight and enhance passenger safety in automotive engineering. The battery-pack enclosure is a key structural component for EVs, as it [...] Read more.
To meet the increasing demands for structural lightweighting in electric vehicles (EVs), carbon fiber reinforced plastic (CFRP) has been gradually introduced to reduce weight and enhance passenger safety in automotive engineering. The battery-pack enclosure is a key structural component for EVs, as it significantly influences the driving distance, safety, and road handling of EVs. This study presents a top-down design approach and topology optimization for a lightweight CFRP battery pack enclosure reinforced with cross-shaped stiffeners. The main objective is to develop an efficient composite enclosure that meets performance targets while accommodating the demands of cost-effective mass production. The composite battery pack enclosure was fabricated using the compression molding process. Topology optimization was carried out in the preliminary design stage on the structural shape and geometric parameters following a top-down design approach. Experimental tests recorded maximum deformations of 0.56 mm and 10.33 mm under in-plane and lateral loads, respectively. The final prototype product achieved a total mass of 4.78 kg with a rapid curing cycle of 10–15 min. In conclusion, a lightweight composite battery-pack enclosure with cross-shaped stiffeners was successfully manufactured, integrating a top-down design approach with topology optimization. This study demonstrates an effective design approach to achieving an optimal balance of lightweight, cost-effectiveness, and production efficiency for EV battery-pack enclosures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 4007 KB  
Article
Investigation of Mechanical, Thermal and Microstructural Properties of Waste Micro-Nano Nichrome (NiCr 80/20) Powder-Reinforced Composites with Polyamide 66 (PA66) Matrix
by Mehmet Ceviz
Polymers 2025, 17(20), 2753; https://doi.org/10.3390/polym17202753 - 15 Oct 2025
Cited by 1 | Viewed by 639
Abstract
This study investigates the mechanical, thermal, electrical, and microstructural properties of polyamide 66 (PA66) composites reinforced with waste-derived micro–nano NiCr (80/20) powders. Composites containing 2, 5, and 8 wt% NiCr were prepared using thermokinetic mixing and compression molding, followed by characterization via tensile [...] Read more.
This study investigates the mechanical, thermal, electrical, and microstructural properties of polyamide 66 (PA66) composites reinforced with waste-derived micro–nano NiCr (80/20) powders. Composites containing 2, 5, and 8 wt% NiCr were prepared using thermokinetic mixing and compression molding, followed by characterization via tensile testing, Shore D hardness, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), and thermal/electrical conductivity measurements. Results showed a progressive increase in tensile modulus, tensile strength, hardness, and thermal conductivity with increasing NiCr content, reaching maximum values at 8 wt% filler. However, elongation at break decreased, indicating reduced ductility due to restricted polymer chain mobility. DSC and FTIR analyses revealed that low NiCr loadings promoted nucleation and crystallinity, while higher contents disrupted crystalline domains. Electrical conductivity exhibited a slight upward trend, remaining sub-percolative up to 8 wt% NiCr; conductivity modulation is modest at high filler loadings. SEM–EDS confirmed uniform dispersion at low–moderate contents and agglomeration at higher levels. The use of industrial waste NiCr powder not only enhanced material performance but also contributed to sustainable materials engineering by valorizing by-products from the coatings industry. These findings suggest that NiCr/PA66 composites have potential applications in automotive, electronics, and thermal management systems requiring improved mechanical rigidity and heat dissipation. Full article
(This article belongs to the Special Issue Smart Polymers and Composites in Multifunctional Systems)
Show Figures

Graphical abstract

26 pages, 2887 KB  
Article
Novel Method for Battery Design of Electric Vehicles Based on Longitudinal Dynamics, Range, and Charging Requirements
by Ralph Biller, Erik Ketzmerick, Stefan Mayr and Günther Prokop
World Electr. Veh. J. 2025, 16(10), 579; https://doi.org/10.3390/wevj16100579 - 14 Oct 2025
Viewed by 786
Abstract
VDI/VDE 2206 introduces the “V-Model”, a standard in the field of automotive development that uses systems engineering to derive requirements for (sub-)systems and components based on vehicle characteristics. These characteristics, which are directly experienced by drivers, are crucial in the concept phase, where [...] Read more.
VDI/VDE 2206 introduces the “V-Model”, a standard in the field of automotive development that uses systems engineering to derive requirements for (sub-)systems and components based on vehicle characteristics. These characteristics, which are directly experienced by drivers, are crucial in the concept phase, where virtual methods are increasingly applied. Regarding the battery electric vehicle’s energy storage, commonly a lithium-ion battery, vehicle metrics, especially for charging, range, and longitudinal dynamics, are of particular relevance. This publication will demonstrate a method to derive the requirements for the battery system based on those metrics. The core of the method is a static battery model, which considers the needed effects and dependencies in order to adequately represent the defined vehicle metrics, e.g., the battery’s open-circuit voltage and internal resistance. This paper also discusses the necessity of the relevant effects and dependencies and also why some of them can be ignored at this particular vehicle development stage. The result is a consistent method for requirement definition, from vehicle level to battery system level, applicable in the concept phase of the vehicle development process. Full article
(This article belongs to the Section Manufacturing)
Show Figures

Figure 1

206 pages, 59845 KB  
Review
The Impact of the Common Rail Fuel Injection System on Performance and Emissions of Modern and Future Compression Ignition Engines
by Alessandro Ferrari and Alberto Vassallo
Energies 2025, 18(19), 5259; https://doi.org/10.3390/en18195259 - 3 Oct 2025
Cited by 2 | Viewed by 4598
Abstract
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection [...] Read more.
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection patterns, high injection pressures and nozzle design features are analyzed with reference to their advantages and disadvantages in addressing engine issues. The benefits of the statistically optimized engine calibrations have also been examined. With regard to the combustion strategy, the role of a CR engine in the implementation of low-temperature combustion (LTC) is reviewed, and the effect of the ECU calibration parameters of the injection on LTC steady-state and transition modes, as well as on an LTC domain, is illustrated. Moreover, the exploitation of LTC in the last generation of CR engines is discussed. The CR apparatus offers flexibility to optimize the engine calibration even for biofuels and e-fuels, which has gained interest in the last decade. The impact of the injection strategy on spray, ignition and combustion is discussed with reference to fuel consumption and emissions for both biodiesel and green diesel. Finally, the electrification of CR diesel engines is reviewed: the effects of electrically heated catalysts, electric supercharging, start and stop functionality and electrical auxiliaries on NOx, CO2, consumption and torque are analyzed. The feasibility of mild hybrid, strong hybrid and plug-in CR diesel powertrains is discussed. For the future, based on life cycle and manufacturing cost analyses, a roadmap for the automotive sector is outlined, highlighting the perspectives of the CR diesel engine for different applications. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

19 pages, 7379 KB  
Article
Criterion Circle-Optimized Hybrid Finite Element–Statistical Energy Analysis Modeling with Point Connection Updating for Acoustic Package Design in Electric Vehicles
by Jiahui Li, Ti Wu and Jintao Su
World Electr. Veh. J. 2025, 16(10), 563; https://doi.org/10.3390/wevj16100563 - 2 Oct 2025
Viewed by 533
Abstract
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods [...] Read more.
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods for hybrid point connections. New energy vehicles face unique acoustic challenges due to the special nature of their power systems and operating conditions, such as high-frequency noise from electric motors and electronic devices, wind noise, and road noise at low speeds, which directly affect the vehicle’s ride comfort. Therefore, optimizing the acoustic package design of new energy vehicles to reduce in-cabin noise and improve acoustic quality is an important issue in automotive engineering. In this context, this study proposes an improved point connection correction factor by optimizing the division range of the decision circle. The factor corrects the dynamic stiffness of point connections based on wave characteristics, aiming to improve the analysis accuracy of the hybrid FE-SEA model and enhance its ability to model boundary effects. Simulation results show that the proposed method can effectively improve the model’s analysis accuracy, reduce the degrees of freedom in analysis, and increase efficiency, providing important theoretical support and reference for the acoustic package design and NVH performance optimization of new energy vehicles. Full article
Show Figures

Figure 1

Back to TopTop