Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = dynamic mechanical spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4901 KiB  
Article
Study on the Adaptability of FBG Sensors Encapsulated in CNT-Modified Gel Material for Asphalt Pavement
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Jiahua Kong, Haijun Chen, Chaohui Wang, Qian Chen and Jiachen Wang
Gels 2025, 11(8), 590; https://doi.org/10.3390/gels11080590 (registering DOI) - 31 Jul 2025
Abstract
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects [...] Read more.
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials. The results show that the incorporation of CNTs-COOH increased the tensile strength, elongation at break, and tensile modulus of the gel material by 36.2%, 47%, and 17.2%, respectively, and increased the flexural strength, flexural modulus, and flexural strain by 89.7%, 7.5%, and 63.8%, respectively. Through infrared spectrum analysis, it was determined that carboxyl (COOH) and hydroxyl (OH) were successfully introduced on the surface of carbon nanotubes. By analyzing the microstructure, it can be seen that the carboxyl functionalization of CNTs improved the agglomeration of carbon nanotubes. The tensile section of the modified gel material is rougher than that of the pure epoxy resin, showing obvious plastic deformation, and the toughness is improved. According to the data from the calibration experiment, the strain and temperature sensitivity coefficients of the packaged sensor are 1.9864 pm/μm and 0.0383 nm/°C, respectively, which are 1.63 times and 3.61 times higher than those of the bare fiber grating. The results of an applicability study show that the internal structure strain of asphalt rutting specimen changed linearly with the external static load, and the fitting sensitivity is 0.0286 με/N. Combined with ANSYS finite element analysis, it is verified that the simulation analysis results are close to the measured data, which verifies the effectiveness and monitoring accuracy of the sensor. The dynamic load test results reflect the internal strain change trend of asphalt mixture under external rutting load, confirming that the encapsulated FBG sensor is suitable for the long-term monitoring of asphalt pavement strain. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

24 pages, 5828 KiB  
Article
Removal of Rifampicin and Rifaximin Antibiotics on PET Fibers: Optimization, Modeling, and Mechanism Insight
by Elena Fasniuc-Pereu, Elena Niculina Drăgoi, Dumitru Bulgariu, Maria-Cristina Popescu and Laura Bulgariu
Polymers 2025, 17(15), 2089; https://doi.org/10.3390/polym17152089 - 30 Jul 2025
Abstract
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and [...] Read more.
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and has a low preparation cost. In this study, PET (polyethylene terephthalate) fibers, obtained by mechanically processing PET waste, were used for the adsorption of rifampicin (RIF) and rifaximin (RIX) antibiotics from aqueous media. The experimental adsorption capacity of PET fibers for the two antibiotics (RIF and RIX) was determined at different pH values (2.0–6.5), adsorbent dose (0.4–20.0 g/L), contact time (5–1440 min), initial antibiotic concentration (4.0–67.0 mg/L), and temperature (10, 22, and 50 °C); the experimental values of these parameters were analyzed using a neuro-evolutive technique (ANE) combining sequential deep learning (DL) models with a differential evolution algorithm. The obtained optimal ANN-DL algorithm was then used to obtain the optimal models for the adsorption of RIF and RIX on PET fibers, which should adequately describe the adsorption dynamics for both antibiotics. The adsorption processes are spontaneous and endothermic (ΔG < 0, ΔH > 0) and are described by the Langmuir model (R2 > 0.97) and the pseudo-second order kinetic model (R2 > 0.99). The retention of RIF and RIX on the surface of PET fibers occurs through physicochemical interactions, and the FTIR spectra and microscopic images support this hypothesis. The presence of inorganic anions in the aqueous solution leads to an increase in the adsorption capacities of RIF (max. 7.6 mg/g) and RIX (max. 3.6 mg/g) on PET fibers, which is mainly due to the ordering of water molecules in the solution. The experimental results presented in this study allowed for the development of the adsorption mechanism of RIF and RIX on PET fibers, highlighting the potential practical applications of these adsorption processes. Full article
Show Figures

Graphical abstract

19 pages, 3715 KiB  
Article
Quantum Chemical Investigation on the Material Properties of Al-Based Hydrides XAl2H2 (X = Ca, Sr, Sc, and Y) for Hydrogen Storage Applications
by Yong Guo, Rui Guo, Lei Wan and Youyu Zhang
Materials 2025, 18(15), 3521; https://doi.org/10.3390/ma18153521 - 27 Jul 2025
Viewed by 264
Abstract
Aluminum–hydrogen compounds have drawn considerable interest for applications in solid-state hydrogen storage. The structural, hydrogen storage, electronic, mechanical, phonon, and thermodynamic properties of XAl2H2 (X = Ca, Sr, Sc, Y) hydrides are investigated using density functional theory. These hydrides exhibit [...] Read more.
Aluminum–hydrogen compounds have drawn considerable interest for applications in solid-state hydrogen storage. The structural, hydrogen storage, electronic, mechanical, phonon, and thermodynamic properties of XAl2H2 (X = Ca, Sr, Sc, Y) hydrides are investigated using density functional theory. These hydrides exhibit negative formation energies in the hexagonal phase, indicating their thermodynamic stability. The gravimetric hydrogen storage capacities of CaAl2H2, SrAl2H2, ScAl2H2, and YAl2H2 are calculated to be 1.41 wt%, 0.94 wt%, 1.34 wt%, and 0.93 wt%, respectively. Analysis of the electronic density of states reveals metallic characteristics. Furthermore, the calculated elastic constants satisfy the Born stability criteria, confirming their mechanical stability. Additionally, through phonon spectra analysis, dynamical stability is verified for CaAl2H2 and SrAl2H2 but not for ScAl2H2 and YAl2H2. Finally, we present temperature-dependent thermodynamic properties. This research reveals that XAl2H2 (X = Ca, Sr, Sc, Y) materials represent promising candidates for solid-state hydrogen storage, providing a theoretical foundation for further studies on XAl2H2 systems. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

28 pages, 6582 KiB  
Article
Experimental Study on Dynamic Response Characteristics of Rural Residential Buildings Subjected to Blast-Induced Vibrations
by Jingmin Pan, Dongli Zhang, Zhenghua Zhou, Jiacong He, Long Zhang, Yi Han, Cheng Peng and Sishun Wang
Buildings 2025, 15(14), 2511; https://doi.org/10.3390/buildings15142511 - 17 Jul 2025
Viewed by 204
Abstract
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along [...] Read more.
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along the Wenzhou segment of the Hangzhou–Wenzhou High-Speed Railway integrates household field surveys and empirical measurements to perform modal analysis of rural residential buildings through finite element simulation. Adhering to the principle of stratified arrangement and composite measurement point configuration, an effective and reasonable experimental observation framework was established. In this investigation, the seven-story rural residential building in adjacent villages was selected as the research object. Strong-motion seismographs were strategically positioned adjacent to frame columns on critical stories (ground, fourth, seventh, and top floors) within the observational system to acquire test data. Methodical signal processing techniques, including effective signal extraction, baseline correction, and schedule conversion, were employed to derive temporal dynamic characteristics for each story. Combined with the Fourier transform, the frequency–domain distribution patterns of different floors are subsequently obtained. Leveraging the structural dynamic theory, time–domain records were mathematically converted to establish the structure’s maximum response spectra under blast-induced loading conditions. Through the analysis of characteristic curves, including floor acceleration response spectra, dynamic amplification coefficients, and spectral ratios, the dynamic response patterns of rural residential buildings subjected to blast-induced vibrations have been elucidated. Following the normalization of peak acceleration and velocity parameters, the mechanisms underlying differential floor-specific dynamic responses were examined, and the layout principles of measurement points were subsequently formulated and summarized. These findings offer valuable insights for enhancing the seismic resilience and structural safety of rural residential buildings exposed to blast-induced vibrations, with implications for both theoretical advancements and practical engineering applications. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

16 pages, 3251 KiB  
Article
Vibration Fatigue Characteristics of a High-Speed Train Bogie and Traction Motor Based on Field Measurement and Spectrum Synthesis
by Lirong Guo, Guoshun Li, Can Chen, Yichao Zhang, Hongwei Zhang and Dao Gong
Machines 2025, 13(7), 613; https://doi.org/10.3390/machines13070613 - 16 Jul 2025
Viewed by 196
Abstract
In this study, the fatigue behavior in high-speed train bogie frames and mounted traction motors was investigated through dynamic stress measurements and vibration analysis. A spectrum synthesis method was developed to integrate multipoint random vibrations from the bogie frame into a unified excitation [...] Read more.
In this study, the fatigue behavior in high-speed train bogie frames and mounted traction motors was investigated through dynamic stress measurements and vibration analysis. A spectrum synthesis method was developed to integrate multipoint random vibrations from the bogie frame into a unified excitation spectrum for motor fatigue assessment. The results demonstrate that fatigue damage in the bogie frame progresses linearly with increasing speed, with critical stress concentrations being identified at the motor base weld seams (41.4 MPa equivalent stress at 400 km/h). Traction motor vibration spectra were found to deviate substantially from IEC 61373 standards, leading to higher fatigue damage that follows an exponential growth pattern relative to speed increases. The proposed methodology provides direct experimental validation of component-specific fatigue mechanisms under operational loading conditions. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 349
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

14 pages, 9327 KiB  
Article
DFT Prediction of Structural and Physical Properties of Cr3AlC2 Under Pressure
by Jianhui Yang, Shenghai Fan, Haijun Hou and Qiang Fan
Nanomaterials 2025, 15(14), 1082; https://doi.org/10.3390/nano15141082 - 11 Jul 2025
Viewed by 236
Abstract
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and [...] Read more.
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and bonding features, we carried out computations on the band structure and charge density distribution. The calculated elastic constants (Cij) validated the mechanical stability of Cr3AlC2. To assess the material’s ductility or brittleness, we calculated Pugh’s ratio, Poisson’s ratio, and Cauchy pressure. The hardness was determined. This study examined the anisotropic behavior of Cr3AlC2 using directional analyses of its elastic properties and by computing relevant anisotropy indicators. We examined several key properties of Cr3AlC2, including the Grüneisen parameter, acoustic characteristics, Debye temperature, thermal conductivity, melting point, heat capacity, Helmholtz free energy, entropy, and internal energy. Phonon dispersion spectra were analyzed to assess the dynamic stability of Cr3AlC2. Full article
Show Figures

Figure 1

27 pages, 7808 KiB  
Article
Phenology-Aware Transformer for Semantic Segmentation of Non-Food Crops from Multi-Source Remote Sensing Time Series
by Xiongwei Guan, Meiling Liu, Shi Cao and Jiale Jiang
Remote Sens. 2025, 17(14), 2346; https://doi.org/10.3390/rs17142346 - 9 Jul 2025
Viewed by 324
Abstract
Accurate identification of non-food crops underpins food security by clarifying land-use dynamics, promoting sustainable farming, and guiding efficient resource allocation. Proper identification and management maintain the balance between food and non-food cropping, a prerequisite for ecological sustainability and a healthy agricultural economy. Distinguishing [...] Read more.
Accurate identification of non-food crops underpins food security by clarifying land-use dynamics, promoting sustainable farming, and guiding efficient resource allocation. Proper identification and management maintain the balance between food and non-food cropping, a prerequisite for ecological sustainability and a healthy agricultural economy. Distinguishing large-scale non-food crops—such as oilseed rape, tea, and cotton—remains challenging because their canopy reflectance spectra are similar. This study proposes a novel phenology-aware Vision Transformer Model (PVM) for accurate, large-scale non-food crop classification. PVM incorporates a Phenology-Aware Module (PAM) that fuses multi-source remote-sensing time series with crop-growth calendars. The study area is Hunan Province, China. We collected Sentinel-1 SAR and Sentinel-2 optical imagery (2021–2022) and corresponding ground-truth samples of non-food crops. The model uses a Vision Transformer (ViT) backbone integrated with PAM. PAM dynamically adjusts temporal attention using encoded phenological cues, enabling the network to focus on key growth stages. A parallel Multi-Task Attention Fusion (MTAF) mechanism adaptively combines Sentinel-1 and Sentinel-2 time-series data. The fusion exploits sensor complementarity and mitigates cloud-induced data gaps. The fused spatiotemporal features feed a Transformer-based decoder that performs multi-class semantic segmentation. On the Hunan dataset, PVM achieved an F1-score of 74.84% and an IoU of 61.38%, outperforming MTAF-TST and 2D-U-Net + CLSTM baselines. Cross-regional validation on the Canadian Cropland Dataset confirmed the model’s generalizability, with an F1-score of 71.93% and an IoU of 55.94%. Ablation experiments verified the contribution of each module. Adding PAM raised IoU by 8.3%, whereas including MTAF improved recall by 8.91%. Overall, PVM effectively integrates phenological knowledge with multi-source imagery, delivering accurate and scalable non-food crop classification. Full article
Show Figures

Figure 1

30 pages, 11919 KiB  
Article
Unveiling Vibrational Couplings in Model Peptides in Solution by a Theoretical Approach
by Federico Coppola, Fulvio Perrella, Alessio Petrone, Greta Donati, Luciana Marinelli and Nadia Rega
Molecules 2025, 30(13), 2854; https://doi.org/10.3390/molecules30132854 - 4 Jul 2025
Viewed by 432
Abstract
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical [...] Read more.
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical calculations with ab initio molecular dynamics simulations to investigate the vibrational behavior of three peptide models in both the gas phase and in explicit water, under non-periodic boundary conditions. The vibrational spectra of the main amide bands, namely amide I-III and A, were analyzed using a time–frequency approach based on the wavelet transform, which allows the resolution of transient frequency shifts and mode couplings along the trajectories. This combined approach enabled us to perform a time-resolved vibrational analysis revealing how vibrational frequencies, especially of the C=O and N–H stretching modes, evolve over time due to dynamical microsolvation. These fluctuations modulate vibrational couplings and lead to spectral broadening and frequency shifts that correlate with the local structuring of the solvent. In conclusion, our results highlight how the proposed protocol allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, the peptide backbone, and its microenvironment. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

19 pages, 3044 KiB  
Review
Deep Learning-Based Sound Source Localization: A Review
by Kunbo Xu, Zekai Zong, Dongjun Liu, Ran Wang and Liang Yu
Appl. Sci. 2025, 15(13), 7419; https://doi.org/10.3390/app15137419 - 2 Jul 2025
Viewed by 551
Abstract
As a fundamental technology in environmental perception, sound source localization (SSL) plays a critical role in public safety, marine exploration, and smart home systems. However, traditional methods such as beamforming and time-delay estimation rely on manually designed physical models and idealized assumptions, which [...] Read more.
As a fundamental technology in environmental perception, sound source localization (SSL) plays a critical role in public safety, marine exploration, and smart home systems. However, traditional methods such as beamforming and time-delay estimation rely on manually designed physical models and idealized assumptions, which struggle to meet practical demands in dynamic and complex scenarios. Recent advancements in deep learning have revolutionized SSL by leveraging its end-to-end feature adaptability, cross-scenario generalization capabilities, and data-driven modeling, significantly enhancing localization robustness and accuracy in challenging environments. This review systematically examines the progress of deep learning-based SSL across three critical domains: marine environments, indoor reverberant spaces, and unmanned aerial vehicle (UAV) monitoring. In marine scenarios, complex-valued convolutional networks combined with adversarial transfer learning mitigate environmental mismatch and multipath interference through phase information fusion and domain adaptation strategies. For indoor high-reverberation conditions, attention mechanisms and multimodal fusion architectures achieve precise localization under low signal-to-noise ratios by adaptively weighting critical acoustic features. In UAV surveillance, lightweight models integrated with spatiotemporal Transformers address dynamic modeling of non-stationary noise spectra and edge computing efficiency constraints. Despite these advancements, current approaches face three core challenges: the insufficient integration of physical principles, prohibitive data annotation costs, and the trade-off between real-time performance and accuracy. Future research should prioritize physics-informed modeling to embed acoustic propagation mechanisms, unsupervised domain adaptation to reduce reliance on labeled data, and sensor-algorithm co-design to optimize hardware-software synergy. These directions aim to propel SSL toward intelligent systems characterized by high precision, strong robustness, and low power consumption. This work provides both theoretical foundations and technical references for algorithm selection and practical implementation in complex real-world scenarios. Full article
Show Figures

Figure 1

19 pages, 1543 KiB  
Article
Physicochemical and Sensory Evaluation of Spreads Derived from Fruit Processing By-Products
by Chrysanthi Nouska, Liliana Ciurla, Antoanela Patras, Costas G. Biliaderis and Athina Lazaridou
Foods 2025, 14(13), 2224; https://doi.org/10.3390/foods14132224 - 24 Jun 2025
Viewed by 332
Abstract
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. [...] Read more.
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. All spread preparations carried the ‘high fiber’ nutrition claim. The apple pomace spread demonstrated the highest total and soluble dietary fiber contents (14.13 and 4.28%, respectively). Colorimetry showed higher L* and a* values for the tomato pomace spreads. Rheometry of the spreads revealed pseudoplastic flow and weak gel-like behavior (G′ > G″); the tomato and grape pomace spreads with pectin exhibited the highest η*, G′, and G″ values. A texture analysis (spreadability test) indicated that pectin addition affected only the mixed pomace spread, resulting in the least spreadable product. Regarding bioactive compounds, the apple pomace had the highest total phenolic content, and the grape pomace exhibited the highest antioxidant activity, both of which were also reflected in their corresponding spreads. A principal component analysis indicated a strong correlation among flavor, mouthfeel, and moisture content, which were negatively correlated with color intensity and spreadability. The apple pomace spread with added pectin was the most widely preferred by consumers due to its appealing mouthfeel, spreadability and flavor. Full article
Show Figures

Graphical abstract

16 pages, 7309 KiB  
Article
Study on Outdoor Spectral Inversion of Winter Jujube Based on BPDF Models
by Yabei Di, Jinlong Yu, Huaping Luo, Huaiyu Liu, Lei Kang and Yuesen Tong
Agriculture 2025, 15(13), 1334; https://doi.org/10.3390/agriculture15131334 - 21 Jun 2025
Viewed by 290
Abstract
The outdoor spectral detection of winter jujube quality is affected by complex ambient light and surface heterogeneity, resulting in limited inversion accuracy. To address this problem, this study proposes a correction method for outdoor spectral inversion based on the bidirectional polarization reflectance distribution [...] Read more.
The outdoor spectral detection of winter jujube quality is affected by complex ambient light and surface heterogeneity, resulting in limited inversion accuracy. To address this problem, this study proposes a correction method for outdoor spectral inversion based on the bidirectional polarization reflectance distribution function (BPDF) model. It was used to enhance the detection accuracy of water content and soluble solid (SSC) content of winter jujube. Experimentally, 900–1750 nm hyperspectral data of ripe winter jujube samples were collected at non-polarization and 0°, 45°, 90°, and 135° polarization azimuths. The spectra were inverted using four semi-empirical BPDF models, Nadal–Breon, Litvinov, Maignan and Xie–Cheng, and the corrected spectra were obtained by mean fusion. The quality prediction models are subsequently combined with the competitive adaptive reweighting algorithm (CARS) and partial least squares (PLS). The results showed that the modified spectra significantly optimized the prediction performance. The prediction set correlation coefficients (Rp) of the water content and SSC models were improved by 10–30% compared with the original spectra. The percentage of models with RPIQ values greater than 2 increased from 40% to 60%. Among them, the Litvinov model performs outstandingly in the direction of no polarization and 135° polarization, with the highest Rp of 0.8829 for water content prediction and RPIQ of 2.54. The Xie–Cheng model has an RPIQ of 2.64 for SSC prediction at 90° polarization, which shows the advantage of sensitivity to the deeper constituents. The different models complemented each other in multi-polarization scenarios. The Nadal–Breon model was suitable for epidermal reflection-dominated scenarios, and the Maignan model efficiently coupled epidermal and internal moisture characteristics through the moisture sensitivity index. The study verifies the effectiveness of the spectral correction method based on the BPDF model for outdoor quality detection of winter jujube, which provides a new path for the spectral detection of agricultural products in complex environments. In the future, it is necessary to further optimize the dynamic adjustment mechanism of the model parameters and improve the ability of environmental interference correction by combining multi-source data fusion. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

18 pages, 5735 KiB  
Article
Fractional Calculus as a Tool for Modeling Electrical Relaxation Phenomena in Polymers
by Flor Y. Rentería-Baltiérrez, Jesús G. Puente-Córdova, Nasser Mohamed-Noriega and Juan Luna-Martínez
Polymers 2025, 17(13), 1726; https://doi.org/10.3390/polym17131726 - 20 Jun 2025
Viewed by 445
Abstract
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus ( [...] Read more.
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus (M*=M+iM) formalism to simultaneously describe two key relaxation phenomena: α-relaxation and interfacial polarization (Maxwell–Wagner–Sillars effect). The model incorporates fractional elements (cap-resistors) into a modified Debye equivalent circuit to capture polymer dynamics and energy dissipation. Fractional differential equations are derived, with fractional orders taking values between 0 and 1; the frequency and temperature responses are analyzed using Fourier transform. Two temperature-dependent behaviors are considered: the Matsuoka model, applied to α-relaxation near the glass transition, and an Arrhenius-type equation, used to describe interfacial polarization associated with thermally activated charge transport. The proposed model is validated using literature data for amorphous polymers, polyetherimide (PEI), polyvinyl chloride (PVC), and polyvinyl butyral (PVB), successfully fitting dielectric spectra and extracting meaningful physical parameters. The results demonstrate that the EFM is a robust and versatile tool for modeling complex dielectric relaxation in polymeric systems, offering improved interpretability over classical integer-order models. This approach enhances understanding of coupled relaxation mechanisms and may support the design of advanced polymer-based materials with tailored dielectric properties. Full article
(This article belongs to the Special Issue Relaxation Phenomena in Polymers)
Show Figures

Figure 1

18 pages, 4003 KiB  
Article
Exploring Layered Ruddlesden-Popper Structures for High-Performance Energy Devices
by Ahmad Hussain, Sumaira Zafar, Nawishta Jabeen, Muhammad Usman Khan, Imtiaz Ahmad Khan and Mahmoud M. Hessien
Inorganics 2025, 13(6), 203; https://doi.org/10.3390/inorganics13060203 - 17 Jun 2025
Viewed by 494
Abstract
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA [...] Read more.
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA approaches have been implemented using the CASTEP tool. The exchange–correlation approximation calculations show that the La2XO4 (where X = Ni, Fe, Ba, and Pb) compounds possess no band gap. The results indicate that the compounds are metallic, which are ideal for supercapacitor (SC) applications. The compound’s optical conductivity, dielectric function, extinction coefficients, absorption refractive index, loss function, and reflectivity are also analyzed for SC applications. UV spectra of the compounds observed high absorption coefficient (105 cm−1), dielectric function (9–10), optical conductivity (7 fs−1), and refractive index (4) values. Furthermore, as B/G > 1.75, the mechanical (elastic) properties have shown ductile behavior and mechanical stability. Using the Born stability criteria, the mechanical stability of the compounds is examined. All of the compounds are ductile, according to Pugh’s and Frantesvich ratios. Finally, time-simulations-dependent temperature stability plots for the compounds are computed by employing dynamical stability with norm-conserved pseudopotential, which confirm their potential for SC applications. Full article
Show Figures

Graphical abstract

14 pages, 3551 KiB  
Article
Integration of Green and Far-Red Light with Red-Blue Light Enhances Shoot Multiplication in Micropropagated Strawberry
by Yali Li, Ping Huang, Xia Qiu, Feiyu Zhu, Hongwen Chen, Si Wang, Jiaxian He, Yadan Pang, Hui Ma and Fang Wang
Horticulturae 2025, 11(6), 701; https://doi.org/10.3390/horticulturae11060701 - 17 Jun 2025
Cited by 1 | Viewed by 342
Abstract
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured [...] Read more.
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured strawberry (Fragaria × ananassa cv. ‘Benihoppe’). After 28 days of cultivation under controlled conditions (25 °C/22 °C day/night, 50 μmol·m−2·s−1 PPFD), RBFR and RGB treatments significantly enhanced shoot multiplication (38.8% and 24.2%, respectively), plant height, and callus biomass compared to RB light. RGB elevated chlorophyll a and b by 1.8- and 1.6-fold, respectively, while RBFR increased soluble protein content by 16%. Transcriptome analysis identified 144 and 376 differentially expressed genes (DEGs) under RGB and RBFR, respectively, enriched in pathways linked to circadian rhythm, auxin transport, and photosynthesis. Far-red light upregulated light signaling and photomorphogenesis genes, whereas green light enhanced chlorophyll biosynthesis while suppressing stress-responsive genes. These findings elucidate the spectral-specific regulatory mechanisms underlying strawberry micropropagation and provide a framework for optimizing multispectral LED systems in controlled-environment horticulture. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

Back to TopTop