Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = dynamic backlash

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 368 KB  
Proceeding Paper
Enhanced Position Tracking of Inverted Pendulum Using Observer-Based Disturbance Compensation
by Aisha Akbar Awan, Umar S. Khan and Tallat Noreen
Mater. Proc. 2025, 23(1), 27; https://doi.org/10.3390/materproc2025023027 - 26 Nov 2025
Viewed by 112
Abstract
Positional accuracy is crucial in target tracking for various robotic applications, where precise movement and response are essential. Geared electromechanical actuators, widely used in robotic systems, offer significant advantages but are susceptible to backlash, particularly during direction reversals. This backlash can introduce unwanted [...] Read more.
Positional accuracy is crucial in target tracking for various robotic applications, where precise movement and response are essential. Geared electromechanical actuators, widely used in robotic systems, offer significant advantages but are susceptible to backlash, particularly during direction reversals. This backlash can introduce unwanted oscillations and disturbances, especially in systems with swinging loads, thereby compromising tracking performance. This study proposes a novel backlash compensation technique for inverted pendulum systems utilizing observer estimators. The proposed method effectively estimates and mitigates the disturbances caused by backlash, enhancing the system’s ability to maintain accurate target tracking. RMSE turns out to be 0.18 and settling time is quite minimal 2.4sec.Simulation results demonstrate that this approach significantly improves tracking performance, ensuring robust and reliable operation in dynamic environments. Full article
Show Figures

Figure 1

25 pages, 11045 KB  
Article
Research on Dynamic Characteristics of High-Speed Helical Gears with Crack Faults in Electric Vehicle Deceleration Systems
by Hongyuan Zhang, Dongsheng Li, He Wang and Hongyun Sun
Appl. Sci. 2025, 15(23), 12497; https://doi.org/10.3390/app152312497 - 25 Nov 2025
Viewed by 132
Abstract
As a key component of pure electric vehicles, the reducer plays a vital role in power transmission and overall drive system performance. This study investigates the nonlinear dynamic characteristics of helical gears with tooth root crack faults in high-speed reducers. A coupled bending–torsional–shaft [...] Read more.
As a key component of pure electric vehicles, the reducer plays a vital role in power transmission and overall drive system performance. This study investigates the nonlinear dynamic characteristics of helical gears with tooth root crack faults in high-speed reducers. A coupled bending–torsional–shaft dynamic model is developed, in which the time-varying mesh stiffness of cracked helical gears is calculated using an improved potential energy method. The system’s nonlinear dynamic responses under varying mesh error excitation, gear backlash, and damping ratio are numerically obtained via the variable-step Runge–Kutta method. The results reveal that under high input speed conditions, the motion of the faulted system evolves from single-period to quasi-periodic motion as bifurcation parameters change. In the stable state, fault characteristic signals are apparent, whereas under strong nonlinear vibrations and chaotic motion, they become difficult to distinguish in traditional time- and frequency-domain analyses. To address this limitation, the DBSCAN clustering algorithm is introduced, which applies machine learning to cluster the Poincaré cross-sections of the system under different motion states. This approach enables the effective classification and identification of crack-induced and fault-related noise, thereby improving the accuracy of fault detection in nonlinear dynamic gear systems. Full article
Show Figures

Figure 1

21 pages, 6941 KB  
Article
An Investigation into the Nonlinear Dynamic Behavior of High-Speed Helical Gears for Electric Vehicle Reducers
by Hongyuan Zhang, Dongsheng Li, He Wang and Hongyun Sun
Mathematics 2025, 13(22), 3701; https://doi.org/10.3390/math13223701 - 18 Nov 2025
Viewed by 348
Abstract
The drive system of pure electric vehicles is characterized by high transmission efficiency and a rapid torque response, with the centralized drive configuration being the most commonly adopted. To improve the dynamic performance and reliability of such systems, this study investigates the nonlinear [...] Read more.
The drive system of pure electric vehicles is characterized by high transmission efficiency and a rapid torque response, with the centralized drive configuration being the most commonly adopted. To improve the dynamic performance and reliability of such systems, this study investigates the nonlinear dynamic characteristics of high-speed helical gear reducers used in electric vehicles. A coupled bending–torsional–shaft dynamic model is established, in which the time-varying mesh stiffness is calculated using an improved potential energy method. The system responses under varying mesh errors, backlash, and damping ratios are obtained through numerical integration via the variable-step Runge–Kutta method. The results demonstrate that at high input speeds, the helical gear system exhibits complex nonlinear behavior. Small backlash and minor manufacturing errors lead to stable periodic or quasi-periodic motion, whereas increasing these parameters induces dynamic instability. Moreover, enhancing the mesh damping ratio effectively suppresses chaotic responses and improves overall system stability. Full article
Show Figures

Figure 1

31 pages, 4855 KB  
Article
Research on Hybrid Control Methods for Electromechanical Actuation Systems Under the Influence of Nonlinear Factors
by Xingye Ding and Yong Zhou
Actuators 2025, 14(11), 526; https://doi.org/10.3390/act14110526 - 29 Oct 2025
Viewed by 330
Abstract
With the comprehensive digitalization and electrification of aircraft, electromechanical actuation systems (EAS) have been increasingly applied. However, EAS are affected by various nonlinear factors, such as friction and mechanical backlash, which can compromise system stability and control accuracy, thereby reducing the operational lifespan [...] Read more.
With the comprehensive digitalization and electrification of aircraft, electromechanical actuation systems (EAS) have been increasingly applied. However, EAS are affected by various nonlinear factors, such as friction and mechanical backlash, which can compromise system stability and control accuracy, thereby reducing the operational lifespan of the EAS. This study focuses on these two nonlinear factors and proposes a hybrid control approach to mitigate their effects. In the speed loop of the EAS, a Super-Twisting sliding mode controller combined with a generalized proportional–integral observer (GPIO) is designed, while in the position loop, a hybrid controller integrating a radial basis function (RBF) neural network with sliding mode control is implemented. Leveraging the advantages of numerical analysis in SIMULINK and dynamic simulation in ADAMS, a co-simulation framework is established to evaluate the hybrid control algorithm under nonlinear effects. Furthermore, a control test bench for the control surface transmission system is constructed to analyze the dynamic and static performance of the system under different control strategies and input commands. The experimental results show that, compared with the PID control, the hybrid control method reduces the steady-state error and vibration amplitude of the step response displacement by 51% and 75%, respectively, and decreases the amplitude of speed fluctuations by 75%. For the sinusoidal response, the displacement lag is reduced by 76%, and the amplitude of speed fluctuations is reduced by 50%. Full article
(This article belongs to the Special Issue Fault Diagnosis and Prognosis in Actuators)
Show Figures

Figure 1

15 pages, 289 KB  
Article
What Does It Take to Belong? A Decolonial Interrogation of Xenophobia in South Africa
by Anima McBrown
Journal. Media 2025, 6(4), 164; https://doi.org/10.3390/journalmedia6040164 - 25 Sep 2025
Viewed by 1000
Abstract
This article examines the xenophobic orientation of social media reactions, as captured in mainstream South African media, around the Miss South Africa 2024 case of Chidimma Adetshina. It will perform a decolonial interrogation of the South African digital public’s reaction to Adetshina’s participation [...] Read more.
This article examines the xenophobic orientation of social media reactions, as captured in mainstream South African media, around the Miss South Africa 2024 case of Chidimma Adetshina. It will perform a decolonial interrogation of the South African digital public’s reaction to Adetshina’s participation in and eligibility for the pageant. It will also unpack how xenophobia—defined as the fear or hatred of foreigners—is evident in the backlash that encapsulated Adetshina’s story. The xenophobic utterances that circulated on social media platforms such as X and across different digital media outlets suggest an intriguing intra-black component that is intertwined with the three dimensions of coloniality: power, knowledge and being. The concept of coloniality is understood as the lingering impact of inequalities and power dynamics resulting from the colonial encounter long after the end of administrative and historical colonialism and serves as this article’s theoretical framework. It draws on the work of several decolonial scholars to identify and explore how coloniality presents itself in the Adetshina case. The research objectives are to examine how xenophobic sentiments reflect the coloniality of power, knowledge and, specifically, the coloniality of being. The methodology includes an open, flexible combination of content and textual analysis of online media articles from major news outlets operating within the South African mediasphere. This inquiry found that there is a link between the tension-filled xenophobic reactions to Adetshina’s Miss SA 2024 case and the legacy of exploitation and oppression inherited from South Africa’s still-difficult-to-navigate colonial and apartheid eras. This investigation also found complicated hierarchies between different types of humanity—indicative of the most pervasive dimension, in this case, the coloniality of being. Full article
26 pages, 4813 KB  
Article
Nonlinear Dynamics Analysis of the Wheel-Side Planetary Reducer with Tooth Wear for the In-Wheel Motored Electric Vehicle
by Dehua Shi, Le Sun, Qirui Zhang, Shaohua Wang, Kaimei Zhang, Chunfang Yin and Chun Li
Mathematics 2025, 13(17), 2885; https://doi.org/10.3390/math13172885 - 6 Sep 2025
Viewed by 666
Abstract
This paper investigates the nonlinear dynamics of the wheel-side planetary reducer, considering the tooth wear effect. The tooth wear model based on the Archard adhesion wear theory is established, and the impact of tooth wear on meshing stiffness and piecewise-linear backlash of the [...] Read more.
This paper investigates the nonlinear dynamics of the wheel-side planetary reducer, considering the tooth wear effect. The tooth wear model based on the Archard adhesion wear theory is established, and the impact of tooth wear on meshing stiffness and piecewise-linear backlash of the planetary gear system is discussed. Then, the torsional vibration model and dimensionless differential equations considering tooth wear for the wheel-side planetary reducer are established, in which meshing excitations include time-varying mesh stiffness (TVMS), piecewise-linear backlash, and transmission error. The dynamic responses are numerically solved using the fourth-order Runge–Kutta method. On this basis, the nonlinear dynamics, such as the bifurcation and chaos properties of the wheel-side planetary reducer with tooth wear, are analyzed. Simulation results demonstrate that the existence of tooth wear reduces meshing stiffness and increases backlash. The reduction in the meshing stiffness changes the bifurcation path and chaotic amplitude of the system, inducing chaotic phenomena more easily. The increase in the gear backlash causes a higher amplitude of the relative displacement and more severe vibration. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

22 pages, 4206 KB  
Article
Piezoelectric Hysteresis Modeling Under a Variable Frequency Based on a Committee Machine Approach
by Francesco Aggogeri and Nicola Pellegrini
Sensors 2025, 25(17), 5371; https://doi.org/10.3390/s25175371 - 31 Aug 2025
Viewed by 639
Abstract
Piezoelectric actuators, widely used in micro-positioning and active control systems, show important hysteresis characteristics. In particular, the hysteresis contribution is a complex phenomenon that is difficult to model when the input amplitude and frequency are time-dependent. Existing dynamic physical models poorly describe the [...] Read more.
Piezoelectric actuators, widely used in micro-positioning and active control systems, show important hysteresis characteristics. In particular, the hysteresis contribution is a complex phenomenon that is difficult to model when the input amplitude and frequency are time-dependent. Existing dynamic physical models poorly describe the hysteresis influence of industrial mechatronic devices. This paper proposes a novel hybrid data-driven model based on the Bouc–Wen and backlash hysteresis formulations to appraise and compensate for the nonlinear effects. Firstly, the performance of the piezoelectric actuator was simulated and then tested in a complete representative domain, and then using the committee machine approach. Experimental campaigns were conducted to develop an algorithm that incorporated Bouc–Wen and backlash hysteresis parameters derived via genetic algorithm (GA) and particle swarm optimization (PSO) approaches for identification. These parameters were combined in a committee machine using a set of frequency clusters. The results obtained demonstrated an error reduction of 23.54% for the committee machine approach compared with the complete approach. The root mean square error (RMSE) was 0.42 µm, and the maximum absolute error (MAE) appraisal was close to 0.86 µm in the 150–250 Hz domain via the Bouc–Wen sub-model tuned with the genetic algorithm (GA). Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

26 pages, 13044 KB  
Article
FSN-PID Algorithm for EMA Multi-Nonlinear System and Wind Tunnel Experiments Verification
by Hongqiao Yin, Jun Guan, Guilin Jiang, Yucheng Zheng, Wenjun Yi and Jia Jia
Aerospace 2025, 12(8), 715; https://doi.org/10.3390/aerospace12080715 - 11 Aug 2025
Viewed by 665
Abstract
In order to improve mathematical model accuracy of electromechanical actuator (EMA) and solve the problems of low-frequency response and large overshoot for nonlinear systems by using traditional proportional integral derivative (PID) algorithm, a fuzzy single neuron (FSN)-PID algorithm is proposed. Firstly, a complete [...] Read more.
In order to improve mathematical model accuracy of electromechanical actuator (EMA) and solve the problems of low-frequency response and large overshoot for nonlinear systems by using traditional proportional integral derivative (PID) algorithm, a fuzzy single neuron (FSN)-PID algorithm is proposed. Firstly, a complete multi-nonlinear dynamic model of EMA is constructed, which introduces internal friction and current limiter of brushless direct current motors (BLDCMs), dead zone backlash of gear trains, and LuGre friction between output shaft and fin. Secondly, a FSN-PID controller is introduced into the automatic position regulator (APR) of EMA control system, where the gain coefficient K of SN algorithm is adjusted by fuzzy control, and the stability of the controller is proved. In addition, simulations are conducted on the response effect of different fin positions under different algorithms for the analysis of the 6° fin position response; it can be concluded that the rise time with FSN-PID algorithm can be reduced by about 4.561% compared to PID, about 1.954% compared to fuzzy (F)-PID, about 0.875% compared to single neuron (SN)-PID, and about 0.380% compared to back propagation (BP)-PID. For the 4°-2 Hz sine position tracking analysis, it can be concluded that the minimum phase error of FSN-PID algorithm is about 0.4705 ms, which is about 74.44% smaller than PID, about 73.43% smaller than F-PID, about 17.24% smaller than SN-PID, and about 10.81% smaller than BP-PID. Finally, wind tunnel experiments investigate the actual high dynamic flight environment and verify the excellent position tracking ability of FSN-PID algorithm. Full article
(This article belongs to the Special Issue New Results in Wind Tunnel Testing)
Show Figures

Figure 1

22 pages, 4262 KB  
Article
Tribo-Dynamics of Dual-Star Planetary Gear Systems: Modeling, Analysis, and Experiments
by Jiayu Zheng, Yonggang Xiang, Changzhao Liu, Yixin Wang and Zonghai Mou
Sensors 2025, 25(15), 4709; https://doi.org/10.3390/s25154709 - 30 Jul 2025
Viewed by 707
Abstract
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine [...] Read more.
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine the oil film thickness and sliding friction force along the tooth meshing line. Subsequently, the dynamic model of the dual-star planetary gear transmission system is developed through coordinate transformations of the dual-star gear train. Finally, by integrating lubrication effects into both time-varying mesh stiffness and time-varying backlash, a tribo-dynamic model for the dual-star planetary gear transmission system is established. The study reveals that the lubricant film thickness is positively correlated with relative sliding velocity but negatively correlated with unit line load. Under high-speed conditions, a thickened oil film induces premature meshing contact, leading to meshing impacts. In contrast, under high-torque conditions, tooth deformation dominates meshing force fluctuations while lubrication influence diminishes. By establishing a test bench for the planetary gear transmission system, the obtained simulation conclusions are verified. This research provides theoretical and experimental support for the design of high-reliability planetary gear systems. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

23 pages, 4668 KB  
Article
Dynamic Modeling and Analysis of Industrial Robots for Enhanced Manufacturing Precision
by Claudius Birk, Martin Kipfmüller and Jan Kotschenreuther
Actuators 2025, 14(7), 311; https://doi.org/10.3390/act14070311 - 24 Jun 2025
Cited by 2 | Viewed by 2169
Abstract
This study addresses the challenge of accurately modeling the dynamic behavior of industrial robots for precision manufacturing applications. Using a comprehensive experimental approach with modal impulse hammer testing and triaxial acceleration measurements, 360 frequency response functions were recorded along orthogonal measurement paths for [...] Read more.
This study addresses the challenge of accurately modeling the dynamic behavior of industrial robots for precision manufacturing applications. Using a comprehensive experimental approach with modal impulse hammer testing and triaxial acceleration measurements, 360 frequency response functions were recorded along orthogonal measurement paths for a KUKA KR10 robot. Two dynamic models with different parameter dimensions (12-parameter and 24-parameter) were developed in Matlab/Simscape, and their parameters were identified using genetic algorithm optimization. The KUKA KR10 features Harmonic Drives at each joint, whose high transmission ratio and zero backlash characteristics significantly influence rotational dynamics and allow for meaningful static structural measurements. Objective functions based on the Frequency Response Assurance Criterion (FRAC) and Root Mean Square Error (RMSE) metrics were employed, utilizing a frequency-dependent weighting function. The performance of the models was evaluated across different robot configurations and frequency ranges. The 24-parameter model demonstrated significantly superior performance, achieving 70% overall average Global FRAC in the limited frequency range (≤200 Hz) compared to 41% for the 12-parameter model when optimized using a representative subset of 9 measurement points. Both models showed substantially better performance in the limited frequency range than in the full spectrum. This research provides a validated methodology for dynamic characterization of industrial robots and demonstrates that higher-dimensional models, incorporating transverse joint compliance, can accurately represent robot dynamics up to approximately 200 Hz. Future work will investigate nonlinear effects such as torsional stiffness hysteresis, particularly relevant for Harmonic Drive systems. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

15 pages, 4481 KB  
Article
Tribological Evaluation and Model of Wear Behavior in the Boundary Lubrication of the Contact Surfaces of Cycloidal Reducers
by Juozas Padgurskas, Oleksandr Dykha, Raimundas Rukuiža, Darius Volskis, Rima Mickevičienė, Giorgi Abramishvili and Jumber Iosebidze
Lubricants 2025, 13(6), 268; https://doi.org/10.3390/lubricants13060268 - 16 Jun 2025
Viewed by 1201
Abstract
Cycloidal reducers are widely used in precision drive systems due to their reduced backlash in meshing and compact design. However, their operational durability is limited by surface wear and lubricant degradation under elevated contact loads and boundary lubrication conditions. This study introduces a [...] Read more.
Cycloidal reducers are widely used in precision drive systems due to their reduced backlash in meshing and compact design. However, their operational durability is limited by surface wear and lubricant degradation under elevated contact loads and boundary lubrication conditions. This study introduces a modified wear prediction model based on four-ball tribological testing, specifically adapted to simulate the complex tribological conditions in cycloidal gear contacts. The model incorporates the total acid number (TAN) and thermal conductivity coefficient of the lubricant as dimensionless factors, enabling a dynamic prediction of wear intensity as the lubrication degrades. This innovation allows an accurate estimation of service life and reliability in high-load, small-contact-area mechanical systems and offers a practical diagnostic tool for the predictive maintenance of gear transmissions. Full article
Show Figures

Figure 1

35 pages, 4434 KB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 1627
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

17 pages, 939 KB  
Article
Adaptive Parameter Identification Based Tracking Control of Servo Systems with Unknown Actuator Backlash Compensation
by Hailan Du, Liang Tao, Xiongfeng Deng and Binzi Xu
Actuators 2025, 14(6), 288; https://doi.org/10.3390/act14060288 - 11 Jun 2025
Viewed by 1345
Abstract
This paper presents a robust tracking control strategy for servo systems with unknown backlash, employing adaptive parameter identification to address performance degradation caused by backlash nonlinearities. In high-precision positioning and rapid-response applications, backlash significantly compromises system performance. To address this challenge, a servo [...] Read more.
This paper presents a robust tracking control strategy for servo systems with unknown backlash, employing adaptive parameter identification to address performance degradation caused by backlash nonlinearities. In high-precision positioning and rapid-response applications, backlash significantly compromises system performance. To address this challenge, a servo system model incorporating backlash nonlinearities is developed, and a novel adaptive inverse function is introduced for backlash compensation. The estimation error of unidentified parameters is indirectly obtained through the design of a state observer. Minimizing the estimation error facilitates the accurate identification of model parameters, encompassing those associated with backlash. Additionally, an adaptive law is designed to estimate the unknown upper bounds of disturbance dynamics. Then, a robust tracking controller is proposed, which dynamically adjusts control inputs in real time based on identified backlash parameters to counteract backlash-induced adverse effects. Theoretical analysis and simulation results demonstrate that the proposed strategy significantly improves tracking performance in servo systems with unknown backlash. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

30 pages, 4288 KB  
Article
Adaptive Control of the Aerodynamic Flaps of the Savonius Rotor Under Variable Wind Loads
by Alina Fazylova, Kuanysh Alipbayev, Teodor Iliev and Nazgul Kaliyeva
Appl. Sci. 2025, 15(11), 6096; https://doi.org/10.3390/app15116096 - 28 May 2025
Cited by 1 | Viewed by 810
Abstract
This study presents the development of an adaptive control system for aerodynamic flaps of a two-tier vertical-axis Savonius wind rotor to improve performance under variable wind loads. The approach includes detailed kinematic and dynamic modeling of the flap actuation mechanism, accounting for real-world [...] Read more.
This study presents the development of an adaptive control system for aerodynamic flaps of a two-tier vertical-axis Savonius wind rotor to improve performance under variable wind loads. The approach includes detailed kinematic and dynamic modeling of the flap actuation mechanism, accounting for real-world nonlinearities such as backlash, friction, and impact loads. The mechanical transmission system is analyzed to evaluate the influence of design parameters on system dynamics and control accuracy. A mathematical model of an adaptive PID controller is proposed, capable of real-time adjustment of gain parameters based on external wind torque. Numerical simulations under various wind conditions demonstrate that adaptive tuning significantly enhances system stability, reduces overshoot, and ensures faster response compared to fixed-parameter controllers. Sensitivity analysis confirms the importance of mass distribution, mechanical stiffness, and damping in minimizing vibrations and ensuring durability. The developed system provides a reliable solution for efficient wind energy conversion in dynamic environments, including urban and coastal applications. Full article
Show Figures

Figure 1

18 pages, 6607 KB  
Article
Total Model-Free Robust Control of Non-Affine Nonlinear Systems with Discontinuous Inputs
by Quanmin Zhu, Jing Na, Weicun Zhang and Qiang Chen
Processes 2025, 13(5), 1315; https://doi.org/10.3390/pr13051315 - 25 Apr 2025
Cited by 2 | Viewed by 756
Abstract
Taking the plant as a total uncertainty in a black box with measurable inputs and attainable outputs, this paper presents a constructive control design of agnostic nonlinear dynamic systems with discontinuous input (such as hard nonlinearities in the forms of dead zones, friction, [...] Read more.
Taking the plant as a total uncertainty in a black box with measurable inputs and attainable outputs, this paper presents a constructive control design of agnostic nonlinear dynamic systems with discontinuous input (such as hard nonlinearities in the forms of dead zones, friction, and backlashes). This study expands the model-free sliding mode control (MFSMC), based on the Lyapunov differential inequality, to a total model-free robust control (TMFRC) for this class of piecewise systems, which does not use extra adaptive online data fitting modelling to deal with plant uncertainties and input discontinuities. The associated properties are analysed to justify the constraints and provide assurance for system stability analysis. Numerical examples in control of a non-affine nonlinear plant with three hard nonlinear inputs—a dead zone, Coulomb and viscous friction, and backlash—are used to test the feasibility of the TMFRC. Furthermore, real experimental tests on a permanent magnet synchronous motor (PMSM) are also given to showcase the control’s applicability and offer guidance for implementation. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

Back to TopTop