Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,530)

Search Parameters:
Keywords = drug product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2466 KB  
Article
Design and Synthesis of Marine Sarocladione Derivatives with Potential Anticancer Activity
by Xiao-Mei Liu, Wen-Xuan Li, Ling-Xiu Kong, Guan-Ying Han, Jinghan Gui and Xu-Wen Li
Mar. Drugs 2026, 24(1), 48; https://doi.org/10.3390/md24010048 - 20 Jan 2026
Abstract
The discovery of structurally novel anti-tumor agents remains a crucial objective in cancer drug research. In this study, we systematically explored the bioactivity potential of sarocladione (5), a structurally unique marine-derived 14-membered ring diketone steroid. Guided by a function-oriented strategy, seven [...] Read more.
The discovery of structurally novel anti-tumor agents remains a crucial objective in cancer drug research. In this study, we systematically explored the bioactivity potential of sarocladione (5), a structurally unique marine-derived 14-membered ring diketone steroid. Guided by a function-oriented strategy, seven new derivatives (613) were synthesized based on an efficient biomimetic synthesis of sarocladione. Evaluation of their antiproliferative activities against human cancer cell lines demonstrated that the intact macrocyclic scaffold is indispensable for activity. Extension of the conjugated π-system led to the identification of compound 8, which exhibited approximately four-fold enhanced potency against HCT116 cells (IC50 = 1.86 µM) compared with the parent natural product. Stereochemical analysis further revealed the critical role of the (5R)-configuration at C-5. Phenotypic investigations indicated that compound 8 induces concentration-dependent G2/M phase cell cycle arrest, followed by apoptosis, suggesting a cell cycle-dependent antiproliferative effect. Overall, this study highlights sarocladione as a promising marine-derived scaffold for further antiproliferative optimization. Full article
Show Figures

Figure 1

30 pages, 1651 KB  
Review
Extractables and Leachables in Pharmaceutical Products: Potential Adverse Effects and Toxicological Risk Assessment
by Samo Kuzmič, Tjaša Zlobec, Marija Sollner Dolenc, Robert Roškar and Tina Trdan Lušin
Toxics 2026, 14(1), 92; https://doi.org/10.3390/toxics14010092 - 20 Jan 2026
Abstract
During production, storage, and administration, drug products (and their intermediates) are in contact with many different types of materials, which include manufacturing components, container closure systems, and administration materials; therefore, there is a potential for their interactions and the introduction of leachables. The [...] Read more.
During production, storage, and administration, drug products (and their intermediates) are in contact with many different types of materials, which include manufacturing components, container closure systems, and administration materials; therefore, there is a potential for their interactions and the introduction of leachables. The presence of leachables may impact key quality attributes of drug products in many ways. These include potential alterations in drug product stability, resulting in a reduced shelf-life, compromised drug product efficacy due to degradation or inactivation of active pharmaceutical ingredients, and impaired drug product physical acceptability due to precipitation, discolouration and/or change in odour or flavour. Moreover, some leachables may be inherently toxic (mutagenic, carcinogenic, immunogenic, etc.) posing direct risks to patient safety. Comprehensive toxicological evaluation of extractables and leachables is therefore essential. Documented cases demonstrate that presence of leachables can lead to serious and clinically significant adverse effects, underscoring the importance of their identification, quantification, and toxicological assessment during pharmaceutical development. This paper provides an overview of the toxicological limits used in the analyses of extractables and leachables and illustrates how they are translated into analytical limits. It also outlines the workflow for toxicological risk assessment of extractables and/or leachables, including evaluations of mutagenicity and other relevant toxicological endpoints. Special attention is given to the interpretation of the draft ICH Q3E guideline, which represents a pivotal development in harmonizing global expectations for extractables and leachables safety assessments. Understanding and correctly applying ICH Q3E is crucial, as it will shape regulatory strategies, analytical approaches, and risk management practices across the pharmaceutical industry. The paper concludes by highlighting emerging challenges that demand sustained advancements in both scientific methodologies and regulatory frameworks. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

25 pages, 9226 KB  
Article
Insights into Bioactive Constituents from Pericarp of Garcinia mangostana: Anti-Inflammatory Effects via NF-κB/MAPK Modulation and M1/M2 Macrophage Polarization
by Cheng-Shin Yang, Sin-Min Li and Jih-Jung Chen
Antioxidants 2026, 15(1), 128; https://doi.org/10.3390/antiox15010128 - 19 Jan 2026
Abstract
Mangosteen (Garcinia mangostana L.) has long been used in traditional Southeast Asian medicine to treat inflammatory-related conditions. In this study, three new compounds, including garcimangone A (1), garcimangone B (2), and the S-form of garcimangone C ( [...] Read more.
Mangosteen (Garcinia mangostana L.) has long been used in traditional Southeast Asian medicine to treat inflammatory-related conditions. In this study, three new compounds, including garcimangone A (1), garcimangone B (2), and the S-form of garcimangone C (3), and 18 known compounds were isolated and investigated for their anti-inflammatory properties and effects on M1- and M2-associated markers. Among the isolated components, γ-mangostin (5), garcinone D (6), morusignin J (15), and fuscaxanthone C (16) showed the most potent NO-inhibitory effects in LPS-stimulated RAW264.7 cells. SAR study revealed that chromeno moiety at C-3,4, oxygen substituents at C-1,3,6,7, and isoprenyl groups at C-2,8 are key structural features that promoted anti-inflammatory activity. Cytokine analysis results indicated that morusignin J (15) and fuscaxanthone C (16) could modulate the production of pro-inflammatory cytokines, such as TNF-α and IL-6, while modulating the anti-inflammatory cytokine IL-10. Western blot results demonstrated that morusignin J (15) modulated the inflammatory response through NF-κB and MAPK signaling and increased the expression of M2-associated markers KLF4 and arginase-1 in LPS-induced RAW264.7 macrophages. Further molecular docking analysis confirmed the high binding affinity of morusignin J (15) with key iNOS residues, such as Gln257, Pro344, Glu371, and Hem901, and the in silico prediction supported its potent oral bioavailability and drug-likeness. These in vitro and in silico findings highlight that pericarps of G. mangostana possess potential as promising natural sources for functional extracts and bioactive constituents for the development of antioxidative and anti-inflammatory candidates, and warrant further in vivo investigation in the future. Full article
Show Figures

Figure 1

31 pages, 881 KB  
Review
Bovine Mastitis Therapy at a Crossroads: Pharmacokinetic Barriers, Biofilms, Antimicrobial Resistance, and Emerging Solutions
by Alexandra Ban-Cucerzan, Adriana Morar, Emil Tîrziu, Iulia-Maria Bucur, Sebastian-Alexandru Popa and Kálmán Imre
Pharmaceuticals 2026, 19(1), 175; https://doi.org/10.3390/ph19010175 - 19 Jan 2026
Abstract
Bovine mastitis remains a major challenge in dairy production despite extensive antimicrobial use, with therapeutic failure increasingly attributed to factors beyond classical antimicrobial resistance (AMR). Growing evidence indicates that treatment inefficacy arises from the combined effects of pharmacokinetic/pharmacodynamic (PK/PD) constraints, biofilm-mediated tolerance, intracellular [...] Read more.
Bovine mastitis remains a major challenge in dairy production despite extensive antimicrobial use, with therapeutic failure increasingly attributed to factors beyond classical antimicrobial resistance (AMR). Growing evidence indicates that treatment inefficacy arises from the combined effects of pharmacokinetic/pharmacodynamic (PK/PD) constraints, biofilm-mediated tolerance, intracellular persistence, and the adaptive capacity of mastitis pathogens. Intramammary therapy is particularly limited by poor tissue penetration, episodic drug elimination via milk flow, and inactivation by milk components, frequently resulting in subtherapeutic exposure at the site of infection. These limitations are amplified in chronic and subclinical mastitis, where biofilms and intracellular reservoirs reduce antimicrobial susceptibility and promote relapse and resistance selection. This narrative review integrates current knowledge on pharmacokinetic and pharmacodynamic (PK/PD) barriers, microbial survival strategies, and antimicrobial resistance (AMR) mechanisms that underlie treatment failure in bovine mastitis. It critically evaluates conventional antimicrobial therapies alongside emerging approaches, including antimicrobial peptides, bacteriophages and endolysins, nanoparticle-based delivery systems, immunomodulators, CRISPR-guided antimicrobials, and drug repurposing strategies. Overall, available evidence highlights the potential of these approaches to enhance therapeutic durability, particularly in settings where biofilm formation, intracellular persistence, and resistance limit conventional treatment efficacy. By mapping research coverage across mastitis phenotypes and therapeutic outcomes, this review identifies key gaps in long-term efficacy and resistance mitigation and underscores the need for PK/PD-guided, biofilm-aware, and resistance-conscious strategies to support durable next-generation mastitis management. Full article
(This article belongs to the Special Issue Antibiotic Resistance and Misuse)
32 pages, 2015 KB  
Systematic Review
Nanotechnology in Cutaneous Oncology: The Role of Liposomes in Targeted Melanoma Therapy
by Ellen Paim de Abreu Paulo, Laertty Garcia de Sousa Cabral, Jean-Luc Poyet and Durvanei Augusto Maria
Molecules 2026, 31(2), 344; https://doi.org/10.3390/molecules31020344 - 19 Jan 2026
Abstract
Melanoma is an aggressive skin cancer that continues to present major therapeutic difficulties. Although targeted drugs and immune checkpoint inhibitors have improved outcomes, resistance and treatment-related toxicity limit long-term benefit. In recent years, nanotechnology has been explored as a way to improve how [...] Read more.
Melanoma is an aggressive skin cancer that continues to present major therapeutic difficulties. Although targeted drugs and immune checkpoint inhibitors have improved outcomes, resistance and treatment-related toxicity limit long-term benefit. In recent years, nanotechnology has been explored as a way to improve how drugs are delivered and to achieve greater tumor selectivity. Among available nanocarriers, liposomes have attracted particular interest. Built from lipid bilayers, they can carry both hydrophilic and hydrophobic molecules, and they are generally well tolerated. Importantly, their surface can be modified with polymers or targeting ligands to direct the carrier more selectively to melanoma cells. Experimental models show that liposomal drug formulations can increase concentrations in tumor tissue while limiting distribution to healthy organs. They have also been used successfully to combine different types of agents, chemotherapies, immunomodulators, and nucleic acids, within a single delivery system. These findings suggest genuine potential to address several of the shortcomings of conventional treatments. Although translation to the clinic is slowed by challenges such as formulation stability and large-scale production, liposomes represent an important step toward safer and more effective melanoma therapy within the broader field of oncologic nanotechnology. Full article
(This article belongs to the Special Issue Advanced Functional Nanomaterials in Medicine and Health Care)
30 pages, 5064 KB  
Article
Antimicrobial Functionalized Mesoporous Silica FDU-12 Loaded with Bacitracin
by Dan Adrian Vasile, Ludmila Motelica, Luiza-Andreea Mîrț, Gabriel Vasilievici, Oana-Maria Memecică, Ovidiu Cristian Oprea, Adrian-Vasile Surdu, Roxana Doina Trușcă, Cristina Chircov, Bogdan Ștefan Vasile, Zeno Dorian Ghizdavet, Denisa Ficai, Ana-Maria Albu, Radu Pericleanu, Andreea Ștefania Dumbravă, Mara-Mădălina Mihai, Irina Gheorghe-Barbu and Anton Ficai
Molecules 2026, 31(2), 340; https://doi.org/10.3390/molecules31020340 - 19 Jan 2026
Abstract
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an [...] Read more.
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an antibiotic, bacitracin, in a more controlled manner. The synthesis of the FDU-12 was performed through a sol–gel method and alternatively functionalized with -NH2 groups or with poly(N-acryloylmorpholine) chains. The loading of bacitracin was performed using the vacuum-assisted method we successfully used to load these mesoporous materials preferentially within the pores as proved by the TGA-DSC results. The release was performed in two types of simulated body fluid (SBF) and this process was evaluated with chromatographic method using UV detection. The obtained data were fitted in three mathematical models of kinetic drug release (Weibull model, Korsmeyer–Peppas model, and nonlinear regression). The antimicrobial evaluation demonstrated that bacitracin-loaded FDU-12 formulations exhibited strong activity against both reference and clinical Staphylococcus strains. At sub-inhibitory concentrations, all formulations significantly reduced microbial adherence and biofilm formation, although certain strain-dependent stimulatory effects were observed. Furthermore, exposure to sub-MIC levels modulated the production of soluble virulence factors (hemolysins, lipase, and amylase), in a formulation- and strain-dependent manner, underscoring the ability of surface-functionalized FDU-12 carriers to influence bacterial pathogenicity while enhancing antimicrobial efficacy. Full article
Show Figures

Graphical abstract

14 pages, 5119 KB  
Review
Antibodies as Tools for Characterization, Isolation and Production Enhancement of Anti-Cancer Drugs and Steroidal Hormones from Ginsenoside and Solasodine Glycoside: A Review
by Yukihiro Shoyama
Antibodies 2026, 15(1), 10; https://doi.org/10.3390/antib15010010 - 19 Jan 2026
Abstract
There are a vast number of monoclonal antibodies (MAbs) against biological components; however, the number for natural products is less than 50. MAbs against ginsenosides, i.e., dammarane triterpene glycosides contained in ginseng, were prepared to develop an Eastern blotting method that can estimate [...] Read more.
There are a vast number of monoclonal antibodies (MAbs) against biological components; however, the number for natural products is less than 50. MAbs against ginsenosides, i.e., dammarane triterpene glycosides contained in ginseng, were prepared to develop an Eastern blotting method that can estimate the number of bound sugars and pharmacological activity. Meanwhile, as a method for producing ginsenoside Rg3, which is used as an anti-cancer drug, an affinity column for ginsenoside Rb1 was prepared to isolate the raw material ginsenoside Rb1 in a single step, and a method for obtaining ginsenoside Rg3 through fermentation was proposed. A unique MAb capable of detecting all solasodine glycosides contained in Solanum plants was created to prepare an affinity column capable of isolating solasodine glycosides from S. khasianum fruit in a single step. The single-chain variable fragment gene was induced from the MAb against solasodine glycoside and introduced into the hairy root system of S. khasianum, thereby increasing the solasodine glycoside content more than twofold. As a result, we recognized that this method can be used to breed plants with higher concentrations of plant secondary metabolites like solasodine glycosides. The above results collectively demonstrate that solasodine glycoside can be isolated from S. khasianum in high yields and that this compound enables the production of steroids in high yields through a one-step chemical reaction. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

22 pages, 626 KB  
Review
Sheep Genetic Resistance to Gastrointestinal Nematode Infections: Current Insights from Transcriptomics and Other OMICs Technologies—A Review
by Krishani Sinhalage, Guilherme Henrique Gebim Polizel, Niel A. Karrow, Flavio S. Schenkel and Ángela Cánovas
Pathogens 2026, 15(1), 106; https://doi.org/10.3390/pathogens15010106 - 19 Jan 2026
Abstract
Gastrointestinal nematode (GIN) infections are the most prevalent parasitic diseases in grazing sheep worldwide, causing significant productivity losses, high mortality and, as a result, economic losses and emerging animal welfare concerns. Conventional control strategies, primarily relying on anthelmintic treatments, face limitations due to [...] Read more.
Gastrointestinal nematode (GIN) infections are the most prevalent parasitic diseases in grazing sheep worldwide, causing significant productivity losses, high mortality and, as a result, economic losses and emerging animal welfare concerns. Conventional control strategies, primarily relying on anthelmintic treatments, face limitations due to rising drug resistance and environmental concerns, underscoring the need for sustainable alternatives. Selective breeding for host genetic resistance has emerged as a promising strategy, while recent advances in transcriptomics and integrative omics research are providing deeper insights into the immune pathways and molecular and genetic mechanisms that underpin host–parasite interactions. This review summarizes current evidence on transcriptomic signatures associated with resistance and susceptibility to H. contortus and T. circumcincta GIN infections, highlighting candidate genes, functional genetic markers, key immune pathways, and regulatory networks. Furthermore, we discuss how other omics approaches, including genomics, proteomics, metabolomics, microbiome, and multi-omics integrations, provide perspectives that enhance the understanding of the complexity of the GIN resistance trait. Transcriptomic studies, particularly using RNA-Sequencing technology, have revealed differential gene expression, functional genetic variants, such as SNPs and INDELs, in expressed regions and splice junctions, and regulatory long non-coding RNAs that distinguish resistance from susceptible sheep, highlighting pathways related to Th2 immunity, antigen presentation, tissue repair, and stress signaling. Genomic analyses have identified SNPs, QTL, and candidate genes linked to immune regulation and parasite resistance. Proteomic and metabolomic profiling further elucidates breed- and tissue-specific alterations in protein abundance and metabolic pathways, while microbiome studies demonstrate distinct microbial signatures in resistant sheep, suggesting a role in modulating host immunity. In conclusion, emerging multi-omics approaches and their integration strategies provide a comprehensive framework for understanding the complex host–parasite interactions that govern GIN resistance, offering potential candidate biomarkers for genomic selection and breeding programs aimed at developing sustainable, parasite-resistant sheep populations. Full article
(This article belongs to the Special Issue Parasitic Helminths and Control Strategies)
Show Figures

Graphical abstract

27 pages, 4476 KB  
Article
Kinetics of Biomarkers for Therapeutic Assessment in Swiss Mice Infected with a Virulent Trypanosoma cruzi Strain
by María Fernanda Alves-Rosa, Doriana Dorta, Alexa Prescilla-Ledezma, Jafeth Carrasco, Leighanne Bonner, Jon J. Tamayo, Michelle G. Ng, Adelenis Vega, Melany Morales, Davis Beltran, Rosa De Jesús and Carmenza Spadafora
Pathogens 2026, 15(1), 107; https://doi.org/10.3390/pathogens15010107 - 19 Jan 2026
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical illness affecting 6–8 million people in Latin America. Reaching scholarly consensus on the host response to T. cruzi infection remains a significant challenge, primarily due to substantial heterogeneity in outcomes driven [...] Read more.
Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical illness affecting 6–8 million people in Latin America. Reaching scholarly consensus on the host response to T. cruzi infection remains a significant challenge, primarily due to substantial heterogeneity in outcomes driven by both the choice of animal model and the infecting parasite’s discrete typing unit (DTU). This variability complicates the evaluation and comparison of new therapeutic compounds against existing drugs, namely benznidazole and nifurtimox. This study provides a comprehensive, kinetic, multifaceted characterization of the acute infection using the highly virulent T. cruzi Y strain (TcII) in outbred Swiss mice. Here, crucial infection parameters are presented, including the optimal infective dose, the parasitemia dynamics, tissue damage markers, hematological profiles, cytokine production (Th1/Th2/Th17/Th22), and molecular parasite identification in target organs (heart, colon, esophagus, spleen, and liver) across the span of the infection. The novelty of this study lies in the kinetic integration of these parameters within a defined model; rather than presenting isolated data points, we demonstrate how the biochemical, physiological, and clinical signs and immunological responses, with the resulting organ involvement, evolve and interact over time. To complete the report, a necropsy evaluation was performed at the end of the acute, fatal infection, and it is presented here. This study fulfills a long-standing recommendation from diverse drug discovery groups for the creation of a definitive reference model to standardize preclinical testing for anti-Chagasic agents. Full article
Show Figures

Figure 1

13 pages, 238 KB  
Review
Microbial Landscape of Pharmaceutical Failures: A 21-Year Review of FDA Enforcement Reports
by Luis Jimenez
BioTech 2026, 15(1), 8; https://doi.org/10.3390/biotech15010008 - 18 Jan 2026
Viewed by 50
Abstract
By analyzing Food and Drug Administration (FDA) enforcement reports from 2004 to 2025, we can determine the incidence of microbial contamination in non-sterile and sterile drugs in the United States of America and, at the same time, compare the trends and patterns over [...] Read more.
By analyzing Food and Drug Administration (FDA) enforcement reports from 2004 to 2025, we can determine the incidence of microbial contamination in non-sterile and sterile drugs in the United States of America and, at the same time, compare the trends and patterns over a period of 21 years to determine the distribution and frequency of microbial contaminants. The most common microorganisms detected from 2019 to 2025 were the mold Aspergillus penicilloides, with 17 citations for sterile products, followed by 16 citations for non-sterile products of Burkholderia cepacia complex (BCC) bacteria. Analysis from the last 21 years revealed the dominant microbial contaminants belong to the BCC, reaching a maximum level between 2012 and 2019. Some of the previous microbial contaminants, such as Salmonella and Clostridium, decline in the 2019–2025 period, with no notifications issued. S. aureus and Pseudomonas contamination persisted through the years but at very low levels. Gram-negative bacteria contaminated non-sterile drugs more frequently than Gram-positive. A worrisome trend continued with unacceptable levels of enforcement reports not providing any information on the identity of the microbial contaminant. New species of Bacillus and Acetobacter nitrogenifigens were responsible for a significant increase in non-sterile drug recalls. The main driver for sterile product recalls over a 21-year period is the lack of assurance of sterility (LAS) where major failures in process design, control, and operational execution were not conducive to the control of microbial proliferation and destruction. Enforcement data analysis identified the problematic trends and patterns regarding microbial contamination of drugs, providing important information to optimize process control and provide a framework for optimizing risk mitigation. Although the 21-year landscape demonstrated that some microbial contaminants have been successfully mitigated, others remain resilient. The emergence of new contaminants highlights the evolving nature of microbial risk. The consistent problem with LAS is not only a major regulatory violation but also a potential catalyst for the next major healthcare-associated outbreak. Full article
(This article belongs to the Special Issue BioTech: 5th Anniversary)
20 pages, 732 KB  
Review
Can Phagocytosis, Neutrophil Extracellular Traps, and IFN-α Production in Systemic Lupus Erythematosus Be Simultaneously Modulated? A Pharmacological Perspective
by Stephanie Seidlberger, Sindi Huti, Santos Castañeda, Michael Schirmer, Julian Fenkart, Georg Wietzorrek and Sandra Santos-Sierra
Int. J. Mol. Sci. 2026, 27(2), 956; https://doi.org/10.3390/ijms27020956 - 18 Jan 2026
Viewed by 61
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple and heterogeneous clinical manifestations (e.g., skin lesions, kidney damage, neuropsychiatric dysfunction), that primarily affects women and whose etiology remains unclear. Various therapies that regulate and reduce the immune system activity are in use [...] Read more.
Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple and heterogeneous clinical manifestations (e.g., skin lesions, kidney damage, neuropsychiatric dysfunction), that primarily affects women and whose etiology remains unclear. Various therapies that regulate and reduce the immune system activity are in use or are being developed; however, many of them have serious side effects. Therefore, new approaches are needed to maximize remission periods and reduce associated side effects. In this review, we summarize the currently recommended therapeutic strategies. Furthermore, we hypothesize that the combined use of drugs targeting various dysregulated cellular processes in SLE (i.e., cytokine production, neutrophil extracellular traps (NETs), phagocytosis) might have therapeutic potential, at least in some disease phenotypes. Preliminary data show that Toll-like receptors 7/8 (TLR 7/8) inhibition (e.g., Enpatoran) may reduce interferon-α (IFN-α) production by monocytes and NET formation by neutrophils. Our hypothesis is that future therapies combining compounds that modulate the three cellular processes might result in a better disease management as current therapies. Full article
(This article belongs to the Special Issue Systemic Lupus: Molecular Research, New Biomarkers and Novel Therapy)
Show Figures

Graphical abstract

21 pages, 567 KB  
Article
Diet and Lifestyle Factors Associated with Gastrointestinal Symptoms in Spanish Adults: Cross-Sectional Analysis of the 2023 Spanish National Health Survey
by Ángel López-Fernández-Roldán, Víctor Serrano-Fernández, José Alberto Laredo-Aguilera, Esperanza Barroso-Corroto, Laura Pilar De Paz-Montón and Juan Manuel Carmona-Torres
Nutrients 2026, 18(2), 299; https://doi.org/10.3390/nu18020299 - 17 Jan 2026
Viewed by 98
Abstract
Background/Objectives: Digestive problems are common in the general population and may be influenced by lifestyle, emotional status and diet. This study aimed to estimate the prevalence of digestive problems in Spanish adults and examined associated factors. Methods: Descriptive cross-sectional analysis of [...] Read more.
Background/Objectives: Digestive problems are common in the general population and may be influenced by lifestyle, emotional status and diet. This study aimed to estimate the prevalence of digestive problems in Spanish adults and examined associated factors. Methods: Descriptive cross-sectional analysis of anonymized adult microdata from the 2023 Spanish Health Survey was performed. Data were collected using a mixed-mode design (self-administered web questionnaire with interviewer-administered follow-up). Digestive problems were recoded by combining gastric ulcer, constipation, and prescribed use of laxatives, astringent drugs, and stomach medication. Therefore, digestive problems are primarily defined as the presence of gastric ulcers, diarrhea, and/or constipation. Variables included sociodemographic, Body Mass Index (BMI), smoking, alcohol intake, physical activity, Personal Health Questionnaire Depression Scale (PHQ-8), World Health Organization Well Being Index (WHO-5), and macronutrient intake estimated from a Food-Frequency Questionnaire using the Spanish Food Composition Database (BEDCA). Group comparisons and multivariable logistic regression were conducted (95% CI; significance level set at p < 0.05). Results: Of 34,148 participants, 13,518 provided information on digestive problems; among these respondents, 3860 (28.6%) reported having digestive issues. Prevalence ranged from 5.2% to 36.5% among national territories. Higher odds (OR) of digestive problems were associated with age (OR 1.026, 95% CI 1.023–1.029), female sex (OR 1.168, 1.070–1.276), non-smoking (OR 1.240, 1.005–1.531) and ex-smoking (OR 1.447, 1.272–1.647) compared to current smokers, higher PHQ-8 scores (OR 1.040, 1.029–1.051), greater protein intake (OR 1.016, 1.009–1.023), consumption of sweet pastries (OR 1.058, 1.039–1.077), and dairy products (OR 1.027, 1.002–1.053); in contrast, lower odds were associated with higher WHO-5 scores (OR 0.985, 0.982–0.987), total fiber intake (OR 0.968, 0.949–0.987), and legume consumption (OR 0.894, 0.856–0.933). Conclusions: Digestive problems show considerable variability in prevalence among survey-based Spanish sample. Digestive problems were associated with older age, female sex, depressive symptoms, high-protein intake, and higher consumption of sweet pastries and dairy products, whereas higher well-being scores, higher fiber intake and legume consumption were associated with lower odds of digestive problems. Full article
25 pages, 3112 KB  
Review
The Emerging Promise of Pentacyclic Triterpenoid Derivatives as Novel Antiviral Agents Against SARS-CoV-2 Variants
by Xin Wan, Xiaoxuan Cui, Ke Liang, Junran Huang, Kangan Chen, Wen Chen and Gaopeng Song
Molecules 2026, 31(2), 325; https://doi.org/10.3390/molecules31020325 - 17 Jan 2026
Viewed by 197
Abstract
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids [...] Read more.
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids (PTs), a structurally varied group of compounds derived from plants, exhibit both antiviral and anti-inflammatory activities, making them attractive candidates for further therapeutic development. These natural products, along with their saponin derivatives, show broad-spectrum inhibitory effects against multiple SARS-CoV-2 variants (from Alpha to Omicron) via interactions with multiple targets, such as the spike protein, main protease (Mpro), RNA-dependent RNA polymerase (RdRp), and inflammatory signaling pathways. This review consolidates recent findings on PTs and their saponins, emphasizing their influence on the key structural features required for inhibiting viral attachment, membrane fusion, reverse transcription, and protease function. We systematically summarized the structure–activity relationships and their antiviral results of PTs based on different target proteins in existing studies. Furthermore, this work points toward new strategies for designing multi-target PT-based inhibitors with improved efficacy against Omicron and future variants. Full article
(This article belongs to the Special Issue New Strategies for Drug Development)
Show Figures

Figure 1

19 pages, 1001 KB  
Review
MicroRNAs—Are They Possible Markers of Allergic Diseases and Efficient Immunotherapy?
by Krzysztof Specjalski and Marek Niedoszytko
Int. J. Mol. Sci. 2026, 27(2), 902; https://doi.org/10.3390/ijms27020902 - 16 Jan 2026
Viewed by 94
Abstract
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers [...] Read more.
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers facilitating diagnosis of the most common allergic diseases, such as allergic rhinitis (miR-21, miR-126, miR-142-3p, miR-181a, miR-221), asthma (miR-16, miR-21, miR-126, miR-146a, miR-148a, miR-221, miR-223) and atopic dermatitis (miR-24, miR-124, miR-155, miR-191, miR-223, miR-483-5p), or objectively assessing severity of inflammation and endotype of the disease. In spite of the large body of literature available, its scientific value is limited due to the small numbers of study participants, heterogeneity of populations enrolled, and diverse methodology. Some studies have revealed significant changes in miRNAs’ profile in the course of allergen immunotherapy. Tolerance induction is associated with processes controlled by miRNAs: enhanced activity of Treg cells and increased production of tolerogenic IL-10 and TGF-β. Thus, miRNAs may be candidates as biomarkers of successful immunotherapy. Finally, they are also possible therapeutic agents or targets of therapies based on antagomirs blocking their activity. However, so far no studies are available that demonstrate efficacy in overcoming delivery barriers, tissue targeting or drugs’ safety. As a consequence, despite promising results of in vitro and animal model studies, translation into human therapeutic agents is uncertain. Full article
Show Figures

Figure 1

23 pages, 1039 KB  
Review
Advanced Liposomal Systems for Cancer Therapy with Focus on Lipid–Polymer Hybrids and Cell Membrane-Coated Liposomes
by Paraskevi Zagana and Alexandra Paxinou
Future Pharmacol. 2026, 6(1), 6; https://doi.org/10.3390/futurepharmacol6010006 - 16 Jan 2026
Viewed by 106
Abstract
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming [...] Read more.
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming many disadvantages of early formulations. Lipid–polymer hybrid liposomes (LPHLs), a third-generation nanoparticle model, are vesicles where polymers are incorporated in or around the lipid bilayer to increase their stability, to control drug release, and to provide multifunctional capabilities. More recently, cell membrane-coated (CMC) liposomes, which consist of “core” liposomes (preformed liposomes) cloaked in natural cell membranes, have emerged as an even more innovative approach, offering superior immune evasion and highly selective targeting, which are both particularly promising for cancer therapy. Preclinical studies in cancer models demonstrate that these advanced liposomal systems improve pharmacokinetics and therapeutic outcomes. They hold significant potential for developing next-generation, personalized nanomedicines for cancer and other complex diseases. However, challenges related to large-scale production, long-term stability, and safety evaluation remain. Full article
Show Figures

Figure 1

Back to TopTop