Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria †
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMU | Antimicrobial Use |
PCU | Population Correction Unit |
SMW | Standardised Mean Weight |
mg | Milligram |
kg | Kilogram |
AMS | Antimicrobial Stewardship |
References
- Sadiq, M.B.; Syed-Hussain, S.S.; Ramanoon, S.Z.; Ahmad, N.I.; Zin, N.M.; Khalid, S.; Naseeha, D.; Syahirah, A.; Mansor, R. Knowledge, attitude and perception regarding antimicrobial resistance and usage among ruminant farmers in Selangor, Malaysia. Prev. Vet. Med. 2018, 15, 76–83. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; The Review on Antimicrobial Resistance; HM Government and Wellcome Trust: London, UK, 2016. [Google Scholar]
- Umair, M.; Abdullah, R.M.; Aslam, B.; Nawaz, M.H.; Ali, Q.; Fatima, F.; Ali, J.; Zahoor, M.A.; Mohsin, M. First Case Report on Quantification of Antimicrobial Use in Corporate Dairy Farms in Pakistan. Front. Vet. Sci. 2020, 7, 575848. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Battaglia, D.; García, A.D.; Tempelman, K.; Bullon, C.; Motriuc, N.; Caudell, M.; Cahill, S.; Song, J.; LeJeune, J. Achieving antimicrobial stewardship on the global scale: Challenges and Opportunities. Microorganisms 2022, 10, 1599. [Google Scholar] [CrossRef] [PubMed]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Olsen, J.E. Association between antimicrobial usage and resistance in Salmonella from poultry farms in Nigeria. BMC Vet. Res. 2021, 17, 234. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Choisy, M.; Van Cuong, N.; Bao, T.D.; Kiet, B.T.; Hien, B.V.; Thu, H.V.; Chansiripornchai, N.; Setyawan, E.; Thwaites, G.; Rushton, J.; et al. Assessing antimicrobial misuse in small-scale chicken farms in Vietnam from an observational study. BMC Vet. Res. 2019, 15, 206. [Google Scholar] [CrossRef] [PubMed]
- Babayemi, O.J.; Ajayi, M.O.; Olona, J.F.; Anurudu, N.F.; Ajayi, F.T. Livestock value chain: Prediction of live weight and out yield of three indigenous breeds of cattle in Nigeria. Niger. J. Anim. Prod. 2018, 45, 265–272. [Google Scholar] [CrossRef]
- Lawal-Adebowale, O.A. Dynamics of Ruminant Livestock Management in the Context of the Nigerian Agricultural System; Javed, K., Ed.; Livestock Production; Intech Open: London, UK, 2012; p. 61. [Google Scholar]
- Mahmud, M.A.; Shaba, P.; Onu, J.E.; Sani, S.A.; Danmaigoro, A. Gross morphological and morphomeric studies of the oviduct in three genotypes of Nigerian indigenous laying chickens. J. Dairy Vet. Anim. Res. 2017, 5, 138–142. [Google Scholar]
- Saidu, B.; Ishaq, A.; Ibrahim, H.; Dahiru, A.; Abdullahi, A.; Onwuchekwa, C.; Abduazeez, N.; Pilau, N.; Abdulrasheed, A.; Bamaiyi, A. Comparison of electrocardiographic parameters of racing and non-racing horses in Sokoto Nigeria. Sokoto J. Vet. Sci. 2020, 18, 33–38. [Google Scholar] [CrossRef]
- Weka, R.; Bwala, D.; Adedeji, Y.; Ifende, I.; Davou, A.; Ogo, N.; Luka, P. Tracing the Domestic Pigs in Africa; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Agaviezor, B.O.; Ologbose, F.I. Breed and doe’s body weight effect on litter weight and number of rabbits raised in South-South Nigeria. Anim. Res. Int. 2020, 17, 3572–3577. [Google Scholar]
- White, T.C.; Holleman, S.; Dy, F.; Mirels, L.F.; Stevens, D.A. Resistance Mechanisms in Clinical Isolates of Candida albicans. Antimicrob. Agents Chemother. 2002, 46, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
Animals | Average Weight (Kg) [Ref] | Antibiotics | Antiprotozoals | Anthelminthics | Ectoparasiticides | Totals (%) |
---|---|---|---|---|---|---|
Cattle | 290 [8] | 28,907 | 637 | 8274 | 5699 | 43,517 (0.14) |
Sheep | 39 [9] | 8475 | 304 | 4551 | 2135 | 15,465 (0.05) |
Goat | 20 [9] | 12,668 | 321 | 10,522 | 1956 | 25,467 (0.08) |
Poultry | 1.5 [10] | 30,698,740 | 346,030 | 153,194 | 304,040 | 31,502,004 (99.55) |
Horse | 200 [11] | 565 | - | 84 | 2 | 651 (0.01≤) |
Pig | 60 [12] | 364 | - | 210 | 120 | 694 (0.01≤) |
Rabbit | 2.2 [13] | 1145 | - | 4 | 14 | 1163 (0.01≤) |
Fish | 1 | 54,560 | - | - | - | 54,560 (0.17) |
Totals (%) | 30,805,424 (97.35) | 347,292 (1.10) | 176,849 (0.56) | 313,966 (0.99) | 31,643,521 (100) |
Antimicrobial Category | SMW (kg) | Animal Population | PCU (kg) | Total Amount (mg) | AMU (mg/kg) | Confidence Interval | p-Value |
---|---|---|---|---|---|---|---|
Antibiotics | 3.6 | 30,805,424 | 110,899,526.40 | 30,387,570,000 | 274 | 274 ± 35.1 (CI:238.9–309.1) | 0.015 |
Antiprotozoals | 5.4 | 347,292 | 1,875,376.80 | 786,680,000 | 418 | 418 ± 126.7 (CI:291.3–544.7) | 0.045 |
Anthelminthic | 5.8 | 176,849 | 1,025,666.20 | 590,940,000 | 576 | 576 ± 66.6 (CI:509.4–642.6) | 0.000 |
Total | 3.6 | 31,329,555 | 112,786,398 | 31,765,190,000 | 282 | 282 ± 35.9 (CI:246.1–317.9) | 0.045 |
Animal Species | SMW [Ref] | Animal Population | PCU (tonnes) | Total Amount (tonnes) | AMU mg/PCU | Antibiotic AMU mg/PCU | Anthelminthic AMU mg/PCU | Antiprotozoal AMU mg/PCU |
---|---|---|---|---|---|---|---|---|
Poultry | 1.5 kg [10] | 31,502,004 | 46,796.9 | 36,638 | 676 | 653.3 | 2227 | 1509.6 |
Fish | 1.0 kg | 54,560 | 54.6 | 60.8 | 1113.9 | 1113.9 | - | - |
Cattle | 290 kg [8] | 43,517 | 10,967.2 | 31.8 | 2.9 | 3.6 | 11.6 | 8.5 |
Sheep and Goats | 39 kg and 20 kg [9] | 40,932 | 1252.7 | 31.8 | 25.4 | 48.7 | 113 | 85 |
Rabbits | 2.2 kg [13] | 1163 | 2.5 | 1.3 | 502.7 | 482.5 | 1343 | - |
Horses | 200 kg [11] | 651 | 129.8 | 0.6 | 4.9 | 5.4 | 17.6 | - |
Pigs | 60 kg [12] | 694 | 34.4 | 0.3 | 9.2 | 13.9 | 46.9 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkadir, A.; Ajayi, M.O.; Kusfa, H.A. Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria. Med. Sci. Forum 2025, 35, 4. https://doi.org/10.3390/msf2025035004
Abdulkadir A, Ajayi MO, Kusfa HA. Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria. Medical Sciences Forum. 2025; 35(1):4. https://doi.org/10.3390/msf2025035004
Chicago/Turabian StyleAbdulkadir, Aliyu, Marvelous Oluwashina Ajayi, and Halima Abubakar Kusfa. 2025. "Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria" Medical Sciences Forum 35, no. 1: 4. https://doi.org/10.3390/msf2025035004
APA StyleAbdulkadir, A., Ajayi, M. O., & Kusfa, H. A. (2025). Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria. Medical Sciences Forum, 35(1), 4. https://doi.org/10.3390/msf2025035004