Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
Abstract
1. Introduction
2. Bee Products and Their Chemical Composition
2.1. Honey
2.1.1. Enzymes of Honey
2.1.2. Chemical Composition of Honey
2.1.3. Forms of Honey Utilized in Research
2.2. Propolis
2.3. Bee Venom
3. Antimicrobial Activity of Bee Products
3.1. Characterization of Microbial Infection
3.2. Antimicrobial Activity of Honey
3.3. Antimicrobial Activity of Propolis
Material | Microorganism | Assay | Key Results | Reference |
---|---|---|---|---|
Ethanol extract of Brazilian propolis | Clinical isolates: 210 of S. aureus, 48 of MRSA and 162 of MSSA | In vitro-agar dilution assay | The MIC50 and MIC 90 remained similar for all analyzed strains. Both MSSA and MRSA ATCC strains being inhibited by EEP at 1420 µg/mL concentration, showing that the mechanism of resistance to methicillin does not affect the antimicrobial effect of propolis against S. aureus. | [174] |
Ethanol extract of Polish propolis | S. epidermidis strains isolated from blood samples and ATCC 35983 | In vitro-Tissue culture plate assay, broth dilution assay | The extract exhibited significant antibacterial effect against S. epidermidis. EEP reduced bacterial biofilm formation at concentrations above 1/8 MIC, while concentrations lower than 0.025 mg/mL increased biofilm formation. | [179] |
Ethanol extracts of propolis from Yangpyeong, Boryung, Cheorwon and Yeosu | S. aureus ATCC 25923, B. subtilis ATCC 15523, S. typhimurium ATCC 13311 C. albicans ATCC 10231 | In vitro-disc diffusion assay, induced lipoperoxidation | Comparison of inhibition zones has shown the Yeosu and Cheorwon propolis extracts to have the strongest antimicrobial effect. These samples contained highest total polyphenol and flavonoid content and antioxidant activity. | [164] |
Italian propolis dry extract dissolved in broth with DMSO and Tween 80 | Clinical isolates from respiratory tract infections: S. aureus, β-hemolytic streptococci, S. pneumoniae, M. catarrhalis, H. influenzae, K. pneumoniae, E. coli, P. mirabilis, P. aeruginosa and C. albicans strains | In vitro-broth microdilution assay. | MIC values show propolis as an effective agent against most tested strains, except for Enterobacteriaceae, for which inhibitory effect was only achieved at high concentrations. MIC of propolis against S. pneumoniae, M catarrhalis and H. influenzae strains is within range of the respective MBC values. Bactericidal effect was shown against all isolates at 4xMIC concentration, except S. pyogenes. | [180] |
Ethanol extracts of Turkish propolis from different areas of Marmara region | Clinical isolates: E. coli, P. aeruginosa, S. aureus, beta-hemolytic streptococci | In vitro-agar dilution assay | Analyzed samples’ MIC values showed significant difference in antibacterial effect between samples, especially against Gram-negative bacteria. The sample with the stronger antibacterial effect contained 3 chemical components not found in the less effective sample: 3-methyl-2 butenol, diethyl succinate and phenyl-ethyl alcohol. | [181] |
Ethanol extracts of propolis samples from different regions of Turkey | S. Enteritidis ATC 13076 and L. monocytogenes ATCC 1462 | In vitro-broth microdilution assay | All samples showed strong antibacterial effect on both species at 1:10 dilution, no viable bacteria were determined after incubation. Against L. monocytogenes, at 1:100 dilution 8 samples had a bactericidal effect, 11 an inhibitory effect and 6 no effect. Against S. enteritidis, 5 samples had a weak inhibitory effect and 20 no effect. | [182] |
Methanol extract of Chinese red propolis | S. aureus ATC 25923 (methicillin sensitive), ATC 43300 (methicillin resistant) | In vitro-agar diffusion assay, broth microdilution assay, intracellular protein and nucleic acid leakage assay, metabolomic analysis, | Extract showed significant antibacterial effect against MSSA and MRSA, disrupting the cell wall, cell membrane and inducing changes in cell morphology. Metabolomic analysis showed enrichment of 12 pathways in MSSA and 9 in MRSA after treatment with the extract. Expression of genes related to biofilm formation, autolysis, cell wall synthesis and virulence of MRSA was found to be downregulated. | [177] |
Ethanol, methanol, DME and aqueous extracts of Taiwanese green propolis | S. aureus BCRC 10780, BCRC 10781, BCRC 101451, methicillin resistant S. aureus ATCC 43300, B. subtilis BCRC 10675, L. monocytogenes BCRC 14845, E. coli BCRC 10675, P. aeruginosa BCRC 10944, P. larvae BCRC 14187 | In vitro-microdilution assay | Comparable levels of antibacterial activity were exhibited by all extracts apart from the aqueous, which was unable to inhibit growth. None of the extracts inhibited growth of E. coli. Propolin C exhibited the lowest MIC value against Gram-positive strains. None of the tested propolis samples and propolin isolates inhibited growth of E. coli or P. aeruginosa. Out of the tested propolin combinations, twofold concentration of propolin C with propolin D exhibited highest antibacterial activity, higher than pure propolin C or total propolis extract. | [92] |
Methanol extracts of Chilean propolis from the Región del Maule | S. aureus ATCC 25923, methicillin-resistant S. aureus ATCC 43300, E. coli ATCC 25922 and 3 clinically isolated strains, clinically isolated stains of S. enteritidis, Salmonella spp., Y. enterocolitica, Pseudomonas spp. and P. mirabilis. | In vitro-broth microdilution assay | Samples showed significant variance in antibacterial activity beyond the expected effect of total phenolic and flavonoid content. The highest level of activity was exhibited by central valley propolis samples. The strains most susceptible to the activity of propolis extracts were E. coli, Y. enterocolitica and S. enteritidis. | [183] |
Ethanol extract of Italian propolis and bud poplar resins | P. aeruginosa P1232 expressing the luciferase gene and P. aeruginosa PAO1 | In vitro-broth microdilution assay, static biofilm assay, swimming motility, swarming motility and twitching motility analysis | Both extracts exhibited comparable levels of bacteriostatic activity. At sub-MIC concentration both extracts inhibited biofilm formation and swimming motility. Bud poplar resin sample increased swarming motility, while neither sample affected twitching motility of the bacteria. | [184] |
Ethanol, n-hexane, ethyl acetate and n-butanol extracts of Pacific propolis from the Guadalcanal Province | clinical isolates of methicillin resistant S. aureus, methicillin sensitive S. aureus ATC 9144, P. aeruginosa ATCC 25668 | In vitro-agar dilution assay | Ethanol extracts exhibited the strongest antibacterial activity, showing bacteriostatic effect against all tested MRSA and MSSA strains. No samples inhibited the growth of P. aeruginosa. Four prenylflavanones were reported in Solomon Island propolis for the first time, propolins C and D exhibiting strong anti-MRSA activity. | [185] |
Polyphenol-rich extract of Chilean propolis, isolated polyphenols | Clinically isolated S. mutans strains | In vitro-well microdilution assay, evaluation biofilm formation with fluorescence microscopy | Polyphenol mixture exhibited antibacterial activity comparable to chlorhexidine. Apigenin and pinocembrin had the lowest MIC values against S. mutans out of the isolated polyphenols. All samples inhibited biofilm formation, with apigenin and pinocembrin disrupting the biofilm structural integrity. | [168] |
Ethanol extract of Brazilian green propolis | P. gingivalis ATCC 33277, W83, W50 and YH522, P. nigrescens ATCC 33563, F. nucleatum 20, ATCC 23726, A. actinomycetemcomitans (serotype b) Y4, ATCC 29522, P. loescheii ATCC 15930, Streptococcus spp. ATCC 33397, 51100, 10558, 6245, UA159, 9759, 10556, 6715, E. coli BW25113, S. oralis No. 10 | In vitro-well microdilution assay, biofilm formation assay, membrane permeability analysis, | Extract exhibited stronger antibacterial effect against P. gingivalis, than against other oral bacteria. Extracts had a rapid bactericidal effect caused by disruption of cell membrane and bleb formation. The active compounds were determined as artepillin C, baccharin, and ursolic acid. Formation of biofilm was inhibited at sub-MIC concentrations. | [186] |
Magnetite nanoparticles functionalized with ethanol extract of Moroccan propolis in combination with chloramphenicol | Methicillin sensitive S. aureus ATC 6538, clinical isolates of methicillin resistant S. aureus | In vitro-well microdilution assay | Functionalized magnetite nanoparticles exhibited strong antibacterial effect against both methicillin sensitive and resistant S. aureus. Nanoparticles with both the propolis extract and chloramphenicol exhibited complete inhibition of bacterial growth after 2 h in 2 MRSA strains. The mechanism of action was determined to be the disruption of cell wall structure and cytoplasm leakage. | [187] |
Ethanol extract of Italian propolis in combinations with antibiotics | Clinically isolated strains: S. aureus, S. epidermidis, S. hominis strains, S. haemolyticus, S. warnerii, S. capitis, S. auricularis, S. faecalis, S. viridans, S. β-haemolyticus, S. pneumoniae | In vitro-agar dilution assay, lipase test, coagulase test, propidium iodide uptake test, adherence test | Extract exhibited strong antimicrobial activity, caused by membrane disruption. It inhibited virulence factors, reducing lipase activity and completely suppressing coagulase activity in Staphylococcus spp. All tested antibiotics apart from erythromycin and ceftriaxone exhibited synergistic effect with the propolis extract, especially ampicillin, gentamicin and streptomycin MIC90 values were reduced up to 250 times. | [188] |
Ethanol extracts of Polish propolis | clinically isolated coagulase positive S. aureus strains and reference S. aureus strains, methicillin sensitive ATCC 25923 and methicillin resistant ATCC 43300 | In vitro-disk diffusion assay, broth microdilution assay | Polish propolis exhibited antibacterial activity against both MSSA and MRSA. Significant synergistic effects were observed in combinations with cefoxitin, clindamycin, tetracycline, tobramycin, linezolid, trimethoprim/sulfamethoxazole, penicillin and erythromycin, while no synergism was found with ciprofloxacin and chloramphenicol. | [178] |
Ethanol extract of commercial Brazilian propolis and a commercial antimicrobial containing gentamicin and amoxicillin | Staphylococcus strains isolated from Brazilian cattle | In vitro-broth microdilution assay | Extract at ½ MBC exhibited strong synergistic effect with the antibiotics, lowering the MIC and MBC values against Staphylococcus spp. of both gentamicin and amoxicillin by a factor of 10. | [189] |
Ethanol extracts of Brazilian and Bulgarian propolis | S. typhi standard serovar 00238 | In vitro-agar dilution assay | Both extracts showed significant antibacterial activity, the Brazilian sample showed a bacteriostatic activity, while the Bulgarian sample exhibited a bactericidal one. No synergy between the propolis samples and tested antibiotics was found. | [190] |
Ethanol extract of Australian propolis | Methicillin resistant S. aureus ATCC 43300 | In vitro-disc diffusion assay, resazurin microdilution assay, nucleic acid leakage assay, propidium iodide staining assay, resistance reversal assessment | Extract exhibited activity against methicillin resistant S. aureus, disrupting cell wall and membrane. At ½ MIC and 1MIC concentrations respectively, the extract significantly reduced the expression of PBP2a and activity of β-lactamase, inhibiting the main mechanisms of antibiotic resistance found in MRSA. At ½ MIC formation of the bacterial biofilm was inhibited. | [176] |
Ethanol extract of propolis (Sigma P8904) | Methicillin resistant S. aureus ATCC 33591 | In vitro-broth microdilution assay In vivo-rabbit nasal colonization model, examination of polymorphonuclear leukocyte count | Both the propolis extract drops and topical mupirocin treatment significantly inhibited colonization at MIC concentration. Group receiving both treatments produced the least bacteria from nasal cultures, as well as the lowest PMNL count. | [191] |
Ethanol extracts of German, Irish and Czech propolis, Aqueous extract of German propolis | Reference strains: Gram-positive, gram-negative, Candida spp. Clinically isolated: methicillin resistant S. aureus strain, K. pneumoniae strains and Candida spp. strains | In vitro-broth microdilution assay, checkerboard dilution assay, time-kill assay, | All evaluated extracts exhibited significant antibacterial activity against Gram-positive bacteria, including methicillin and vancomycin resistant strains. Against Gram-negative bacteria, the ethanol extracts were shown to be moderately effective, except for P. aeruginosa which proved resistant. Against Candida spp. Irish and Czech samples exhibited a fungicidal effect, while German samples were fungistatic. Irish propolis exhibited strong synergistic activity with vancomycin, oxacillin and levofloxacin against S. pyogenes, MRSA and vancomycin resistant Enterococcus. | [175] |
Ethanol extract of Chinese propolis | Methicillin resistant S. aureus ATCC 43300 | In vitro-broth microdilution assay, checkerboard assay, nucleic acid leakage assay, live/dead staining assay, β-lactamase activity test | The combinations of the propolis extract with ampicillin and oxacillin exhibited strong synergistic effect in antibacterial activity against MRSA. Resistance reversal analysis showed that at ¼ MIC the extract reduced expression of PBP2a and the β-lactamase activity. Extract also caused cell wall and membrane damage. | [192] |
Korean propolis in composite nanoemulsion with PVA and chitosan | Methicillin resistant S. aureus ATCC 33591, C. perfingens NCTC 8237 | In vitro-broth microdilution assay, assessment of biofilm formation In vivo-rat wound infection model | Composite exhibited antibacterial properties against both strains comparable to azithromycin in vitro. At high concentrations of propolis, the composite effectively inhibited biofilm formation, causing its complete destruction. The in vivo study showed the propolis composite to have an ameliorative effect, accelerating wound curing and decreasing MRSA infection. | [193] |
Ethanol extracts of Australian propolis | S. aureus ATCC 25923, K. pneumoniae ATCC 13883, C. albicans ATCC 10231 | In vitro-agar diffusion assay, broth microdilution assay | Extracts exhibited bactericidal activity against S. aureus, no activity against Gram-negative or yeast strains was detected. The effect against staphylococci was determined to be the result of C-geranyl flavonoids and triterpenoids in the propolis | [165] |
Ethanol extracts of Greek and Cypriot propolis | S. dysenteriae NCTC 2966, S. typhimurium NCTC 12023, E. aerogenes NCTC 10006, Y. enterocolitica NCTC 10460, E. coli NCTC 09001, S. aureus NCTC 6571, ATCC 25923 S. epidermidis NCTC 11047, B. cereus NCTC 7464, ATCC 9139, L. monocytogenes NCTC 10357, ATCC 7644, C. tropicalis ATCC 13801 C. albicans ATCC 10231, L. bulgaricus ACA-DC 101 L. fermentum F 12, L. casei LC 14, L. delbrueckii LDD-C1, L. plantarum LP 101, La. helveticus LH 09 | In vitro-agar diffusion assay | Extracts exhibited a broader spectrum of antimicrobial activity than nisin. Tested samples had the strongest antibacterial properties against Gram-positive strains. Lactobacillus spp. strains were resistant to the activity, indicating selectivity beneficial for probiotic preservation. | [194] |
Ethanol extracts of Anatolian propolis | S. mutans ATCC 25175, S. aureus 6538-P, S. sobrinus ATCC 33478, S. epidermidis ATCC 12228, E. faecalis ATCC 29212, M. luteus ATCC 9341. P. aeruginosa ATCC 27853, E. coli ATCC 11230, S. typhimurium CCM 5445, E. aerogenes ATCC 13048, C. albicans ATCC 10231, C. tropicalis ATCC 665 and C. krusei ATCC 6258 | In vitro-broth macrodilutions assay | All extracts exhibited a potent antibacterial effect against Gram-positive bacteria. Less activity was achieved against Gram-negative strains, especially P. aeruginosa and S. typhimurium. The sample from Bursa proved the most effective, strongly inhibiting Candida spp. and oral pathogens, suggesting clinical potential in dental care. Total flavonoid content was shown to be correlated with antimicrobial potency of propolis | [195] |
Ethanol extracts of Serbian propolis | S. epidermidis ATCC 14990, S. aureus ATCC 25923, S. sciuri ATCC 29062, E. faecalis ATCC 29212, B. subtilis, L. monocytogenes SLCC 2375. E. coli ATCC 25922, P. aeruginosa ATCC 27853. S. marscenscens, P. stuartii, C. guilliermondii, C. parapsilosis, C. albicans | In vitro-agar diffusion assay, agar dilution assay, synergy disc diffusion assay | Extracts exhibited strong antimicrobial activity against Gram-positive bacteria and fungi, while Gram-negative species were not inhibited. Antimicrobial effect of propolis was not affected by antibiotic resistance. At subinhibitory concentrations extracts exhibited strong synergism with ceftriaxone against K. pneumoniae and nystatin against C. albicans. | [196] |
Ethanol extracts of Brazilian and Bulgarian green propolis | S. typhi standard serovar 00238 | In vitro-agar dilution assay, synergism assay | Extracts of Brazilian propolis exhibited bacteriostatic activity while extracts of Bulgarian propolis were bactericidal to S. typhi. Synergism study showed significant increase in antibacterial effect of β-lactam antibiotics when combined with either propolis sample at sub-MIC concentrations | [197] |
Ethanol extracts of green propolis | C. albicans ATCC 443-805-2, C. parapsilosis ATCC 726-42-6, C. tropicalis ATCC 1036-09-2 | In vitro-disc diffusion assay, biofilm formation assay | Extract exhibited dose-dependent growth inhibition of all tested Candida spp. Biofilm formation was significantly inhibited at low concentration of the extract | [198] |
3.4. Antimicrobial Activity of Bee Venom
Material | Microorganism | Assay | Key Results | Reference |
---|---|---|---|---|
Commercial bee venom samples | E. coli k-12 ATCC 47074, P. putida ATCC 7000008, P. fluorescens NCIMB 9046 | In vitro-bacterial viability assay | Venom samples exhibited a strong inhibitory effect on E. coli, with viability decreasing proportionally to the increase in venom concentration. Antibacterial activity against P. putida, while present, did not increase with concentration beyond 225 µg/mL. No effect against P. fluorescens was observed. Cell membrane damage and pore formation were determined as the mechanism of action. | [213] |
Commercial bee venom and in natura samples, melittin and phospholipase A2 | S. salivarius ATCC 25975, S. sobrinus ATCC 33478, S. mutans ATCC 25175, S. mitis ATCC 49452, S. sanguinis ATCC 10556, L. casei ATCC 11578, E. faecalis ATCC 4082 | In vitro-broth microdilution assay | Both commercial and in natura apitoxins exhibited strong antimicrobial effects. Phospholipase A2 did not inhibit growth of tested strains, except for L. casei, which was inhibited at high concentrations. Melittin exhibited the highest level of activity against all tested strains. | [209] |
Bee venom and melittin samples from A. dorsata, A. mellifera, A. florea, and A. cerana species | S. aureus TISTR 517, S. epidermidis DMST 15505, methicillin-resistant S. aureus DMST 20625, B. subtilis DMST 15896, M. luteus DMST 15503, K. pneumoniae DMST 8216, S. typhimurium DMST 562, and E. coli ATCC 25922, C. albicans TISTR 5554 | In vitro-broth microdilution assay | All tested venom and melittin samples exhibited low to none antimicrobial activity against Gram-negative bacteria strain. The inhibitory effect against Gram-positive bacteria, while present against all strains, did not show significant differences between the venom samples and their respective melittin activity, except for A. dorsata venom which inhibited MRSA growth stronger than melittin. A. mellifera and A. cerana venoms inhibited C. albicans growth, despite yeast proving resistant to all tested melittins. | [47] |
Collected bee venom | Clinical isolates of S. agalactiae, S. gordonii, S. epidermidis, S. bovis S. aureus, methicillin resistant S. aureus. S. pneumonia laboratory strain. | In vitro-broth microdilution assay In vivo-mouse infection model | Bee venom exhibited strong antibacterial activity against all tested strains. While active against MRSA strains, in vivo administration of bee venom enhanced MRSA propagation. Melittin exhibited a superior effect on survivability of MRSA infected mouse compared to bee venom. | [214] |
Bee venom and isolated melittin | S. aureus ATCC 13464, ATCC 14558, ATCC 19095, ATCC 23235, methicillin resistant S. aureus clinical isolates | In vitro-resazurin microdilution assay. | Both venom and melittin exhibited similar potent antibacterial effect against tested S. aureus strains. Neither apitoxin nor melittin affected bacterial enterotoxin production. Both apitoxin and melittin enhanced the activity of oxacillin. Exposure of MRSA strains to apitoxin and melittin caused extensive morphological changes to the bacteria. | [205] |
Synthetic melittin | Clinical isolates: S. aureus and P. aeruginosa. S. aureus ATCC 25923, ATCC 29213, P aeruginosa PAO1 | In vitro-broth microdilution assay, biofilm formation test, synergy assay | It was show melittin, alone and in combination with conventional antibiotics has a strong antibacterial effect against tested MDR pathogens as well as their mature biofilms. Synergistic effect with antibiotics at low concentrations was demonstrated. | [206] |
Bee venom from 5 apiaries in Equador | S. enterica and L. monocytogenes strains, including S. enterica CECT 4395 and L. monocytogenes CECT 934 | In vitro-broth microdilution assay | All apitoxins exhibited similar antibacterial effects against Salmonella spp. strains. Inhibitory activity was significantly stronger against L. monocytogenes strains. | [215] |
Bee venom extracts in DMSO | isolates from wastewater near hospitals—P. mendicina, K. pneumonia and E. coli MDR strains | In vitro-disc diffusion assay, agar dilution assay | Apitoxin exhibited significant antimicrobial activity against Gram-negative bacteria. All tested antibiotics had increased effectiveness when combined with bee venom, independently of the strain of bacteria. | [216] |
Bee venom loaded on chitosan nanoparticles | clinically isolated strains: K. ohmeri, C. neoformans and C. albicans ATCC90023 reference strain | In vitro-agar well diffusion assay, yeast-hypheal transition study | The bee venom loaded nanoparticles exhibited significantly higher levels of antifungal activity against C. neoformans and C. albicans than free nanoparticles. The nanoparticles effectively inhibited the formation of biofilm of all isolates. Disruption of yeast-hypheal transition was determined in all isolates. | [217] |
Bee venom loaded on chitosan nanoparticles | E. coli ATCC 8739, P. aeruginosa ATCC 9027, B. subtilis ATCC 6633, S. aureus ATCC 7984 | In vitro-agar well diffusion assay, broth macrodilution assay | The bee venom loaded nanoparticles exhibited an inhibitory stronger than that of either free nanoparticles or bee venom against all tested strains. Bactericidal effect was improved by bee venom loading only against S. aureus. | [218] |
Collected bee venom | Methicillin resistant S. aureus CCARM 3366, CCARM 3708 | In vitro-broth microdilution assay, checkerboard assay | Bee venom exhibited a strong antibacterial effect against tested MRSA strains. Significant synergistic effects have been determined in combinations of bee venom with gentamycin ant vancomycin. | [219] |
4. Antiviral Activity of Bee Products
4.1. Viral Infections
4.2. Antiviral Activity of Honey
4.3. Antiviral Activity of Propolis
4.4. Antiviral Activity of Bee Venom
5. Wound Treatment—A Promising Use of Bee Products in Medicine
6. Obstacles on the Way to Implementing Bee Product Treatments in the Current Medical Landscape
7. Conclusions
8. Methodology of the Literature Search
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- Tsadila, C.; Amoroso, C.; Mossialos, D. Microbial Diversity in Bee Species and Bee Products: Pseudomonads Contribution to Bee Well-Being and the Biological Activity Exerted by Honey Bee Products: A Narrative Review. Diversity 2023, 15, 1088. [Google Scholar] [CrossRef]
- Crotti, E.; Sansonno, L.; Prosdocimi, E.M.; Vacchini, V.; Hamdi, C.; Cherif, A.; Gonella, E.; Marzorati, M.; Balloi, A. Microbial Symbionts of Honeybees: A Promising Tool to Improve Honeybee Health. New Biotechnol. 2013, 30, 716–722. [Google Scholar] [CrossRef]
- Castelli, L.; Branchiccela, B.; Romero, H.; Zunino, P.; Antúnez, K. Seasonal Dynamics of the Honey Bee Gut Microbiota in Colonies Under Subtropical Climate: Seasonal Dynamics of Honey Bee Gut Microbiota. Microb. Ecol. 2022, 83, 492–500. [Google Scholar] [CrossRef]
- Ribière, C.; Hegarty, C.; Stephenson, H.; Whelan, P.; O’Toole, P.W. Gut and Whole-Body Microbiota of the Honey Bee Separate Thriving and Non-Thriving Hives. Microb. Ecol. 2019, 78, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissière, B.E. Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Romero, S.; Nastasa, A.; Chapman, A.; Kwong, W.K.; Foster, L.J. The Honey Bee Gut Microbiota: Strategies for Study and Characterization. Insect Mol. Biol. 2019, 28, 455–472. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Quiles, J.L.; Cianciosi, D.; Forbes-Hernández, T.Y.; Orantes-Bermejo, F.J.; Alvarez-Suarez, J.M.; Battino, M. Bee Products: An Emblematic Example of Underutilized Sources of Bioactive Compounds. J. Agric. Food Chem. 2022, 70, 6833–6848. [Google Scholar] [CrossRef]
- Battino, M.; Giampieri, F.; Cianciosi, D.; Ansary, J.; Chen, X.; Zhang, D.; Gil, E.; Forbes-Hernández, T. The Roles of Strawberry and Honey Phytochemicals on Human Health: A Possible Clue on the Molecular Mechanisms Involved in the Prevention of Oxidative Stress and Inflammation. Phytomedicine 2021, 86, 153170. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; Cordero, M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Afrin, S.; Beltrán-Ayala, P.; González-Paramás, A.M.; Santos-Buelga, C.; et al. Activation of AMPK/Nrf2 Signalling by Manuka Honey Protects Human Dermal Fibroblasts against Oxidative Damage. J. Funct. Foods 2016, 25, 38–49. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Maouche, N.; Otmani, A.; Terrab, A.; Madani, K.; Ouchemoukh, S. Evaluation of Algerian’s Honey in Terms of Quality and Authenticity Based on the Melissopalynology and Physicochemical Analysis and Their Antioxidant Powers. Mediterr. J. Nutr. Metab. 2021, 14, 305–324. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Cianciosi, D.; Pistollato, F.; Ansary, J.; Pacetti, M.; Amici, A.; Reboredo-Rodríguez, P.; Simal-Gandara, J.; Quiles, J.L.; et al. Strawberry Tree Honey as a New Potential Functional Food. Part 1: Strawberry Tree Honey Reduces Colon Cancer Cell Proliferation and Colony Formation Ability, Inhibits Cell Cycle and Promotes Apoptosis by Regulating EGFR and MAPKs Signaling Pathways. J. Funct. Foods 2019, 57, 439–452. [Google Scholar] [CrossRef]
- Gabriele, G.; Parri, E.; Felicioli, A.; Sagona, S.; Pozzo, L.; Biondi, C.; Domenici, V.; Pucci, L. Phytochemical Composition and Antioxidant Activity of Tuscan Bee Pollen of Different Botanic Origins. Ital. J. Food Sci. 2015, 27, 248–259. [Google Scholar] [CrossRef]
- Sattler, J.A.G.; de Melo, I.L.P.; Granato, D.; Araújo, E.; da Silva de Freitas, A.; Barth, O.M.; Sattler, A.; de Almeida-Muradian, L.B. Impact of Origin on Bioactive Compounds and Nutritional Composition of Bee Pollen from Southern Brazil: A Screening Study. Food Res. Int. 2015, 77, 82–91. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Khalifa, S.A.M.; El-Wahed, A.A.; Gao, R.; Guo, Z.; Tahir, H.E.; Zhao, C.; Du, M.; Farag, M.A.; Musharraf, S.G.; et al. Honeybee Products: An Updated Review of Neurological Actions. Trends Food Sci. Technol. 2020, 101, 17–27. [Google Scholar] [CrossRef]
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and Therapeutic Effects of Honey Produced by Honey Bees and Stingless Bees: A Comparative Review. Rev. Bras. Farmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef]
- Nainu, F.; Masyita, A.; Bahar, M.A.; Raihan, M.; Prova, S.R.; Mitra, S.; Emran, T.B.; Simal-Gandara, J. Pharmaceutical Prospects of Bee Products: Special Focus on Anticancer, Antibacterial, Antiviral, and Antiparasitic Properties. Antibiotics 2021, 10, 822. [Google Scholar] [CrossRef]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and Its Nutritional and Anti-Inflammatory Value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Asma, S.T.; Bobiş, O.; Bonta, V.; Acaroz, U.; Shah, S.R.A.; Istanbullugil, F.R.; Arslan-Acaroz, D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022, 14, 3579. [Google Scholar] [CrossRef]
- Luo, X.; Dong, Y.; Gu, C.; Zhang, X.; Ma, H. Processing Technologies for Bee Products: An Overview of Recent Developments and Perspectives. Front. Nutr. 2021, 8, 727181. [Google Scholar] [CrossRef]
- Fernandes, K.E.; Frost, E.A.; Remnant, E.J.; Schell, K.R.; Cokcetin, N.N.; Carter, D.A. The Role of Honey in the Ecology of the Hive: Nutrition, Detoxification, Longevity, and Protection against Hive Pathogens. Front. Nutr. 2022, 9, 954170. [Google Scholar] [CrossRef] [PubMed]
- El-Didamony, S.E.; Gouda, H.I.A.; Zidan, M.M.M.; Amer, R.I. Bee Products: An Overview of Sources, Biological Activities and Advanced Approaches Used in Apitherapy Application. Biotechnol. Rep. 2024, 44, e00862. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Lucini, L.; Aromolo, R.; Martinelli, E.; Souto, E.B.; Santini, A.; Pignatti, G. Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life 2021, 11, 970. [Google Scholar] [CrossRef]
- Ansaloni, L.S.; Kristl, J.; Domingues, C.E.C.; Gregorc, A. An Overview of the Nutritional Requirements of Honey Bees (Apis Mellifera Linnaeus, 1758). Insects 2025, 16, 97. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and Functional Properties of Propolis (Bee Glue): A Review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.-M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [PubMed]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef]
- Pucca, M.B.; Cerni, F.A.; Oliveira, I.S.; Jenkins, T.P.; Argemí, L.; Sørensen, C.V.; Ahmadi, S.; Barbosa, J.E.; Laustsen, A.H. Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front. Immunol. 2019, 10, 2090. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef]
- Ajibola, A.; Chamunorwa, J.P.; Erlwanger, K.H. Nutraceutical Values of Natural Honey and Its Contribution to Human Health and Wealth. Nutr. Metab. 2012, 9, 61. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Salama, A.; Tohamy, H.-A.S. Applications of Propolis-Based Materials in Wound Healing. Arch. Dermatol. Res. 2023, 316, 61. [Google Scholar] [CrossRef]
- Nowak, A.; Muzykiewicz-Szymańska, A.; Perużyńska, M.; Kucharska, E.; Kucharski, Ł.; Jakubczyk, K.; Niedźwiedzka-Rystwej, P.; Stefanowicz-Hajduk, J.; Droździk, M.; Majtan, J. Assessment of in Vitro Skin Permeation and Accumulation of Phenolic Acids from Honey and Honey-Based Pharmaceutical Formulations. BMC Complement. Med. Ther. 2025, 25, 43. [Google Scholar] [CrossRef]
- Bogdanov, S. Beeswax: Production, Properties, Composition, Control; Bee Product Science Publishing: Muehlethurnen, Switzerland, 2009; pp. 1–17. [Google Scholar]
- Grabek-Lejko, D.; Miłek, M.; Dżugan, M. The Comparison of the Antioxidant, Antibacterial and Antiviral Potential of Polish Fir Honeydew and Manuka Honeys. Sci. Rep. 2024, 14, 31170. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. An Overview of Physicochemical Characteristics and Health-Promoting Properties of Honeydew Honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef]
- Iglesias, M.; Martín-Alvarez, P.J.; Polo, M.C.; de Lorenzo, C.; Gonzalez, M.; Pueyo, E. Changes in the Free Amino Acid Contents of Honeys During Storage at Ambient Temperature. J. Agric. Food Chem. 2006, 54, 9099–9104. [Google Scholar] [CrossRef] [PubMed]
- de Beer, T. Physico-Chemical Quality Assessment of Honey from Different Floral and Geographical Origin. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2020. [Google Scholar]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Wojtczuk, M.; Roszko, M.; Bryła, M.; Petkoska, A.T. Recent Advances and Opportunities Related to the Use of Bee Products in Food Processing. Food Sci. Nutr. 2023, 11, 2051–2068. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.R.; Calla, B. Honey as a Functional Food for Apis Mellifera. Annu. Rev. Entomol. 2021, 66, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Yaacoub, C.; Wehbe, R.; Roufayel, R.; Fajloun, Z.; Coutard, B. Bee Venom and Its Two Main Components-Melittin and Phospholipase A2-As Promising Antiviral Drug Candidates. Pathogen 2023, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Šuran, J.; Cepanec, I.; Mašek, T.; Radić, B.; Radić, S.; Tlak Gajger, I.; Vlainić, J. Propolis Extract and Its Bioactive Compounds-From Traditional to Modern Extraction Technologies. Molecules 2021, 26, 2930. [Google Scholar] [CrossRef]
- Miłek, M.; Bonikowski, R.; Dżugan, M. The Effect of Extraction Conditions on the Chemical Profile of Obtained Raw Poplar Propolis Extract. Chem. Pap. 2024, 78, 6709–6720. [Google Scholar] [CrossRef]
- Reis, J.H.d.O.; Machado, B.A.S.; Barreto, G.d.A.; Anjos, J.P.d.; Fonseca, L.M.d.S.; Santos, A.A.B.; Pessoa, F.L.P.; Druzian, J.I. Supercritical Extraction of Red Propolis: Operational Conditions and Chemical Characterization. Molecules 2020, 25, 4816. [Google Scholar] [CrossRef]
- Nedic, N.; Gojak, M.; Zlatanović, I.; Rudonja, N.; Lazarevic, K.; Dražić, M.; Gligorević, K.; Pajić, M. Study of Vacuum and Freeze Drying of Bee Honey. Therm. Sci. 2020, 24, 194. [Google Scholar] [CrossRef]
- Maitip, J.; Mookhploy, W.; Khorndork, S.; Chantawannakul, P. Comparative Study of Antimicrobial Properties of Bee Venom Extracts and Melittins of Honey Bees. Antibiotics 2021, 10, 1503. [Google Scholar] [CrossRef] [PubMed]
- Contieri, L.S.; de Souza Mesquita, L.M.; Sanches, V.L.; Viganó, J.; Martinez, J.; da Cunha, D.T.; Rostagno, M.A. Standardization Proposal to Quality Control of Propolis Extracts Commercialized in Brazil: A Fingerprinting Methodology Using a UHPLC-PDA-MS/MS Approach. Food Res. Int. 2022, 161, 111846. [Google Scholar] [CrossRef] [PubMed]
- Wilczyńska, A.; Żak, N. Polyphenols as the Main Compounds Influencing the Antioxidant Effect of Honey-A Review. Int. J. Mol. Sci. 2024, 25, 10606. [Google Scholar] [CrossRef]
- Crane, E. Honey: A Comprehensive Survey; William Heinemann Ltd.: London, UK, 1975. [Google Scholar]
- Nicolson, S.W.; Human, H.; Pirk, C.W.W. Honey Bees Save Energy in Honey Processing by Dehydrating Nectar before Returning to the Nest. Sci. Rep. 2022, 12, 16224. [Google Scholar] [CrossRef] [PubMed]
- Alaerjani, W.M.A.; Abu-Melha, S.; Alshareef, R.M.H.; Al-Farhan, B.S.; Ghramh, H.A.; Al-Shehri, B.M.A.; Bajaber, M.A.; Khan, K.A.; Alrooqi, M.M.; Modawe, G.A.; et al. Biochemical Reactions and Their Biological Contributions in Honey. Molecules 2022, 27, 4719. [Google Scholar] [CrossRef]
- Rossano, R.; LaRocca, M.; Polito, T.; Perna, A.M.; Padula, M.C.; Martelli, G.; Riccio, P. What Are the Proteolytic Enzymes of Honey and What They Do Tell Us? A Fingerprint Analysis by 2-D Zymography of Unifloral Honeys. PLoS ONE 2012, 7, e49164. [Google Scholar] [CrossRef]
- Borutinskaite, V.; Treigyte, G.; Čeksteryte, V.; Kurtinaitiene, B.; Navakauskiene, R. Proteomic Identification and Enzymatic Activity of Buckwheat (Fagopyrum Esculentum) Honey Based on Different Assays. J. Food Nutr. Res. 2018, 57, 57–69. [Google Scholar]
- CXS 12-1981; Standard for Honey. Codex Alimentarius International Food Standards: Rome, Italy, 1981; Revised 2019 1981.
- Nolan, V.C.; Harrison, J.; Cox, J.A. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.; Thornburg, R.W. Tobacco Nectarin I. J. Biol. Chem. 2000, 275, 36726–36733. [Google Scholar] [CrossRef] [PubMed]
- Bizerra, F.C.; Da Silva, P.I.; Hayashi, M.A.F. Exploring the Antibacterial Properties of Honey and Its Potential. Front. Microbiol. 2012, 3, 398. [Google Scholar] [CrossRef]
- Chen, C.; Campbell, L.T.; Blair, S.E.; Carter, D.A. The Effect of Standard Heat and Filtration Processing Procedures on Antimicrobial Activity and Hydrogen Peroxide Levels in Honey. Front. Microbiol. 2012, 3, 265. [Google Scholar] [CrossRef]
- Kamal, M.A.; Klein, P. Determination of Sugars in Honey by Liquid Chromatography. Saudi J. Biol. Sci. 2011, 18, 17–21. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Chirife, J.; Zamora, M.C.; Motto, A. The Correlation between Water Activity and % Moisture in Honey: Fundamental Aspects and Application to Argentine Honeys. J. Food Eng. 2006, 72, 287–292. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its Medicinal Property and Antibacterial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef]
- Starowicz, M.; Ostaszyk, A.; Zieliński, H. The Relationship between the Browning Index, Total Phenolics, Color, and Antioxidant Activity of Polish-Originated Honey Samples. Foods 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Elsayeh, W.A.; Cook, C.; Wright, G.A. B-Vitamins Influence the Consumption of Macronutrients in Honey Bees. Front. Sustain. Food Syst. 2022, 6, 804002. [Google Scholar] [CrossRef]
- Popkova, M.A.; Budnikova, N.V.; Paramzina, I.A. Water-Soluble Vitamins in Honeys of Various Botanical Origin and Their Change during Storage of Honey. IOP Conf. Ser. Earth Environ. Sci. 2021, 845, 012116. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Jaśkiewicz, K.; Szczęsna, T.; Jachuła, J. How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys. Molecules 2025, 30, 360. [Google Scholar] [CrossRef]
- McLoone, P.; Oladejo, T.O.; Kassym, L.; McDougall, G.J. Honey Phytochemicals: Bioactive Agents With Therapeutic Potential for Dermatological Disorders. Phytotherapy Res. 2024, 38, 5741–5764. [Google Scholar] [CrossRef] [PubMed]
- Lanjwani, M.F.; Channa, F.A. Minerals Content in Different Types of Local and Branded Honey in Sindh, Pakistan. Heliyon 2019, 5, e02042. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Barłowska, J.; Litwińczuk, Z. Concentration of Minerals in Nectar Honeys from Direct Sale and Retail in Poland. Biol. Trace Elem. Res. 2018, 186, 579–588. [Google Scholar] [CrossRef]
- Molan, P.C. The Antibacterial Activity of Honey: 1. The Nature of the Antibacterial Activity. Bee World 1992, 73, 5–28. [Google Scholar] [CrossRef]
- Molan, P.C. The Antibacterial Activity of Honey: 2. Variation in the Potency of the Antibacterial Activity. Bee World 1992, 73, 59–76. [Google Scholar] [CrossRef]
- Allen, K.L.; Molan, P.C.; Reid, G.M. A Survey of the Antibacterial Activity of Some New Zealand Honeys. J. Pharm. Pharmacol. 1991, 43, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.A.; Halas, E.; Molan, P.C. The Efficacy of Honey in Inhibiting Strains of Pseudomonas Aeruginosa From Infected Burns. J. Burn. Care Rehabil. 2002, 23, 366–370. [Google Scholar] [CrossRef]
- Almasaudi, S. The Antibacterial Activities of Honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef]
- do Nascimento, P.G.G.; Lemos, T.L.G.; Bizerra, A.M.C.; Arriaga, A.M.C.; Ferreira, D.A.; Santiago, G.M.P.; Braz-Filho, R.; Costa, J.G.M. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives. Molecules 2014, 19, 1317–1327. [Google Scholar] [CrossRef]
- McLoone, P.; Zhumbayeva, A.; Yunussova, S.; Kaliyev, Y.; Yevstafeva, L.; Verrall, S.; Sungurtas, J.; Austin, C.; Allwood, J.W.; McDougall, G.J. Identification of components in Kazakhstan honeys that correlate with antimicrobial activity against wound and skin infecting microorganisms. BMC Complement. Med. Ther. 2021, 21, 300. [Google Scholar] [CrossRef]
- Devequi-Nunes, D.; Machado, B.A.S.; Barreto, G.d.A.; Silva, J.R.; Silva, D.F.d.; Rocha, J.L.C.d.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical Characterization and Biological Activity of Six Different Extracts of Propolis through Conventional Methods and Supercritical Extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef] [PubMed]
- Bava, R.; Puteo, C.; Lombardi, R.; Garcea, G.; Lupia, C.; Spano, A.; Liguori, G.; Palma, E.; Britti, D.; Castagna, F. Antimicrobial Properties of Hive Products and Their Potential Applications in Human and Veterinary Medicine. Antibiotics 2025, 14, 172. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Spivak, M. Propolis and Bee Health: The Natural History and Significance of Resin Use by Honey Bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef]
- Chuttong, B.; Lim, K.; Praphawilai, P.; Danmek, K.; Maitip, J.; Vit, P.; Wu, M.-C.; Ghosh, S.; Jung, C.; Burgett, M.; et al. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023, 12, 3909. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and Antioxidant Activity of Polyphenols Derived from Propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef]
- Massaro, C.F.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.J.; Heard, T.A.; Carvalho, C.; Manley-Harris, M.; Wallace, H.M.; Brooks, P. Anti-Staphylococcal Activity of C-Methyl Flavanones from Propolis of Australian Stingless Bees (Tetragonula Carbonaria) and Fruit Resins of Corymbia Torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef]
- Woźniak, M.; Sip, A.; Mrówczyńska, L.; Broniarczyk, J.; Waśkiewicz, A.; Ratajczak, I. Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. Molecules 2022, 28, 141. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Maslowiecka, J.; Szoka, L.; Pellizzer, N.; Miranda, D.; Olchowik-Grabarek, E.; Zambrzycka, M.; Swiecicka, I. Chemical Composition and Biological Activity of Argentinian Propolis of Four Species of Stingless Bees. Molecules 2022, 27, 7686. [Google Scholar] [CrossRef]
- Velikova, M.; Bankova, V.; Marcucci, M.C.; Tsvetkova, I.; Kujumgiev, A. Chemical Composition and Biological Activity of Propolis from Brazilian Meliponinae. Z. Naturforschung C J. Biosci. 2000, 55, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Ramón-Sierra, J.; Peraza-López, E.; Rodríguez-Borges, R.; Yam-Puc, A.; Madera-Santana, T.; Ortiz-Vázquez, E. Partial Characterization of Ethanolic Extract of Melipona Beecheii Propolis and in Vitro Evaluation of Its Antifungal Activity. Rev. Bras. Farmacogn. 2019, 29, 319–324. [Google Scholar] [CrossRef]
- Salatino, A.; Salatino, M.L.F.; Negri, G. How Diverse Is the Chemistry and Plant Origin of Brazilian Propolis? Apidologie 2021, 52, 1075–1097. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.L.; Lotti, C.; Campone, L.; Cuesta-Rubio, O.; Campo Fernandez, M.; Rastrelli, L. Cuban and Brazilian Red Propolis: Botanical Origin and Comparative Analysis by High-Performance Liquid Chromatography–Photodiode Array Detection/Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 6484–6491. [Google Scholar] [CrossRef]
- Dudoit, A.; Mertz, C.; Chillet, M.; Cardinault, N.; Brat, P. Antifungal Activity of Brazilian Red Propolis Extract and Isolation of Bioactive Fractions by Thin-Layer Chromatography-Bioautography. Food Chem. 2020, 327, 127060. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Ye, S.-R.; Ting, C.; Yu, Y.-H. Antibacterial Activity of Propolins from Taiwanese Green Propolis. J. Food Drug Anal. 2018, 26, 761–768. [Google Scholar] [CrossRef]
- Zulhendri, F.; Lesmana, R.; Tandean, S.; Christoper, A.; Chandrasekaran, K.; Irsyam, I.; Suwantika, A.A.; Abdulah, R.; Wathoni, N. Recent Update on the Anti-Inflammatory Activities of Propolis. Molecules 2022, 27, 8473. [Google Scholar] [CrossRef]
- Veronica, G.; Reddy, B.V.T.; Chowdary Birapu, U.K.; Jadadoddi, R.K.; Kumar, R.H.; Saikiran, K.V. Comparative Evaluation of Antimicrobial Efficacy of Triple Antibiotic Paste and Propolis Extract Using Three Different Vehicles as Intracanal Medicament: An in Vitro Study. J. Dr. YSR Univ. Health Sci. 2024, 13, 323–329. [Google Scholar] [CrossRef]
- Szliszka, E.; Krol, W. Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells. Evid.-Based Complement. Altern. Med. 2013, 2013, 731940. [Google Scholar] [CrossRef] [PubMed]
- Baracchi, D.; Francese, S.; Turillazzi, S. Beyond the Antipredatory Defence: Honey Bee Venom Function as a Component of Social Immunity. Toxicon 2011, 58, 550–557. [Google Scholar] [CrossRef]
- Chen, J.; Guan, S.-M.; Sun, W.; Fu, H. Melittin, the Major Pain-Producing Substance of Bee Venom. Neurosci. Bull. 2016, 32, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Han, S.M.; Park, K.-K. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins 2020, 12, 195. [Google Scholar] [CrossRef]
- Shi, P.; Xie, S.; Yang, J.; Zhang, Y.; Han, S.; Su, S.; Yao, H. Pharmacological Effects and Mechanisms of Bee Venom and Its Main Components: Recent Progress and Perspective. Front. Pharmacol. 2022, 13, 1001553. [Google Scholar] [CrossRef]
- Buku, A. Mast Cell Degranulating (MCD) Peptide: A Prototypic Peptide in Allergy and Inflammation. Peptides 1999, 20, 415–420. [Google Scholar] [CrossRef]
- Moreno, M.; Giralt, E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef]
- Duffy, C.; Sorolla, A.; Wang, E.; Golden, E.; Woodward, E.; Davern, K.; Ho, D.; Johnstone, E.; Pfleger, K.; Redfern, A.; et al. Honeybee Venom and Melittin Suppress Growth Factor Receptor Activation in HER2-Enriched and Triple-Negative Breast Cancer. Npj Precis. Oncol. 2020, 4, 24. [Google Scholar] [CrossRef]
- Hong, J.; Lu, X.; Deng, Z.; Xiao, S.; Yuan, B.; Yang, K. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation, and Disturbance on the Membrane. Molecules 2019, 24, 1775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Q.; Sun, C.; Xu, N.; Liu, W. The Current Landscape of the Antimicrobial Peptide Melittin and Its Therapeutic Potential. Front. Immunol. 2024, 15, 1326033. [Google Scholar] [CrossRef]
- Li, R.; Tao, T.; Ren, Q.; Xie, S.; Gao, X.; Wu, J.; Chen, D.; Xu, C. Key Genes Are Associated with the Prognosis of Glioma, and Melittin Can Regulate the Expression of These Genes in Glioma U87 Cells. BioMed Res. Int. 2022, 2022, 7033478. [Google Scholar] [CrossRef]
- Ceremuga, M.; Stela, M.; Janik, E.; Gorniak, L.; Synowiec, E.; Sliwinski, T.; Sitarek, P.; Saluk-Bijak, J.; Bijak, M. Melittin—A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cells. Biomolecules 2020, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.N.; Baek, S.B.; Jung, H.J. Bee Venom and Its Peptide Component Melittin Suppress Growth and Migration of Melanoma Cells via Inhibition of PI3K/AKT/mTOR and MAPK Pathways. Molecules 2019, 24, 929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-F.; Chen, Z. Melittin Exerts an Antitumor Effect on Non-Small Cell Lung Cancer Cells. Mol. Med. Rep. 2017, 16, 3581–3586. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F.; Khan, M.A.; Kumar, R.; Upadhyay, T.K. An Updated Review Summarizing the Anticancer Efficacy of Melittin from Bee Venom in Several Models of Human Cancers. Nutrients 2023, 15, 3111. [Google Scholar] [CrossRef]
- Pareek, A.; Mehlawat, K.; Tripathi, K.; Pareek, A.; Chaudhary, S.; Ratan, Y.; Apostolopoulos, V.; Chuturgoon, A. Melittin as a Therapeutic Agent for Rheumatoid Arthritis: Mechanistic Insights, Advanced Delivery Systems, and Future Perspectives. Front. Immunol. 2024, 15, 1510693. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, K.-H.; Lee, W.-R.; Han, S.-M.; Park, K.-K. Protective Effect of Melittin on Inflammation and Apoptosis in Acute Liver Failure. Apoptosis 2012, 17, 61–69. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.-G.; Kim, I.-S.; Lee, H.-D. Standardization of the Manufacturing Process of Bee Venom Pharmacopuncture Containing Melittin as the Active Ingredient. Evid.-Based Complement. Altern. Med. ECAM 2018, 2018, 2353280. [Google Scholar] [CrossRef]
- Ferreira Junior, R.S.; Sciani, J.M.; Marques-Porto, R.; Junior, A.L.; Orsi, R.D.O.; Barraviera, B.; Pimenta, D.C. Africanized Honey Bee (Apis Mellifera) Venom Profiling: Seasonal Variation of Melittin and Phospholipase A2 Levels. Toxicon 2010, 56, 355–362. [Google Scholar] [CrossRef]
- Sobotka, A.K.; Franklin, R.M.; Adkinson, N.F.; Valentine, M.; Baer, H.; Lichtenstein, L.M. Allergy to Insect Stings. J. Allergy Clin. Immunol. 1976, 57, 29–40. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, X.; Zhang, X.; Bai, J.; You, S.; Li, X.; Li, S.; Wang, Y.; Zhang, W.; Xu, Y. Global Prevalence and Burden of Multidrug-Resistant Tuberculosis from 1990 to 2019. BMC Infect. Dis. 2024, 24, 243. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Daranagama, D.A.; Tennakoon, D.S.; Jayatunga, D.P.W.; Hongsanan, S.; Xie, N. Humans vs. Fungi: An Overview of Fungal Pathogens against Humans. Pathogens 2024, 13, 426. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Otto, M. MRSA Virulence and Spread. Cell. Microbiol. 2012, 14, 1513–1521. [Google Scholar] [CrossRef]
- Lipsitch, M.; Samore, M.H. Antimicrobial Use and Antimicrobial Resistance: A Population Perspective. Emerg. Infect. Dis. 2002, 8, 347–354. [Google Scholar] [CrossRef]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Manoj, K.; Phukan, M.M.; Kumar, R.; Jamir, L.; Roy, V.K.; Pankaj, P.P. Therapeutic Applications of Honey: Traditional and Contemporary Approaches in Human Health Management. In Honey in Food Science and Physiology; Kumar, R., Hajam, Y.A., Bala Dhull, S., Giri, A., Eds.; Springer Nature: Singapore, 2024; pp. 1–31. ISBN 978-981-97-3565-5. [Google Scholar]
- Husband, S.; Cankar, K.; Catrice, O.; Chabert, S.; Erler, S. A Guide to Sunflowers: Floral Resource Nutrition for Bee Health and Key Pollination Syndromes. Front. Plant Sci. 2025, 16, 1552335. [Google Scholar] [CrossRef]
- Siddiqui, I.R. The Sugars of Honey. In Advances in Carbohydrate Chemistry and Biochemistry; Tipson, R.S., Horton, D., Eds.; Academic Press: Cambridge, MA, USA, 1970; Volume 25, pp. 285–309. [Google Scholar]
- Clifford, D.P.; Repine, J.E. Hydrogen Peroxide Mediated Killing of Bacteria. Mol. Cell. Biochem. 1982, 49, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, K.; Abubaker, K.; Laurent, M.; Castle, A. Re-Examining the Role of Hydrogen Peroxide in Bacteriostatic and Bactericidal Activities of Honey. Front. Microbiol. 2011, 2, 213. [Google Scholar] [CrossRef] [PubMed]
- Kwakman, P.H.S.; te Velde, A.A.; de Boer, L.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J. Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity. PLoS ONE 2011, 6, e17709. [Google Scholar] [CrossRef] [PubMed]
- Razmi, N.; Lazouskaya, M.; Pajcin, I.; Petrovic, B.; Grahovac, J.; Simic, M.; Willander, M.; Nur, O.; Stojanovic, G.M. Monitoring the Effect of pH on the Growth of Pathogenic Bacteria Using Electrical Impedance Spectroscopy. Results Eng. 2023, 20, 101425. [Google Scholar] [CrossRef]
- Park, M.J.; Kim, B.Y.; Park, H.G.; Deng, Y.; Yoon, H.J.; Choi, Y.S.; Lee, K.S.; Jin, B.R. Major Royal Jelly Protein 2 Acts as an Antimicrobial Agent and Antioxidant in Royal Jelly. J. Asia-Pac. Entomol. 2019, 22, 684–689. [Google Scholar] [CrossRef]
- Sojka, M.; Valachova, I.; Bucekova, M.; Majtan, J. Antibiofilm Efficacy of Honey and Bee-Derived Defensin-1 on Multispecies Wound Biofilm. J. Med. Microbiol. 2016, 65, 337–344. [Google Scholar] [CrossRef]
- Ailli, A.; Zibouh, K.; Eddamsyry, B.; Drioiche, A.; Fetjah, D.; Ayyad, F.Z.; Mothana, R.A.; Hawwal, M.F.; Radi, M.; Tarik, R.; et al. Physicochemical Characterization of Moroccan Honey Varieties from the Fez-Meknes Region and Their Antioxidant and Antibacterial Properties. Metabolites 2024, 14, 364. [Google Scholar] [CrossRef]
- Huttunen, S.; Riihinen, K.; Kauhanen, J.; Tikkanen-Kaukanen, C. Antimicrobial Activity of Different Finnish Monofloral Honeys against Human Pathogenic Bacteria. APMIS 2013, 121, 827–834. [Google Scholar] [CrossRef]
- Sherlock, O.; Dolan, A.; Athman, R.; Power, A.; Gethin, G.; Cowman, S.; Humphreys, H. Comparison of the Antimicrobial Activity of Ulmo Honey from Chile and Manuka Honey against Methicillin-Resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2010, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and Quantification of Methylglyoxal as the Dominant Antibacterial Constituent of Manuka (Leptospermum scoparium) Honeys from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483–489. [Google Scholar] [CrossRef]
- Cokcetin, N.N.; Pappalardo, M.; Campbell, L.T.; Brooks, P.; Carter, D.A.; Blair, S.E.; Harry, E.J. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels. PLoS ONE 2016, 11, e0167780. [Google Scholar] [CrossRef]
- Williams, S.D.; Pappalardo, L.; Bishop, J.; Brooks, P.R. Dihydroxyacetone Production in the Nectar of Australian Leptospermum Is Species Dependent. J. Agric. Food Chem. 2018, 66, 11133–11140. [Google Scholar] [CrossRef] [PubMed]
- Alnaimat, S.; Wainwright, M.; Al’Abri, K. Antibacterial Potential of Honey From Different Origins: A Comparsion With Manuka Honey. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 1328–1338. [Google Scholar]
- de Groot, T.; Janssen, T.; Faro, D.; Cremers, N.A.; Chowdhary, A.; Meis, J.F. Antifungal Activity of a Medical-Grade Honey Formulation against Candida Auris. J. Fungi 2021, 7, 50. [Google Scholar] [CrossRef]
- Candiracci, M.; Citterio, B.; Piatti, E. Antifungal Activity of the Honey Flavonoid Extract against Candida Albicans. Food Chem. 2012, 131, 493–499. [Google Scholar] [CrossRef]
- Al-Waili, N.; Salom, K.; Al-Ghamdi, A.A. Honey for Wound Healing, Ulcers, and Burns; Data Supporting Its Use in Clinical Practice. Sci. World J. 2011, 11, 766–787. [Google Scholar] [CrossRef]
- Lusby, P.E.; Coombes, A.L.; Wilkinson, J.M. Bactericidal Activity of Different Honeys against Pathogenic Bacteria. Arch. Med. Res. 2005, 36, 464–467. [Google Scholar] [CrossRef]
- Ghramh, H.A.; Ibrahim, E.H.; Kilany, M. Study of Anticancer, Antimicrobial, Immunomodulatory, and Silver Nanoparticles Production by Sidr Honey from Three Different Sources. Food Sci. Nutr. 2020, 8, 445–455. [Google Scholar] [CrossRef]
- French, V.M.; Cooper, R.A.; Molan, P.C. The Antibacterial Activity of Honey against Coagulase-Negative Staphylococci. J. Antimicrob. Chemother. 2005, 56, 228–231. [Google Scholar] [CrossRef]
- Hau-Yama, N.E.; Magaña-Ortiz, D.; Oliva, A.I.; Ortiz-Vázquez, E. Antifungal Activity of Honey from Stingless Bee Melipona Beecheii against Candida Albicans. J. Apic. Res. 2020, 59, 12–18. [Google Scholar] [CrossRef]
- Zainol, M.I.; Mohd Yusoff, K.; Mohd Yusof, M.Y. Antibacterial Activity of Selected Malaysian Honey. BMC Complement. Altern. Med. 2013, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.; Cooper, R. Improving Antibiotic Activity against Wound Pathogens with Manuka Honey In Vitro. PLoS ONE 2012, 7, e45600. [Google Scholar] [CrossRef]
- Kuś, P.M.; Szweda, P.; Jerković, I.; Tuberoso, C.I.G. Activity of Polish Unifloral Honeys against Pathogenic Bacteria and Its Correlation with Colour, Phenolic Content, Antioxidant Capacity and Other Parameters. Lett. Appl. Microbiol. 2016, 62, 269–276. [Google Scholar] [CrossRef]
- Jantakee, K.; Tragoolpua, Y. Activities of Different Types of Thai Honey on Pathogenic Bacteria Causing Skin Diseases, Tyrosinase Enzyme and Generating Free Radicals. Biol. Res. 2015, 48, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Koc, A.N.; Silici, S.; Ercal, B.D.; Kasap, F.; Hörmet-Öz, H.T.; Mavus-Buldu, H. Antifungal Activity of Turkish Honey against Candida Spp. and Trichosporon Spp.: An in Vitro Evaluation. Sabouraudia 2009, 47, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Matzen, R.D.; Zinck Leth-Espensen, J.; Jansson, T.; Nielsen, D.S.; Lund, M.N.; Matzen, S. The Antibacterial Effect In Vitro of Honey Derived from Various Danish Flora. Dermatol. Res. Pr. 2018, 2018, 7021713. [Google Scholar] [CrossRef] [PubMed]
- Shamala, T.R.; Shri Jyothi, Y.P.; Saibaba, P. Antibacterial effect of honey on the in vitro and in vivo growth of Escherichia coli. World J. Microbiol. Biotechnol. 2002, 18, 863–865. [Google Scholar] [CrossRef]
- Oeleke, S.B.; Dauda, B.E.N.; Tijani, J.O. Nutritional Analysis and Antibacterial Effect of Honey on Bacterial Wound Pathogens. J. Appl. Sci. Res. 2010, 6, 1561–1565. [Google Scholar]
- Ewnetu, Y.; Lemma, W.; Birhane, N. Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC Complement. Altern. Med. 2013, 13, 269. [Google Scholar] [CrossRef]
- 319Mama, M.; Teshome, T.; Detamo, J. Antibacterial Activity of Honey against Methicillin-Resistant Staphylococcus aureus: A Laboratory-Based Experimental Study. Int. J. Microbiol. 2019, 2019, 7686130. [Google Scholar] [CrossRef]
- Johari, J.; Kianmehr, A.; Mustafa, M.R.; Abubakar, S.; Zandi, K. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus. Int. J. Mol. Sci. 2012, 13, 16785–16795. [Google Scholar] [CrossRef]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid.-Based Complement. Altern. Med. 2015, 2015, 1–29. [Google Scholar] [CrossRef]
- Wieczy, A.; Weøgowiec, J.; Ckiewicz, O.W.; Czarny, A.; Kulbacka, J.; Nowakowska, D.; Gancarz, R.; Wilk, K.A. Antimicrobial Activity, Cytotoxicity And Total Phenolic Content Of Different Extracts Of Propolis From The West Pomeranian Region In Poland. Acta Pol. Pharm. 2017, 74, 715–722. [Google Scholar]
- Bosio, K.; Avanzini, C.; D’Avolio, A.; Ozino, O.; Savoia, D. In Vitro Activity of Propolis against Streptococcus Pyogenes. Lett. Appl. Microbiol. 2000, 31, 174–177. [Google Scholar] [CrossRef]
- da Silva, J.F.M.; de Souza, M.C.; Matta, S.R.; de Andrade, M.R.; Vidal, F.V.N. Correlation Analysis between Phenolic Levels of Brazilian Propolis Extracts and Their Antimicrobial and Antioxidant Activities. Food Chem. 2006, 99, 431–435. [Google Scholar] [CrossRef]
- Bittencourt, M.L.F.; Ribeiro, P.R.; Franco, R.L.P.; Hilhorst, H.W.M.; de Castro, R.D.; Fernandez, L.G. Metabolite Profiling, Antioxidant and Antibacterial Activities of Brazilian Propolis: Use of Correlation and Multivariate Analyses to Identify Potential Bioactive Compounds. Food Res. Int. 2015, 76, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Bouchelaghem, S.; Das, S.; Naorem, R.S.; Czuni, L.; Papp, G.; Kocsis, M. Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus. Molecules 2022, 27, 574. [Google Scholar] [CrossRef] [PubMed]
- Veiga, R.S.; De Mendonça, S.; Mendes, P.B.; Paulino, N.; Mimica, M.J.; Lagareiro Netto, A.A.; Lira, I.S.; López, B.G.-C.; Negrão, V.; Marcucci, M.C. Artepillin C and Phenolic Compounds Responsible for Antimicrobial and Antioxidant Activity of Green Propolis and Baccharis Dracunculifolia DC. J. Appl. Microbiol. 2017, 122, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.M.; Noh, D.O.; Cho, S.Y.; Suh, H.J.; Kim, K.M.; Kim, J.M. Antioxidant and Antimicrobial Activities of Propolis from Several Regions of Korea. LWT-Food Sci. Technol. 2006, 39, 756–761. [Google Scholar] [CrossRef]
- Massaro, C.F.; Simpson, J.B.; Powell, D.; Brooks, P. Chemical Composition and Antimicrobial Activity of Honeybee (Apis Mellifera Ligustica) Propolis from Subtropical Eastern Australia. Sci. Nat. 2015, 102, 68. [Google Scholar] [CrossRef]
- Kumazawa, S.; Nakamura, J.; Murase, M.; Miyagawa, M.; Ahn, M.-R.; Fukumoto, S. Plant Origin of Okinawan Propolis: Honeybee Behavior Observation and Phytochemical Analysis. Naturwiss. 2008, 95, 781–786. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Wei, W.; Miao, Y.; Liang, C.; Wu, J.; Huang, X.; Yin, L.; Geng, Y.; Chen, D.; et al. A Study of the Antibacterial Mechanism of Pinocembrin against Multidrug-Resistant Aeromonas Hydrophila. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2022, 25, 605–613. [Google Scholar] [CrossRef]
- Veloz, J.J.; Alvear, M.; Salazar, L.A. Antimicrobial and Antibiofilm Activity against Streptococcus Mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. BioMed Res. Int. 2019, 2019, 7602343. [Google Scholar] [CrossRef]
- Bankova, V. Chemical Diversity of Propolis Makes It a Valuable Source of New Biologically Active Compounds. J. ApiProd. ApiMed. Sci. 2009, 1, 23–28. [Google Scholar] [CrossRef]
- Kishimoto, N.; Kakino, Y.; Iwai, K.; Mochida, K.; Fujita, T. In Vitro Antibacterial, Antimutagenic and Anti-Influenza Virus Activity of Caffeic Acid Phenethyl Esters. Biocontrol Sci. 2005, 10, 155–161. [Google Scholar] [CrossRef]
- Gucwa, K.; Kusznierewicz, B.; Milewski, S.; Van Dijck, P.; Szweda, P. Antifungal Activity and Synergism with Azoles of Polish Propolis. Pathogens 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Possamai Rossatto, F.C.; Tharmalingam, N.; Escobar, I.E.; d’Azevedo, P.A.; Zimmer, K.R.; Mylonakis, E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida Auris. J. Fungi 2021, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Ożarowski, M.; Karpiński, T.M.; Alam, R.; Łochyńska, M. Antifungal Properties of Chemically Defined Propolis from Various Geographical Regions. Microorganisms 2022, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Pamplona-Zomenhan, L.C.; Pamplona, B.C.; da Silva, C.B.; Marcucci, M.C.; Mimica, L.M.J. Evaluation of the in Vitro Antimicrobial Activity of an Ethanol Extract of Brazilian Classified Propolis on Strains of Staphylococcus aureus. Braz. J. Microbiol. 2011, 42, 1259–1264. [Google Scholar] [CrossRef]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Li, J.; Zhang, W.; Jiang, B.; Xuan, H. Australian Propolis Ethanol Extract Exerts Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus by Mechanisms of Disrupting Cell Structure, Reversing Resistance, and Resisting Biofilm. Braz. J. Microbiol. 2021, 52, 1651–1664. [Google Scholar] [CrossRef]
- Zhang, W.; Margarita, G.E.; Wu, D.; Yuan, W.; Yan, S.; Qi, S.; Xue, X.; Wang, K.; Wu, L. Antibacterial Activity of Chinese Red Propolis against Staphylococcus aureus and MRSA. Molecules 2022, 27, 1693. [Google Scholar] [CrossRef] [PubMed]
- Wojtyczka, R.D.; Dziedzic, A.; Idzik, D.; Kepa, M.; Kubina, R.; Kabała-Dzik, A.; Smoleń-Dzirba, J.; Stojko, J.; Sajewicz, M.; Wasik, T.J. Susceptibility of Staphylococcus aureus Clinical Isolates to Propolis Extract Alone or in Combination with Antimicrobial Drugs. Molecules 2013, 18, 9623–9640. [Google Scholar] [CrossRef]
- Wojtyczka, R.D.; Kȩpa, M.; Idzik, D.; Kubina, R.; Kabała-Dzik, A.; Dziedzic, A.; Wąsik, T.J. In Vitro Antimicrobial Activity of Ethanolic Extract of Polish Propolis against Biofilm Forming Staphylococcus Epidermidis Strains. Evid.-Based Complement. Altern. Med. 2013, 2013, 590703. [Google Scholar] [CrossRef]
- Drago, L.; Mombelli, B.; Vecchi, E.D.; Tocalli, M.C.F.L.; Gismondo, M.R. In Vitro Antimicrobial Activity of Propolis Dry Extract. J. Chemother. 2000, 12, 390–395. [Google Scholar] [CrossRef]
- Keskin, N.; Hazir, S.; Baser, K.H.; Kürkçüoglu, M. Antibacterial Activity and Chemical Composition of Turkish Propolis. Z. Fur Naturforschung Sect. C. J. Biosci. 2001, 56, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Temiz, A.; Şener, A.; Tüylü, A.Ö.; Sorkun, K.; Salih, B. Antibacterial Activity of Bee Propolis Samples from Different Geographical Regions of Turkey against Two Foodborne Pathogens, Salmonella Enteritidis and Listeria Monocytogenes. Turk. J. Biol. 2011, 35, 503–511. [Google Scholar] [CrossRef]
- Nina, N.; Quispe, C.; Jiménez-Aspee, F.; Theoduloz, C.; Feresín, G.E.; Lima, B.; Leiva, E.; Schmeda-Hirschmann, G. Antibacterial Activity, Antioxidant Effect and Chemical Composition of Propolis from the Región Del Maule, Central Chile. Molecules 2015, 20, 18144–18167. [Google Scholar] [CrossRef]
- De Marco, S.; Piccioni, M.; Pagiotti, R.; Pietrella, D. Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas Aeruginosa. Evid.-Based Complement. Altern. Med. 2017, 2017, 5163575. [Google Scholar] [CrossRef]
- Raghukumar, R.; Vali, L.; Watson, D.; Fearnley, J.; Seidel, V. Antimethicillin-resistant Staphylococcus aureus (MRSA) Activity of ‘Pacific Propolis’ and Isolated Prenylflavanones. Phytother. Res. 2010, 24, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Yoshimasu, Y.; Ikeda, T.; Sakai, N.; Yagi, A.; Hirayama, S.; Morinaga, Y.; Furukawa, S.; Nakao, R. Rapid Bactericidal Action of Propolis against Porphyromonas Gingivalis. J. Dent. Res. 2018, 97, 928–936. [Google Scholar] [CrossRef] [PubMed]
- El-Guendouz, S.; Lyoussi, B.; Lourenço, J.P.; Rosa da Costa, A.M.; Miguel, M.G.; Barrocas Dias, C.; Manhita, A.; Jordao, L.; Nogueira, I.; Faleiro, M.L. Magnetite Nanoparticles Functionalized with Propolis against Methicillin Resistant Strains of Staphylococcus aureus. J. Taiwan Inst. Chem. Eng. 2019, 102, 25–33. [Google Scholar] [CrossRef]
- Scazzocchio, F.; DAuria, F.D.; Alessandrini, D.; Pantanella, F. Multifactorial Aspects of Antimicrobial Activity of Propolis. Microbiol. Res. 2006, 161, 327–333. [Google Scholar] [CrossRef]
- de Lima Silva, W.E.; Junior, W.D.F.; da Rosa, P.R.; de Moraes Peixoto, R.; Tenorio, J.A.B.; da Silva, T.M.S.; da Costa, M.M. In Vitro Activity of Propolis: Synergism in Combination with Antibiotics against Staphylococcus Spp. Afr. J. Microbiol. Res. 2015, 9, 1–5. [Google Scholar] [CrossRef]
- Orsi, R.O.; Fernandes, A.; Bankova, V.; Sforcin, J.M. Antibacterial Effects of Brazilian and Bulgarian Propolis and Synergistic Effects with Antibiotics Acting on the Bacterial DNA and Folic Acid. Nat. Prod. Res. 2012, 26, 344–349. [Google Scholar] [CrossRef]
- Onlen, Y.; Duran, N.; Atik, E.; Savas, L.; Altug, E.; Yakan, S.; Aslantas, O. Antibacterial Activity of Propolis Against MRSA and Synergism with Topical Mupirocin. J. Altern. Complement. Med. 2007, 13, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yuan, J.; Li, J.; Liu, H.; Wei, F.; Xuan, H. Antibacterial Activity of Chinese Propolis and Its Synergy with β-Lactams against Methicillin-Resistant Staphylococcus aureus. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2022, 53, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Alarjani, K.M.; Yehia, H.M.; Badr, A.N.; Ali, H.S.; Al-Masoud, A.H.; Alhaqbani, S.M.; Alkhatib, S.A.; Rady, A.M.; Abdel-Maksoud, M. Antimicrobial Impact of a Propolis/PVA/Chitosan Composite and Its Prospective Application against Methicillin Resistance Bacterial Infection. Front. Nanotechnol. 2024, 6, 1387933. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical Composition, Antioxidant Activity and Antimicrobial Properties of Propolis Extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Uzel, A.; Sorkun, K.; Onçağ, O.; Cogŭlu, D.; Gençay, O.; Salih, B. Chemical Compositions and Antimicrobial Activities of Four Different Anatolian Propolis Samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef]
- Stepanović, S.; Antić, N.; Dakić, I.; Švabić-Vlahović, M. In Vitro Antimicrobial Activity of Propolis and Synergism between Propolis and Antimicrobial Drugs. Microbiol. Res. 2003, 158, 353–357. [Google Scholar] [CrossRef]
- Orsi, R.d.O.; Sforcin, J.M.; Funari, S.R.C.; Fernandes Junior, A.; Bankova, V. Synergistic Effect of Propolis and Antibiotics on the Salmonella Typhi. Braz. J. Microbiol. 2006, 37, 108–112. [Google Scholar] [CrossRef]
- Bezerra, C.R.F.; Assunção Borges, K.R.; Alves, R.d.N.S.; Teles, A.M.; Pimentel Rodrigues, I.V.; da Silva, M.A.C.N.; Nascimento, M.d.D.S.B.; Bezerra, G.F.d.B. Highly Efficient Antibiofilm and Antifungal Activity of Green Propolis against Candida Species in Dentistry Materials. PLoS ONE 2020, 15, e0228828. [Google Scholar] [CrossRef]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Simal-Gandara, J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients 2020, 12, 3360. [Google Scholar] [CrossRef]
- NIH PubChem. Melitten. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Melitten (accessed on 12 May 2025).
- Raghuraman, H.; Chattopadhyay, A. Melittin: A Membrane-Active Peptide with Diverse Functions. Biosci. Rep. 2007, 27, 189–223. [Google Scholar] [CrossRef] [PubMed]
- Eliaš, D.; Tóth Hervay, N.; Gbelská, Y. Ergosterol Biosynthesis and Regulation Impact the Antifungal Resistance and Virulence of Candida Spp. Stresses 2024, 4, 641–662. [Google Scholar] [CrossRef]
- Lee, S.-B. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida Albicans. J. Pharmacopuncture 2016, 19, 45. [Google Scholar] [CrossRef]
- Park, J.; Kwon, O.; An, H.-J.; Park, K.K. Antifungal Effects of Bee Venom Components on Trichophyton Rubrum: A Novel Approach of Bee Venom Study for Possible Emerging Antifungal Agent. Ann. Dermatol. 2018, 30, 202. [Google Scholar] [CrossRef]
- Marques Pereira, A.F.; Albano, M.; Bérgamo Alves, F.C.; Murbach Teles Andrade, B.F.; Furlanetto, A.; Mores Rall, V.L.; Delazari Dos Santos, L.; de Oliveira Orsi, R.; Fernandes Júnior, A. Influence of Apitoxin and Melittin from Apis Mellifera Bee on Staphylococcus aureus Strains. Microb. Pathog. 2020, 141, 104011. [Google Scholar] [CrossRef]
- Mirzaei, R.; Esmaeili Gouvarchin Ghaleh, H.; Ranjbar, R. Antibiofilm Effect of Melittin Alone and in Combination with Conventional Antibiotics toward Strong Biofilm of MDR-MRSA and-Pseudomonas aeruginosa. Front. Microbiol. 2023, 14, 1030401. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.; El-Wahed, A.A.; Yosri, N.; Musharraf, S.G.; Chen, L.; Moustafa, M.; Zou, X.; Al-Mousawi, S.; Guo, Z.; Khatib, A.; et al. Antimicrobial Properties of Apis Mellifera’s Bee Venom. Toxins 2020, 12, 451. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.G. Melittin Triggers Apoptosis in Candida Albicans through the Reactive Oxygen Species-Mediated Mitochondria/Caspase-Dependent Pathway. FEMS Microbiol. Lett. 2014, 355, 36–42. [Google Scholar] [CrossRef]
- Leandro, L.F.; Mendes, C.A.; Casemiro, L.A.; Vinholis, A.H.; Cunha, W.R.; De Almeida, R.; Martins, C.H. Antimicrobial Activity of Apitoxin, Melittin and Phospholipase A2 of Honey Bee (Apis mellifera) Venom against Oral Pathogens. An. Da Acad. Bras. De. Cienc. 2015, 87, 147–155. [Google Scholar] [CrossRef]
- Damianoglou, A.; Rodger, A.; Pridmore, C.; Dafforn, T.R.; Mosely, J.A.; Sanderson, J.M.; Hicks, M.R. The Synergistic Action of Melittin and Phospholipase A2 with Lipid Membranes: Development of Linear Dichroism for Membrane-Insertion Kinetics. Protein Pept. Lett. 2010, 17, 1351–1362. [Google Scholar] [CrossRef]
- Murillo, L.A.; Lan, C.-Y.; Agabian, N.M.; Larios, S.; Lomonte, B. Fungicidal Activity of a Phospholipase-A2-Derived Synthetic Peptide Variant against Candida Albicans. Rev. Esp. Quimioter. Publ. Soc. Esp. Quimioter. 2007, 20, 330–333. [Google Scholar]
- Lee, K.S.; Kim, B.Y.; Yoon, H.J.; Choi, Y.S.; Jin, B.R. Secapin, a Bee Venom Peptide, Exhibits Anti-Fibrinolytic, Anti-Elastolytic, and Anti-Microbial Activities. Dev. Comp. Immunol. 2016, 63, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Haktanir, I.; Masoura, M.; Mantzouridou, F.T.; Gkatzionis, K. Mechanism of Antimicrobial Activity of Honeybee (Apis Mellifera) Venom on Gram-Negative Bacteria: Escherichia Coli and Pseudomonas Spp. AMB Express 2021, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Jang, A.Y.; Lin, S.; Lim, S.; Kim, D.; Park, K.; Han, S.-M.; Yeo, J.-H.; Seo, H.S. Melittin, a Honeybee Venom-Derived Antimicrobial Peptide, May Target Methicillin-Resistant Staphylococcus aureus. Mol. Med. Rep. 2015, 12, 6483–6490. [Google Scholar] [CrossRef] [PubMed]
- Lamas, A.; Arteaga, V.; Regal, P.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Antimicrobial Activity of Five Apitoxins from Apis Mellifera on Two Common Foodborne Pathogens. Antibiotics 2020, 9, 367. [Google Scholar] [CrossRef]
- Reyad, A.M.; Ali, S.F.; Elkalamawy, I.M.; Radwan, T.E. Synergistic Effect of the Bee Venom with Traditional Antibiotics on Multi-Drug Resistant Bacteria. Egypt. J. Med. Microbiol. 2025, 34, 237–247. [Google Scholar] [CrossRef]
- El-Didamony, S.E.; Kalaba, M.H.; El-Fakharany, E.M.; Sultan, M.H.; Sharaf, M.H. Antifungal and Antibiofilm Activities of Bee Venom Loaded on Chitosan Nanoparticles: A Novel Approach for Combating Fungal Human Pathogens. World J. Microbiol. Biotechnol. 2022, 38, 244. [Google Scholar] [CrossRef]
- Elnosary, M.E.; Aboelmagd, H.A.; Habaka, M.A.; Salem, S.R.; El-Naggar, M.E. Synthesis of Bee Venom Loaded Chitosan Nanoparticles for Anti-MERS-COV and Multi-Drug Resistance Bacteria. Int. J. Biol. Macromol. 2023, 224, 871–880. [Google Scholar] [CrossRef]
- Han, S.M.; Kim, J.M.; Hong, I.P.; Woo, S.O.; Kim, S.G.; Jang, H.R.; Pak, S.C. Antibacterial Activity and Antibiotic-Enhancing Effects of Honeybee Venom against Methicillin-Resistant Staphylococcus aureus. Molecules 2016, 21, 79. [Google Scholar] [CrossRef]
- Kontogiannis, T.; Dimitriou, T.G.; Didaras, N.A.; Mossialos, D. Antiviral Activity of Bee Products. Curr. Pharm. Des. 2022, 28, 2867–2878. [Google Scholar] [CrossRef]
- UNAIDS. Fact Sheet 2024. Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 12 May 2025).
- WHO. The Global Health Observatory—HIV. Available online: https://www.who.int/data/gho/data/themes/hiv-aids (accessed on 12 May 2025).
- WHO. Influenza (Seasonal). Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 12 May 2025).
- Nayak, J.; Hoy, G.; Gordon, A. Influenza in Children. Cold Spring Harb. Perspect. Med. 2021, 11, a038430. [Google Scholar] [CrossRef]
- Clem, A.; Galwankar, S. Seasonal influenza: Waiting for the next pandemic. J. Glob. Infect. Dis. 2009, 1, 51–56. [Google Scholar] [CrossRef] [PubMed]
- WHO. COVID-19 Epidemiological Update—24 December 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update---24-december-2024 (accessed on 12 May 2025).
- Menkir, T.F.; Chin, T.; Hay, J.A.; Surface, E.D.; De Salazar, P.M.; Buckee, C.O.; Watts, A.; Khan, K.; Sherbo, R.; Yan, A.W.C.; et al. Estimating internationally imported cases during the early COVID-19 pandemic. Nat. Commun. 2021, 12, 311. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Sounds Alarm on Viral Hepatitis Infections Claiming 3500 Lives Each Day. Available online: https://www.who.int/news/item/09-04-2024-who-sounds-alarm-on-viral-hepatitis-infections-claiming-3500-lives-each-day (accessed on 12 May 2025).
- Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. Anti-Influenza Viral Effects of Honey in Vitro: Potent High Activity of Manuka Honey. Arch. Med. Res. 2014, 45, 359–365. [Google Scholar] [CrossRef]
- Behbahani, M. Anti-HIV-1 Activity of Eight Monofloral Iranian Honey Types. PLoS ONE 2014, 9, e108195. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Miłek, M.; Sidor, E.; Puchalski, C.; Dżugan, M. Antiviral and Antibacterial Effect of Honey Enriched with Rubus spp. as a Functional Food with Enhanced Antioxidant Properties. Molecules 2022, 27, 4859. [Google Scholar] [CrossRef]
- Mahyar, A.; Ayazi, P.; Shaftaroni, M.R.; Oveisi, S.; Dalirani, R.; Esmaeili, S. The Effect of Adding Honey to Zinc in the Treatment of Diarrhea in Children. Korean J. Fam. Med. 2022, 3, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Obossou, E.K.; Shikamoto, Y.; Hoshino, Y.; Kohno, H.; Ishibasi, Y.; Kozasa, T.; Taguchi, M.; Sakakibara, I.; Tonooka, K.; Shinozuka, T.; et al. Effect of manuka honey on human immunodeficiency virus type 1 reverse transcriptase activity. Nat. Prod. Res. 2022, 6, 1552–1557. [Google Scholar] [CrossRef]
- Miłek, M.; Grabek-Lejko, D.; Stępień, K.; Sidor, E.; Mołoń, M.; Dżugan, M. The enrichment of honey with Aronia melanocarpa fruits enhances its in vitro and in vivo antioxidant potential and intensifies its antibacterial and antiviral properties. Food Funct. 2021, 19, 8920–8931. [Google Scholar] [CrossRef] [PubMed]
- Barkhadle, N.I.; Mohamud, R.; Mat Jusoh, T.N.A.; Shueb, R.H. In vitro Evaluation of Anti-Chikungunya Virus Activities of Tualang Honey. Trop. Biomed. 2021, 1, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, K.; Ceylan, E.; Derelioğlu, G. Determination of Chestnut Honey Consumption Characteristics as a Traditional Treatment Method and Its Effect on Protection from COVID-19. Complement. Med. Res. 2022, 3, 205–212. [Google Scholar] [CrossRef]
- Kwon, E.B.; Kim, Y.S.; Han, S.M.; Kim, S.G.; Choi, J.G. The protective effect of Tilia amurensis honey on influenza A virus infection through stimulation of interferon-mediated IFITM3 signaling. Biomed. Pharmacother. 2022, 153, 113259. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.B.; Kim, S.G.; Kim, Y.S.; Kim, B.; Han, S.M.; Lee, H.J.; Choi, H.M.; Choi, J.G. Castanea crenata honey reduces influenza infection by activating the innate immune response. Front. Immunol. 2023, 14, 1157506. [Google Scholar] [CrossRef]
- Kwon, E.B.; Kim, Y.S.; Kim, B.; Kim, S.G.; Na, S.J.; Go, Y.; Choi, H.M.; Lee, H.J.; Han, S.M.; Choi, J.G. Korean Chestnut Honey Suppresses HSV-1 Infection by Regulating the ROS-NLRP3 Inflammasome Pathway. Antioxidants 2023, 11, 1935. [Google Scholar] [CrossRef]
- Ruoff, K.; Devant, J.M.; Hansman, G. Natural extracts, honey, and propolis as human norovirus inhibitors. Sci. Rep. 2022, 1, 8116. [Google Scholar] [CrossRef]
- Kwon, E.B.; Kim, B.; Kim, Y.E.; Na, S.J.; Han, S.M.; Woo, S.O.; Choi, H.M.; Moon, S.; Kim, Y.S.; Choi, J.G. Hovenia dulcis Thunb. Honey Exerts Antiviral Effect Against Influenza A Virus Infection Through Mitochondrial Stress-Mediated Enhancement of Innate Immunity. Antioxidants 2025, 1, 71. [Google Scholar] [CrossRef]
- Vynograd, N.; Vynograd, I.; Sosnowski, Z. A Comparative Multi-Centre Study of the Efficacy of Propolis, Acyclovir and Placebo in the Treatment of Genital Herpes (HSV). Phytomedicine 2000, 7, 1–6. [Google Scholar] [CrossRef]
- Yildirim, A.; Duran, G.G.; Duran, N.; Jenedi, K.; Bolgul, B.S.; Miraloglu, M.; Muz, M. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2. Med. Sci. Monit. 2016, 22, 422–430. [Google Scholar] [CrossRef]
- Münstedt, K. Bee Products and the Treatment of Blister-like Lesions around the Mouth, Skin and Genitalia Caused by Herpes Viruses—A Systematic Review. Complement. Ther. Med. 2019, 43, 81–84. [Google Scholar] [CrossRef]
- Shimizu, T.; Hino, A.; Tsutsumi, A.; Yong, K.P.; Watanabe, W.; Kurokawa, M. Anti-Influenza Virus Activity of Propolis in Vitro and Its Efficacy against Influenza Infection in Mice. Antivir. Chem. Chemother. 2008, 19, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Vilhelmova-Ilieva, N.M.; Nikolova, I.N.; Nikolova, N.Y.; Petrova, Z.D.; Trepechova, M.S.; Holechek, D.I.; Todorova, M.M.; Topuzova, M.G.; Ivanov, I.G.; Tumbarski, Y.D. Antiviral Potential of Specially Selected Bulgarian Propolis Extracts: In Vitro Activity against Structurally Different Viruses. Life 2023, 13, 1611. [Google Scholar] [CrossRef]
- Silveira, M.A.D.; Menezes, M.d.A.; de Souza, S.P.; Galvão, E.B.d.S.; Berretta, A.A.; Caldas, J.; Teixeira, M.B.; Gomes, M.M.D.; Damiani, L.P.; Bahiense, B.A.; et al. Standardized Brazilian Green Propolis Extract (EPP-AF®) in COVID-19 Outcomes: A Randomized Double-Blind Placebo-Controlled Trial. Sci. Rep. 2023, 13, 18405. [Google Scholar] [CrossRef]
- Serkedjieva, J.; Manolova, N.; Bankova, V. Anti-Influenza Virus Effect of Some Propolis Constituents and Their Analogues (Esters of Substituted Cinnamic Acids). J. Nat. Prod. 1992, 55, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Chang, F.R.; Wang, H.K.; Park, Y.K.; Ikegaki, M.; Kilgore, N.; Lee, K.H. Anti-AIDS Agents. 48.(1) Anti-HIV Activity of Moronic Acid Derivatives and the New Melliferone-Related Triterpenoid Isolated from Brazilian Propolis. J. Nat. Prod. 2001, 64, 1278–1281. [Google Scholar] [CrossRef]
- Harish, Z.; Rubinstein, A.; Golodner, M.; Elmaliah, M.; Mizrachi, Y. Suppression of HIV-1 Replication by Propolis and Its Immunoregulatory Effect. Drugs Exp. Clin. Res. 1997, 23, 89–96. [Google Scholar] [PubMed]
- Silva-Beltrán, N.P.; Galvéz-Ruíz, J.C.; Ikner, L.A.; Umsza-Guez, M.A.; de Paula Castro, T.L.; Gerba, C.P. In vitro antiviral effect of Mexican and Brazilian propolis and phenolic compounds against human coronavirus 229E. Int. J. Environ. Health Res. 2023, 12, 1591–1603. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Balderrama-Carmona, A.P.; Umsza-Guez, M.A.; Souza Machado, B.A. Antiviral effects of Brazilian green and red propolis extracts on Enterovirus surrogates. Environ. Sci. Pollut. Res. Int. 2020, 23, 28510–28517. [Google Scholar] [CrossRef]
- Alkhalefa, N.; Khaliel, S.; Tahoon, A.; Shaban, H.; Magouz, A.; Ghabban, H.; Lokman, M.S.; Elmahallawy, E.K. In vitro investigation of the antiviral activity of propolis and chitosan nanoparticles against the genotype VII Newcastle disease virus. Front. Vet. Sci. 2022, 9, 947641. [Google Scholar] [CrossRef] [PubMed]
- Sberna, G.; Biagi, M.; Marafini, G.; Nardacci, R.; Biava, M.; Colavita, F.; Piselli, P.; Miraldi, E.; D’Offizi, G.; Capobianchi, M.R.; et al. In vitro Evaluation of Antiviral Efficacy of a Standardized Hydroalcoholic Extract of Poplar Type Propolis Against SARS-CoV-2. Front. Microbiol. 2022, 13, 799546. [Google Scholar] [CrossRef]
- Ferrucci, V.; Miceli, M.; Pagliuca, C.; Bianco, O.; Castaldo, L.; Izzo, L.; Cozzolino, M.; Zannella, C.; Oglio, F.; Polcaro, A.; et al. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J. Transl. Med. 2024, 1, 574. [Google Scholar] [CrossRef]
- Cora, M.; Buruk, C.K.; Ünsal, S.; Kaklikkaya, N.; Kolayli, S. Chemical Analysis and in Vitro Antiviral Effects of Northeast Türkiye Propolis Samples against HSV-1. Chem. Biodivers. 2023, 8, e202300669. [Google Scholar] [CrossRef]
- Kosari, M.; Noureddini, M.; Khamechi, S.P.; Najafi, A.; Ghaderi, A.; Sehat, M.; Banafshe, H.R. The effect of propolis plus Hyoscyamus niger L. methanolic extract on clinical symptoms in patients with acute respiratory syndrome suspected to COVID-19: A clinical trial. Phytother. Res. 2021, 7, 4000–4006. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, R.Z.; Nascimento, R.M.; Fernandes, A.C.O.; Silva, P.I., Jr. Antiviral action of aqueous extracts of propolis from Scaptotrigona aff. postica (Hymenoptera; Apidae) against Zica, Chikungunya, and Mayaro virus. Sci. Rep. 2024, 1, 15289. [Google Scholar] [CrossRef]
- Sangboonruang, S.; Semakul, N.; Sookkree, S.; Kantapan, J.; Ngo-Giang-Huong, N.; Khamduang, W.; Kongyai, N.; Tragoolpua, K. Activity of Propolis Nanoparticles against HSV-2: Promising Approach to Inhibiting Infection and Replication. Molecules. 2022, 8, 2560. [Google Scholar] [CrossRef]
- Ma, X.; Guo, Z.; Li, Y.; Yang, K.; Li, X.; Liu, Y.; Shen, Z.; Zhao, L.; Zhang, Z. Phytochemical Constituents of Propolis Flavonoid, Immunological Enhancement, and Anti-porcine Parvovirus Activities Isolated From Propolis. Front. Vet. Sci. 2022, 9, 857183. [Google Scholar] [CrossRef]
- Refaat, H.; Mady, F.M.; Sarhan, H.A.; Rateb, H.S.; Alaaeldin, E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int. J. Pharm. 2021, 592, 120028. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.B.; Lee, B.H.; Nikapitiya, C.; Kim, J.H.; Kim, T.H.; Lee, H.C.; Kim, C.G.; Lee, J.S.; Kim, C.J. Inhibitory Effects of Bee Venom and Its Components against Viruses in Vitro and in Vivo. J. Microbiol. 2016, 54, 853–866. [Google Scholar] [CrossRef]
- Sarhan, M.; El-Bitar, A.M.H.; Hotta, H. Potent Virucidal Activity of Honeybee “Apis Mellifera” venom against Hepatitis C Virus. Toxicon 2020, 188, 55–64. [Google Scholar] [CrossRef]
- Hood, J.L.; Jallouk, A.P.; Campbell, N.; Ratner, L.; Wickline, S.A. Cytolytic Nanoparticles Attenuate HIV-1 Infectivity. Antivir. Ther. 2013, 18, 95–103. [Google Scholar] [CrossRef]
- Elfiky, A.A.; Elasmy, N.M.; Salama, W.H.; Morsy, A.T.A. Antiviral Effect Of The Egyptian Bee Venom (Bv) And Its Fraction (Pla2) On Influenza Virus: In-Vitro Study. J. Egypt. Soc. Parasitol. 2020, 50, 413–422. [Google Scholar] [CrossRef]
- Goswami, S.; Chowdhury, J.P. Antiviral Attributes of Bee Venom as a Possible Therapeutic Approach against SARS-CoV-2 Infection. Futur. Virol. 2023, 18, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.I.; Mohamed, A.F.; Amer, M.A.; Hammad, K.M.; Riad, S.A. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models. J. Egypt. Soc. Parasitol. 2015, 1, 193–198. [Google Scholar] [CrossRef]
- Kim, Y.W.; Chaturvedi, P.K.; Chun, S.N.; Lee, Y.G.; Ahn, W.S. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line. Oncol. Rep. 2015, 4, 1675–1682. [Google Scholar] [CrossRef]
- Abd El Maksoud, E.A.; Rady, M.H.; Mahmoud, A.G.T.; Hamza, D.; Seadawy, M.G.; Essa, E.E. Potential therapeutic biomolecules of hymenopteran venom against SARS-CoV-2 from Egyptian patients. Sci. Rep. 2024, 1, 15363. [Google Scholar] [CrossRef]
- Praphawilai, P.; Kaewkod, T.; Suriyaprom, S.; Panya, A.; Disayathanoowat, T.; Tragoolpua, Y. Anti-Herpes Simplex Virus and Anti-Inflammatory Activities of the Melittin Peptides Derived from Apis mellifera and Apis florea Venom. Insects 2024, 15, 109. [Google Scholar] [CrossRef] [PubMed]
- Almadani, Y.H.; Vorstenbosch, J.; Davison, P.G.; Murphy, A.M. Wound Healing: A Comprehensive Review. Semin. Plast. Surg. 2021, 35, 141–144. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound Repair and Regeneration. Eur. Surg. Res. Eur. Chir. Forsch. Rech. Chir. Eur. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from Inflammation to Proliferation: A Critical Step during Wound Healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef]
- Nader, R.A.; Mackieh, R.; Wehbe, R.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Beehive Products as Antibacterial Agents: A Review. Antibiotics 2021, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Jull, A.B.; Cullum, N.; Dumville, J.C.; Westby, M.J.; Deshpande, S.; Walker, N. Honey as a Topical Treatment for Wounds. Cochrane Database Syst. Rev. 2015, 2015, CD005083. [Google Scholar] [CrossRef] [PubMed]
- Takzaree, N.; Hassanzadeh, G.; Rouini, M.R.; Manayi, A.; Hadjiakhondi, A.; Majidi Zolbin, M. Evaluation of the Effects of Local Application of Thyme Honey in Open Cutaneous Wound Healing. Iran. J. Public Health 2017, 46, 545–551. [Google Scholar]
- Al-Kafaween, M.A.; Alwahsh, M.; Hilmi, A.B.M.; Abulebdah, D.H. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics 2023, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Mieles, J.Y.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef]
- Pleeging, C.C.; Wagener, F.A.; de Rooster, H.; Cremers, N.A. Revolutionizing non-conventional wound healing using honey by simultaneously targeting multiple molecular mechanisms. Drug Resist. Updat. 2022, 62, 100834. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Moradi, S. Honey: A Skin Graft Fixator Convenient for Both Patient and Surgeon. Indian J. Surg. 2015, 77, 863–867. [Google Scholar] [CrossRef]
- Yang, J.; Pi, A.; Yan, L.; Li, J.; Nan, S.; Zhang, J.; Hao, Y. Research Progress on Therapeutic Effect and Mechanism of Propolis on Wound Healing. Evid.-Based Complement. Altern. Med. 2022, 2022, 5798941. [Google Scholar] [CrossRef]
- Balderas-Cordero, D.; Canales-Alvarez, O.; Sánchez-Sánchez, R.; Cabrera-Wrooman, A.; Canales-Martinez, M.M.; Rodriguez-Monroy, M.A. Anti-Inflammatory and Histological Analysis of Skin Wound Healing through Topical Application of Mexican Propolis. Int. J. Mol. Sci. 2023, 24, 11831. [Google Scholar] [CrossRef]
- Xool-Tamayo, J.; Chan-Zapata, I.; Arana-Argaez, V.E.; Villa-de la Torre, F.; Torres-Romero, J.C.; Araujo-Leon, J.A.; Aguilar-Ayala, F.J.; Rejón-Peraza, M.E.; Castro-Linares, N.C.; Vargas-Coronado, R.F.; et al. In Vitro and in Vivo Anti-Inflammatory Properties of Mayan Propolis. Eur. J. Inflamm. 2020, 18, 2058739220935280. [Google Scholar] [CrossRef]
- Park, S.-H.; Song, S.-Y.; Park, E.-H.; Kim, E.; Oh, G.C.; Choo, E.H.; Hwang, B.-H.; Chang, K.; Oak, M.-H. Beneficial Effects of Caffeic Acid Phenethyl Ester on Wound Healing in a Diabetic Mouse: Role of VEGF and NO. Appl. Sci. 2022, 12, 2320. [Google Scholar] [CrossRef]
- Mujica, V.; Orrego, R.; Fuentealba, R.; Leiva, E.; Zúñiga-Hernández, J. Propolis as an Adjuvant in the Healing of Human Diabetic Foot Wounds Receiving Care in the Diagnostic and Treatment Centre from the Regional Hospital of Talca. J. Diabetes Res. 2019, 2019, 2507578. [Google Scholar] [CrossRef]
- Henshaw, F.R.; Bolton, T.; Nube, V.; Hood, A.; Veldhoen, D.; Pfrunder, L.; McKew, G.L.; Macleod, C.; McLennan, S.V.; Twigg, S.M. Topical Application of the Bee Hive Protectant Propolis Is Well Tolerated and Improves Human Diabetic Foot Ulcer Healing in a Prospective Feasibility Study. J. Diabetes Its Complicat. 2014, 28, 850–857. [Google Scholar] [CrossRef]
- Hozzein, W.N.; Badr, G.; Badr, B.M.; Allam, A.; Ghamdi, A.A.; Al-Wadaan, M.A.; Al-Waili, N.S. Bee Venom Improves Diabetic Wound Healing by Protecting Functional Macrophages from Apoptosis and Enhancing Nrf2, Ang-1 and Tie-2 Signaling. Mol. Immunol. 2018, 103, 322–335. [Google Scholar] [CrossRef]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxidative Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef]
- Olczyk, P.; Koprowski, R.; Kaźmierczak, J.; Mencner, L.; Wojtyczka, R.; Stojko, J.; Olczyk, K.; Komosinska-Vassev, K. Bee Pollen as a Promising Agent in the Burn Wounds Treatment. Evid.-Based Complement. Altern. Med. 2016, 2016, 8473937. [Google Scholar] [CrossRef] [PubMed]
- Siavash, M.; Shokri, S.; Haghighi, S.; Mohammadi, M.; Shahtalebi, M.A.; Farajzadehgan, Z. The Efficacy of Topical Royal Jelly on Diabetic Foot Ulcers Healing: A Case Series. J. Res. Med. Sci. 2011, 16, 904–909. [Google Scholar] [PubMed]
- Kim, J.; Kim, Y.; Yun, H.; Park, H.; Kim, S.Y.; Lee, K.-G.; Han, S.-M.; Cho, Y. Royal Jelly Enhances Migration of Human Dermal Fibroblasts and Alters the Levels of Cholesterol and Sphinganine in an in Vitro Wound Healing Model. Nutr. Res. Pract. 2010, 4, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, S.; Contreras-Kallens, P.; Aguayo, S.; Ramírez, O.; Vallejos, C.; Ruiz, J.; Carrasco-Gallardo, E.; Troncoso-Vera, S.; Morales, B.; Schuh, C.M.A.P. Royal Jelly Extracellular Vesicles Promote Wound Healing by Modulating Underlying Cellular Responses. Mol. Ther. Nucleic Acids 2023, 31, 541–552. [Google Scholar] [CrossRef]
- Andritoiu, C.V.; Lungu, C.; Danu, M.; Ivanescu, B.; Andriescu, C.E.; Vlase, L.; Havarneanu, C.; Iurciuc (Tincu), C.E.; Popa, M. Evaluation of the Healing Effect of Ointments Based on Bee Products on Cutaneous Lesions in Wistar Rats. Pharmaceuticals 2021, 14, 1146. [Google Scholar] [CrossRef] [PubMed]
- Javadi, S.M.R.; Hashemi, M.; Mohammadi, Y.; MamMohammadi, A.; Sharifi, A.; Makarchian, H.R. Synergistic Effect of Honey and Nigella Sativa on Wound Healing in Rats. Acta. Cir. Bras. 2018, 33, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Bayir, Y.; Un, H.; Ugan, R.A.; Akpinar, E.; Cadirci, E.; Calik, I.; Halici, Z. The Effects of Beeswax, Olive Oil and Butter Impregnated Bandage on Burn Wound Healing. Burn. J. Int. Soc. Burn. Inj. 2019, 45, 1410–1417. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, L.; Ran, X. Efficacy and Safety of Honey Dressings in the Management of Chronic Wounds: An Updated Systematic Review and Meta-Analysis. Nutrients 2024, 16, 2455. [Google Scholar] [CrossRef]
- Basavaiah, N.D.; Suryakanth, D.B. Propolis and Allergic Reactions. J. Pharm. Bioallied Sci. 2012, 4, 345. [Google Scholar] [CrossRef]
- Li, Y.-J.; Lin, J.-L.; Yang, C.-W.; Yu, C.-C. Acute Renal Failure Induced by a Brazilian Variety of Propolis. Am. J. Kidney Dis. 2005, 46, e125–e129. [Google Scholar] [CrossRef]
- Jung, J.W.; Jeon, E.J.; Kim, J.W.; Choi, J.C.; Shin, J.W.; Kim, J.Y.; Park, I.W.; Choi, B.W. A Fatal Case of Intravascular Coagulation after Bee Sting Acupuncture. Allergy Asthma Immunol. Res. 2012, 4, 107–109. [Google Scholar] [CrossRef]
- Cherniack, E.P.; Govorushko, S. To Bee or Not to Bee: The Potential Efficacy and Safety of Bee Venom Acupuncture in Humans. Toxicon 2018, 154, 74–78. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Ye, Y.; Wang, X.-R.; Lin, L.-T.; Xiao, L.-Y.; Zhou, P.; Shi, G.-X.; Liu, C.-Z. Bee Venom Therapy: Potential Mechanisms and Therapeutic Applications. Toxicon 2018, 148, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, M.J.; Tveten, M.S.; Egen, N.B. Rate and Quantity of Delivery of Venom from Honeybee Stings. J. Allergy Clin. Immunol. 1994, 93, 831–835. [Google Scholar] [CrossRef]
- de Graaf, D.C.; Braga, M.R.B.; de Abreu, R.M.M.; Blank, S.; Bridts, C.H.; De Clerck, L.S.; Devreese, B.; Ebo, D.G.; Ferris, T.J.; Hagendorens, M.M.; et al. Standard Methods for Apis Mellifera Venom Research. J. Apic. Res. 2021, 60, 1–31. [Google Scholar] [CrossRef]
- Manickavasagam, G.; Saaid, M.; Lim, V. Impact of Prolonged Storage on Quality Assessment Properties and Constituents of Honey: A Systematic Review. J. Food Sci. 2024, 89, 811–833. [Google Scholar] [CrossRef]
- Mahfouz, H.M.; El-Bassiony, M.N.; El-Bolok, D.M.R.; Mohamed, W.F.I. Antibacterial Activities of Honeybee Venom Produced under Different Storage Conditions. J. Plant Prot. Pathol. 2020, 11, 621–625. [Google Scholar] [CrossRef]
- Laconi, A.; Tolosi, R.; Mughini-Gras, L.; Mazzucato, M.; Ferrè, N.; Carraro, L.; Cardazzo, B.; Capolongo, F.; Merlanti, R.; Piccirillo, A. Beehive Products as Bioindicators of Antimicrobial Resistance Contamination in the Environment. Sci. Total. Environ. 2022, 823, 151131. [Google Scholar] [CrossRef] [PubMed]
- Özkırım, A.; Küçüközmen, B.; Çelemli, Ö.G. Impact of Sterilization Process on Chemical Composition and Antimicrobial Activity of Propolis. J. Apic. Res. 2019, 58, 780–787. [Google Scholar] [CrossRef]
Material | Microorganism | Assay | Key Results | Reference |
---|---|---|---|---|
Commercial therapeutic honeys: Manuka (Leptospermum scoparium), Rewa Rewa (Knightia excelsia), Medihoney™ Local honeys: Lavender (Lavandula x allardii), Red Stringybark (Eucalyptus macrorrhyncha), Paterson’s Curse (Echium plantagineum) | C. albicans, A. faecalis, C. freundii, E. coli, E. aerogenes, K. pneumoniae, M. phlei, S. california, S. enteritidis, S. typhimurium, S. marcescens, S. sonnei, S. aureus, S. epidermidis. | In vitro—agar dilution assay | Most tested honeys showed significant growth inhibition at 10–20% against all tested pathogens, except C. albicans and S. marcescens. Commercially therapeutic honeys outperformed local honeys. Medihoney™, manuka and red stingybark honeys were most effective against S. aureus and E. aerogenes strains. | [142] |
80 Australian Leptospermum spp. honeys | S. aureus ATCC 25923 | In vitro—catalase treated disc diffusion assay for non-peroxide antibacterial activity | The study revealed a strong correlation between methylglyoxal content and non-peroxide antibacterial activity against S. aureus. The methylglyoxal content of Australian Leptosperum spp. was found to be comparable to manuka honey from New Zealand. | [136] |
Medical-grade honey formulation | Clinical isolates of C. auris, C. albicans, C. glabrata, C. krusei, C. parapsilosis | In vitro—broth microdilution assay | Medical grade honey sample exhibited dose-dependent antifungal activity against C. auris, with no significant reduction in activity against multiresistant strains. Full formulation exhibited stronger activity than the honey component alone. | [139] |
Flavonoid extract of honey | C. albicans ATCC 10123 | In vitro—hyphal transition evaluation, determination of intracellular glutathione, glutathione metabolism enzymes activity evaluation | The extract significantly inhibited the dimorphic conversion of C. albicans, reducing reactive oxygen species generation and inhibiting c-glutamyl transpeptidase activity. | [140] |
Sidr honeys (Ziziphus spina-christi) with silver nanoparticles | B. subtilis, E. coli, P. aeruginosa, C. albicans | In vitro—agar diffusion assay | Three out of four honey samples exhibited significant synergistic effects with silver nanoparticles against all tested pathogen strains, except for B. subtilis. | [143] |
Manuka and pasture honey | S. aureus clinical isolates | In vitro—agar dilution assay | All 18 coagulase-negative isolates were inhibited by both honeys at 2.7–5% (v/v) concentration, while simulated honey control, with antibacterial activity limited to the osmotic effect, inhibited growth at concentrations above 20% (v/v). | [144] |
Honey from Melipona beecheii | C. albicans ATCC 1023 | In vitro—agar dilution assay, broth macrodilution assay, SEM study | Honey exhibited complete inhibition of C. albicans growth at ≥20% (v/v) and a fungicidal effect at 35% (v/v). At sublethal concentrations the honey caused extensive morphological changes in the structure of cell wall. | [145] |
Acacia mangium honey, Melaleuca cajaputi honey, Stingless bee (Trigona spp.) honey Ananas comosus honey and polyfloral Apis dorsata honey | S. aureus ATCC 25923, B. cereus ATCC 11778, E. coli ATCC 25922, P. aeruginosa ATCC 27853 | In vitro—agar diffusion assay, non-peroxide activity assay with catalase treatment | All honeys exhibited antibacterial activity, Melaleuca cajaputi honey had the strongest effect against all tested strains, while Acacia mangium proved the least effective. Honey samples with the most potent antibacterial effect possessed high non-peroxide activity. | [146] |
Manuka honey, Ulmo 90 honey (Eucryphia cordifolia), synthetic honey | Methicillin resistant S. aureus ATCC 43300 and 4 clinical isolates, E. coli ATCC 35218, P. aeruginosa ATCC 27853 | In vitro—agar diffusion assay, broth microdilution assay, non-peroxide activity assay with catalase treatment | Ulmo honey exhibited superior antibacterial activity against MRSA strains, compared to manuka honey. There was no significant difference in activity against Gram-negative strains. Antibacterial activity of ulmo honey was determined to be primarily peroxide dependent. | [134] |
Finnish monofloral honeys: Epilobium angustifolium, Calluna vulgaris, Fagopyrum esculentum, Rubus chamaemorus and Vaccinium vitis-idaea | S. pyogenes ATCC 8184 S. aureus ATCC 25923 Methicillin-resistant S. aureus ATCC 43300 S. pneumoniae (clinical isolate SB 53845) | In vitro—broth microdilution assay, | E. angustifolium, C. vulgaris and F. esculentum exhibited significant dose-dependent antibacterial activity, while R. chamaemorus and V. vitis-idaea demonstrated minimal to no inhibitory effect. | [133] |
Manukacare 18+ manuka honey—Leptospermum spp. | Epidemic methicillin resistant S. aureus EMRSA-15 NCTC 13142, P. aeruginosa NCIMB 8626 | In vitro-broth microdilution assay, E-strip test, disc diffusion assay and checkerboard assay for synergy assay, growth curve analysis | Honey exhibited an inhibitory effect against MRSA and P. aeruginosa. The synergistic effect with honey was observed for imipenem, mupirocin and tetracycline against MRSA. Against P. aeruginosa synergism was exhibited by tetracycline, rifampicin and colistin | [147] |
37 Polish monofloral honeys | S. aureus PCM 2051, S. epidermidis PCM 2118, P. aeruginosa ATCC 27853, E. coli K12 | In vitro-broth microdilution assay, | Out of the tested honey samples, cornflower, thyme, buckwheat and tansy phacelia honeys exhibited the strongest inhibitory effect, especially against staphylococci. The antibacterial effect was strongly correlated to honey color and phenolic content. Some samples presented greater antibacterial potency than manuka honey. Antibacterial activity was determined to be primarily hydrogen peroxide dependent. | [148] |
16 Thai monofloral honeys | Skin disease pathogens: S. aureus, methicillin resistant S. aureus, S. epidermidis, Corynebacterium sp., B. subtilis, M. luteus, P. acnes, P. aeruginosa, | In vitro-agar diffusion assay, broth microdilution assay, time-kill assays | Out of the tested samples, longan honey exhibited the strongest antibacterial effect, especially against all tested MRSA strains. M, luteus, B. subtilis, S. epidermidis and P. aeruginosa were not inhibited by any of the honey samples. | [149] |
3 Turkish monofloral honeys and one multifloral | Clinical isolates of C. albicans, C. glabrata, C. krusei, Trichosporon spp. | In vitro-broth microdilution assays | All analyzed samples exhibited an antifungal effect at low concentrations. According to the MIC values achieved, in terms of overall level of activity, the multifloral sample was stronger in comparison to the monofloral samples. | [150] |
11 Danish floral honeys (incl. Water Mint—Mentha aquatica, Linden—Tilia cordata, Organic mix), commercial processed honey (Jakobsens), raw and medical-grade Manuka (Leptospermum scoparium) | Staphylococcus aureus (2 strains), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli | In vitro-agar-well diffusion assay | All honeys except commercial processed honey exhibited antibacterial activity. Water Mint, Linden, and Organic honeys showed the strongest effect, greater than Manuka honeys. Antibacterial effect correlated with hydrogen peroxide content rather than methylglyoxal. | [151] |
Honey (floral origin not specified) | Escherichia coli ATCC 25922 | In vitro-agar plate assay, liquid culture; in vivo-E. coli-inoculated rats | Honey inhibited E. coli growth in both solid and liquid media. In rats, honey feeding reduced bacterial load in feces compared to controls. Honey also increased intestinal SCFA concentration. | [152] |
Honey from Iyale, Kogi State, Nigeria | Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Staphylococcus aureus, Proteus mirabilis | In vitro-agar well diffusion assay, MIC and MBC determination | Honey showed significant antibacterial activity at 100% and 75%, weaker at 50%. MIC: 1.57–6.25 mg/mL, MBC: 3.13–12.5 mg/mL. Suggests potential for treating wound infections. | [153] |
Ethiopian honeys—Apis mellifera (white and yellow), stingless bee honey | Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, MRSA, resistant E. coli, Klebsiella pneumoniae (R) | In vitro-agar diffusion (Mueller Hinton), broth culture, MIC and MBC determination | Stingless bee honey had highest inhibition (22.27 mm) and lowest MIC (6.25%). All honeys bactericidal at MBC = 12.5 mg/mL. Resistant strains were susceptible to honey. | [154] |
Four local honeys (“honey-2”) | MRSA clinical isolates from wound infections | In vitro-disc diffusion, broth dilution (MIC, MBC) | All honeys active against MRSA. “Honey-2” was most effective (MIC/MBC 9.38–37.5%). Honey showed both bacteriostatic and bactericidal activity. | [155] |
Rape honey enriched with Rubus spp. fruits (1%, 4%) and leaves (0.5%, 1%) | Staphylococcus aureus (planktonic and biofilm), Escherichia coli, bacteriophage phi 6 (viral surrogate) | In vitro-antibacterial (including biofilm), antiviral (phage test), antioxidant profiling (HPTLC, HPLC) | Rubus-enriched honey showed higher antioxidant, antibacterial and antiviral activity than plain rape honey. Best effects for 4% raspberry fruit and 1% blackberry leaf. Strong inhibition of S. aureus biofilm. | [156] |
Material | Microorganism | Assay | Key Results | Reference |
---|---|---|---|---|
Rape honey + Rubus fruits/leaves | Bacteriophage phi6 | Double agar overlay plaque assay | 4% raspberry addition: ≥7.4 log10 PFU/mL reduction after 24 h. | [231] |
Manuka honey | HIV-1 (RT) | Colorimetric HIV-1 RT inhibition assay | IC50 ≈ 14.8 mg/mL; inhibition due to MGO and 2-MBA. | [232] |
Tualang honey | Chikungunya virus (CHIKV) | In vitro XTT + plaque assays (pre/post/virucidal) | Up to 99.71% inhibition via multiple mechanisms. | [233] |
Chestnut honey | SARS-CoV-2 (COVID-19) | Questionnaire-based survey (n = 177) | No significant link between use and COVID-19 outcome. | [234] |
Tilia amurensis honey | Influenza A virus (IAV) | In vitro macrophage assays (cytokines, IFN signaling) | Inhibited replication via IFN-1 and IFITM3 activation. | [235] |
Castanea crenata honey | Influenza A virus (IAV) | In vitro + in vivo (mice): viral load, survival, inflammation | ↑ survival by 60%, ↓ virus/inflammation, RIG-I/MAVS activation. | [236] |
Korean Chestnut Honey (KCH) | Herpes simplex virus 1 (HSV-1) | In vitro: host cell assays, cytokines, inflammasome | Inhibited HSV-1 binding/replication, ↓ ROS, NF-κB, NLRP3. | [237] |
Honey + Acyclovir | Herpes simplex virus 1 (HSV-1) | Systematic review of clinical trials | Weak evidence of improved healing with combination therapy. | [238] |
Honey + Chokeberry fruit | Bacteriophage phi6 | In vitro plaque assay; in vivo yeast oxidative stress test | ↑ antiviral and antioxidant effect; 1–4% chokeberry effective. | [239] |
Various honey samples | Norovirus VLPs (GII.4, GII.10) | HBGA binding inhibition assay; DLS; electron microscopy | Several honeys showed weak HBGA binding inhibition; stronger effect seen with propolis and date syrup. | [240] |
Hovenia dulcis honey (HDH) | Influenza A virus (IAV) | In vitro: RAW 264.7 murine macrophages (viral proteins, IFN, ROS) | HDH inhibited viral replication, enhanced IFN-β via cGAS-STING-STAT1/2 pathway, reduced ROS via Sirt3/SOD2 upregulation. | [241] |
Material | Microorganism | Assay | Key Results | Reference |
---|---|---|---|---|
Brown (Mexico), green and red (Brazil) propolis extracts; quercetin, caffeic acid, rutin | HCoV-229E | In vitro infection of MRC-5 lung fibroblast cells; cytotoxicity and antiviral activity (EC50, TC50) | All samples showed antiviral activity; green and brown propolis and quercetin had best EC50 values (19.08, 11.24, 77.21 µg/mL, respectively) | [251] |
Bulgarian propolis extracts (6 samples) | HCoV OC-43, HRSV-2, HSV-1, HRV-14, HadV-5 | In vitro CPE inhibition assay; virucidal activity; adsorption inhibition; cell protection tests | Strongest antiviral effect observed against HCoV OC-43; greater effect on enveloped viruses; significant inhibition of HSV-1 and partial inhibition of coronavirus adsorption; some extracts showed protective effect on host cells when applied pre-infection | [246] |
Brazilian red and green propolis extracts (conventional and ultrasound-assisted extraction) | Bacteriophages MS2 and Av-08 | In vitro assay measuring plaque-forming unit (PFU) reduction | Red and green propolis reduced MS2 and Av-08 titers by ~3 and ~4.5 Log10 PFU/mL, respectively; red propolis more effective; ultrasound-assisted extraction enhanced activity | [252] |
Propolis, chitosan nanoparticles, propolis–chitosan mixture | Newcastle disease virus (NDV) isolates MW881875 and MW881876 | In vitro TCID50 assay on Vero cells; cytotoxicity evaluation | All tested materials showed antiviral activity; propolis at 13 µg/mL reduced viral titer by 2.66 log10; propolis–chitosan mixture reduced by 2.5 log10; cytotoxic concentrations determined for each | [253] |
Standardized hydroalcoholic extract of Eurasian poplar-type propolis (sHEP); caffeic acid phenethyl ester, galangin, pinocembrin | SARS-CoV-2 | In vitro infection of VERO E6 and CALU3 cells; RNA quantification; microscopy; viral titration | sHEP reduced replication, cytopathic effects, and viral RNA levels; effects seen mainly in CALU3 cells; combination of three major components showed similar antiviral activity; pre-treatment protected cells but did not block viral entry | [254] |
Nutraceutical formula (Solution-3) containing propolis, Verbascum thapsus, Thymus vulgaris, and polyphosphates | SARS-CoV-2 (EG.5), Influenza A (FLU-A), RSV-A | In vitro infection assays (qPCR); MIC/MBC testing; transcriptomic and ELISA analysis | Exhibited antiviral, antibacterial, and antifungal activity; enhanced innate immune responses via modulation of cytokines, chemokines, antimicrobial peptides, and complement; potential as prophylactic agent against viral and polymicrobial infections, including co-infections in COVID-19 patients | [255] |
Ethanolic Anatolian propolis extracts (Pazar, Ardahan, Uzungöl) | Herpes simplex virus type 1 (HSV-1) | In vitro MTT assay, qRT-PCR, plaque reduction test; HPLC-UV phenolic profiling | All samples showed antiviral activity; higher phenolic content correlated with stronger inhibition of HSV-1; total phenolics ranged 44.12–166.91 mg GAE/g; flavonoids 12.50–41.58 mg QUE/g | [256] |
Syrup containing propolis (450 mg/10 mL) and Hyoscyamus niger extract (1.6 mg/10 mL) | SARS-CoV-2 (COVID-19 patients) | Randomized clinical trial (n = 50); symptom monitoring over 6 days | Significant improvement of COVID-19 symptoms (e.g., cough, sore throat, chest pain, fever) vs. placebo; no effect on nausea or vomiting; suggests therapeutic benefit in mild-to-moderate cases | [257] |
Aqueous extract and purified fractions of propolis from Scaptotrigona aff. postica | Zika virus, Chikungunya virus, Mayaro virus | In vitro infection of VERO cells; focus reduction assay; HPLC and mass spectrometry characterization | Crude extract reduced Zika (64×), Mayaro (128×), and Chikungunya (256× at 5% v/v); purified compound reduced Zika (16×), Mayaro (32×), Chikungunya (512×); strongest effect when added 2 h post-infection; antiviral effect was concentration dependent | [258] |
Ethanol extract of propolis (EEP) encapsulated in PLGA–chitosan nanoparticles (EEP-NPs) | Herpes simplex virus type 2 (HSV-2) | In vitro Vero cell assay; cytotoxicity; gene expression analysis (ICP4, ICP27, gB) | EEP-NPs had low cytotoxicity and strong antiviral activity; inactivated viral particles; inhibited entry and release; reduced HSV-2 replication gene expression; showed sustained release profile | [259] |
Propolis flavonoid ethanolic extract (PF); ferulic acid | Porcine parvovirus (PPV) | UPLC-QTOF-MS; in vitro antiviral screening; in vivo vaccine adjuvant test in sows | PF showed anti-PPV activity; ferulic acid identified as active component; PF enhanced vaccine-induced humoral (IgM, IgG) and cellular responses (IL-2, IL-4, IFN-γ) in sows; strongest adjuvant effect on Th1/Th2 responses and lymphocyte proliferation | [260] |
Liposomal formulation of Egyptian propolis (optimized via response surface methodology); rutin; CAPE | SARS-CoV-2 | Molecular docking (3CL protease, spike S1); IC50 assay; RT-PCR for viral replication inhibition | Liposomes enhanced antiviral activity vs. crude extract; IC50 of liposomes = 1.183 µg/mL vs. 2.452 µg/mL for extract (p < 0.001); liposomal propolis significantly inhibited SARS-CoV-2 replication; effect comparable to remdesivir (p < 0.0001) | [261] |
Material | Microorganism | Assay | Key Results | Reference |
---|---|---|---|---|
Bee ventom (BV) | MERS-CoV (Middle East respiratory syndrome coronavirus) | Cytopathic effect (CPE) inhibition assay | Crude BV showed mild anti-MERS-CoV activity (SI = 4.6) | [218] |
Bee venom (BV), melittin (MLT) | Influenza A (H1N1), VSV, RSV, HSV, Enterovirus-71, Coxsackievirus (H3) | In vitro viral replication inhibition; in vivo mouse protection assay | BV and MLT inhibited replication of enveloped and non-enveloped viruses; MLT protected mice against lethal Influenza A | [262] |
Bee venom (BV) | Adenovirus-7 (DNA virus), Rift Valley fever virus—RVFV (RNA virus) | End point calculation assay (virus depletion titer) | BV showed strong antiviral activity against Adeno-7 (1.66 log10/mL) and RVFV (3.34 log10/mL), superior to interferon | [267] |
Bee venom (BV) | Human papillomavirus (HPV-16, HPV-18) | In vitro and in vivo assays (cell proliferation, mRNA/protein expression) | BV downregulated HPV16 E6/E7 expression and suppressed growth of HPV16-infected CaSki and TC-1 cells; weaker effect on HPV18-infected HeLa cells | [268] |
Bee venom (BV) | SARS-CoV-2 | Immunodiagnostic antigen titer reduction; plaque reduction assay | BV showed antiviral activity (EC90 = 2.23 mg/mL); less potent than wasp venom | [269] |
Bee venom (BV) | Hepatitis C virus (HCV, genotype 2a) | In vitro cell culture (Huh7it-1 cells, JFH1 strain); IC50 and CC50 determination | BV inhibited HCV entry with IC50 = 0.05 ng/mL; CC50 = 20,000 ng/mL; no effect from major components (melittin, apamin, MCD); antiviral action likely from minor venom components | [263] |
Bee venom sPLA2 | HIV-1 (macrophage- and T cell-tropic strains) | HIV-1 replication inhibition in human leukocytes; intracellular capsid release | sPLA2 from bee venom inhibited HIV-1 replication (ID50 < 1 nM); effect independent of enzymatic activity; involved specific binding to host cells | [270] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grinn-Gofroń, A.; Kołodziejczak, M.; Hrynkiewicz, R.; Lewandowski, F.; Bębnowska, D.; Adamski, C.; Niedźwiedzka-Rystwej, P. Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom. Pathogens 2025, 14, 780. https://doi.org/10.3390/pathogens14080780
Grinn-Gofroń A, Kołodziejczak M, Hrynkiewicz R, Lewandowski F, Bębnowska D, Adamski C, Niedźwiedzka-Rystwej P. Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom. Pathogens. 2025; 14(8):780. https://doi.org/10.3390/pathogens14080780
Chicago/Turabian StyleGrinn-Gofroń, Agnieszka, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski, and Paulina Niedźwiedzka-Rystwej. 2025. "Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom" Pathogens 14, no. 8: 780. https://doi.org/10.3390/pathogens14080780
APA StyleGrinn-Gofroń, A., Kołodziejczak, M., Hrynkiewicz, R., Lewandowski, F., Bębnowska, D., Adamski, C., & Niedźwiedzka-Rystwej, P. (2025). Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom. Pathogens, 14(8), 780. https://doi.org/10.3390/pathogens14080780