Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (941)

Search Parameters:
Keywords = drug design and synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2027 KiB  
Review
Harnessing the Loop: The Perspective of Circular RNA in Modern Therapeutics
by Yang-Yang Zhao, Fu-Ming Zhu, Yong-Juan Zhang and Huanhuan Y. Wei
Vaccines 2025, 13(8), 821; https://doi.org/10.3390/vaccines13080821 (registering DOI) - 31 Jul 2025
Abstract
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and [...] Read more.
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and modular delivery platforms are accelerating clinical translation. In this review, we synthesize recent advances in circRNA therapeutics, with a focused analysis of their stability and immunogenic properties in vaccine and drug development. Notably, key synthesis strategies, delivery platforms, and AI-driven optimization methods enabling scalable production are discussed. Moreover, we summarize preclinical and emerging clinical studies that underscore the potential of circRNA in vaccine development and protein replacement therapies. As both a promising expression vehicle and programmable regulatory molecule, circRNA represents a versatile platform poised to advance next-generation biologics and precision medicine. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

11 pages, 2661 KiB  
Communication
Fluorinated Ethers of Cannabinol (CBN)
by Urvashi, Melvin Druelinger, John Hatfield and Kenneth J. Olejar
Chemistry 2025, 7(4), 125; https://doi.org/10.3390/chemistry7040125 - 30 Jul 2025
Abstract
The difluoromethoxy (OCF2H) and trifluoromethoxy (OCF3) fluorinated structural motifs are frequently seen as privileged functional groups in the field of medicinal chemistry and are regularly taken into account during the design and development processes of successful drugs. This paper [...] Read more.
The difluoromethoxy (OCF2H) and trifluoromethoxy (OCF3) fluorinated structural motifs are frequently seen as privileged functional groups in the field of medicinal chemistry and are regularly taken into account during the design and development processes of successful drugs. This paper presents the synthesis of four new fluorinated etheric derivatives of cannabinol (CBN) using fluorine chemistry. These reactions are straightforward in terms of operation and make use of easily obtainable reagents, making them suitable for the synthesis of various fluorinated CBN ethers with yields ranging from moderate to excellent. We successfully isolated all the products and characterized them in detail using spectroscopic methods. It is anticipated that they will increase the efficacy of drug candidates due to their ability to alter biological activities such as cellular membrane permeability and metabolic stability and improve their pharmacokinetic properties. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 1941 KiB  
Article
Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
by Stefan Richter, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr and Goran N. Kaluđerović
Inorganics 2025, 13(8), 253; https://doi.org/10.3390/inorganics13080253 - 27 Jul 2025
Viewed by 292
Abstract
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) [...] Read more.
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) complexes (cis-[Pt(COMe)2(PASO2)2], cis-[Pt(COMe)2(DAPTA)2], trans-[Pt(COMe)Cl(DAPTA)2], and trans-[Pt(COMe)Cl(PASO2)]: 14, respectively) bearing cage phosphine ligands PASO2 (2-thia-1,3,5-triaza-phosphaadamantane 2,2-dioxide) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) are presented. The coordination geometries and NMR spectral features of the cis/trans isomers were elucidated through multinuclear NMR and DFT calculations at the B3LYP/6-311++G(d,p)/LanL2DZ level, with strong agreement between experimental and theoretical data. Quantum Theory of Atoms in Molecules (QTAIM) analysis was applied to investigate bonding interactions and assess the covalent character of Pt–ligand bonds. Cytotoxicity was evaluated against five human cancer cell lines. The PASO2-containing complex in cis-configuration, 1, demonstrated superior activity against thyroid (8505C) and head and neck (A253) cancer cells, with potency surpassing that of cisplatin. The DAPTA complex 2 showed enhanced activity toward ovarian (A2780) cancer cells. These findings highlight the influence of ligand structure and isomerism on biological activity, supporting the rational design of phosphine-based Pt(II) anticancer drugs. Full article
Show Figures

Figure 1

16 pages, 776 KiB  
Article
Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine
by Essie Komla, Erwin G. Abucayon, C. Steven Godin, Agnieszka Sulima, Arthur E. Jacobson, Kenner C. Rice and Gary R. Matyas
Vaccines 2025, 13(8), 792; https://doi.org/10.3390/vaccines13080792 - 26 Jul 2025
Viewed by 317
Abstract
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to [...] Read more.
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to combat OUD and potentially reduce the risk of overdose death. The TT-6-AmHap heroin conjugate vaccine has effectively reduced heroin-induced pharmacological effects in behavioral assays as well as demonstrated the induction of high titer and high affinity antibody responses in mice and rats. In this GLP study conducted in rabbits, the potential local and systemic toxicity of the TT-6-AmHap heroin vaccine in combination with or without adjuvants ALF43 and Alhydrogel® (ALFA) was investigated. Methods: Male and female New Zealand White rabbits were administered with vaccines or a saline control intramuscularly at two-week intervals over a 57-day study period. The presence, persistence or reversibility of any toxic effects of the vaccine was determined over a four-week recovery period. Results: Administration of TT-6-AmHap with or without the adjuvants induced high antibody-specific IgG in treatment groups compared to the controls. The study found no TT-6-AmHap-related effects on mortality, physical examinations, dermal Draize observations, body weights, body weight changes, food consumption, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, and urinalysis), macroscopic pathology, or organ weights. Conclusions: Under the conditions of this study, these results demonstrate that the TT-6-AmHap vaccine with or without adjuvants was well tolerated, immunogenic, and the effects were not considered adverse in both male and female rabbits. Full article
(This article belongs to the Section Vaccines and Public Health)
Show Figures

Graphical abstract

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 400
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

7 pages, 636 KiB  
Short Note
Benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate
by Lucrezia Spinelli, Matteo Mori and Laura Fumagalli
Molbank 2025, 2025(3), M2040; https://doi.org/10.3390/M2040 - 21 Jul 2025
Viewed by 398
Abstract
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties [...] Read more.
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties make them indispensable in drug design. This study focuses on the synthesis of a key heterocyclic intermediate: benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate. This molecule incorporates a thiazole ring, known for its rigidity and electronic properties, that enhances target interactions. The 2-position bears a Cbz-protected amine, enabling orthogonal deprotection, while the 4-position features a hydroxyethyl side chain, providing a handle for further chemical modifications via nucleophilic substitution. Herein, we report the successful synthesis of this intermediate along with its full 1H and 13C NMR spectra, melting point, and crystal structure, confirming its identity and purity. Full article
Show Figures

Figure 1

21 pages, 3089 KiB  
Article
Design, Synthesis, and Evaluation of 1-Benzylpiperidine and 1-Benzoylpiperidine Derivatives as Dual-Target Inhibitors of Acetylcholinesterase and Serotonin Transporter for Alzheimer′s Disease
by Juan Pablo González-Gutiérrez, Damián Castillo-Ríos, Víctor Ríos-Campos, Ignacio Alejandro González-Gutiérrez, Dánae Flores Melivilu, Emilio Hormazábal Uribe, Felipe Moraga-Nicolás, Kerim Segura, Valentina Hernández, Amaury Farías-Cea, Hernán Armando Pessoa-Mahana, Miguel Iván Reyes-Parada and Patricio Iturriaga-Vásquez
Molecules 2025, 30(14), 3047; https://doi.org/10.3390/molecules30143047 - 21 Jul 2025
Viewed by 578
Abstract
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from [...] Read more.
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from depression, frequently treated with selective serotonin reuptake inhibitors (SSRIs). Due to the multisymptomatic nature of AD, there is a growing interest in developing multitargeted ligands that simultaneously enhance cholinergic and serotonergic tone. This study presents the synthesis of novel ligands based on functionalized piperidines, evaluated through radioligand binding assays at the serotonin transporter (SERT) and AChE and butyrylcholinesterase (BuChE) inhibition. The pharmacological results showed that some compounds exhibited moderate inhibitory activity against AChE, with one compound 19 standing out as the most potent, also displaying a moderate BuChE inhibitory activity, while showing low affinity for SERT. On the other hand, compound 21 displayed an interesting polypharmacological profile, with good and selective activity against BuChE and SERT. The results underscore the difficulty of designing promiscuous ligands for these targets and suggest that future structural modifications could optimize their therapeutic potential in AD. Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurodegenerative Disorders—2nd Edition)
Show Figures

Graphical abstract

32 pages, 3865 KiB  
Article
Purine–Hydrazone Scaffolds as Potential Dual EGFR/HER2 Inhibitors
by Fatemah S. Albalawi, Mashooq A. Bhat, Ahmed H. Bakheit, A. F. M. Motiur Rahman, Nawaf A. Alsaif, Alan M. Jones and Isolda Romero-Canelon
Pharmaceuticals 2025, 18(7), 1051; https://doi.org/10.3390/ph18071051 - 17 Jul 2025
Viewed by 473
Abstract
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 6 [...] Read more.
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 624 (a,b), as anticancer agents targeting EGFR and HER2 kinases. Methods: The proposed compounds were initially screened in silico using molecular docking to investigate their binding affinity to the active sites of EGFR and HER2 kinase domains. Subsequently, the compounds were synthesized and evaluated in vitro for their antiproliferative activity, using the MTT assay, against the various cancer cell lines A549, SKOV-3, A2780, and SKBR-3, with lapatinib as the reference drug. The most active derivatives were then examined to determine their inhibitory activity against EGFR and HER2 kinases. Results: Among the assessed compounds, significant antiproliferative activity was demonstrated by 19a, 16b, and 22b. 19a exhibited substantial anticancer efficacy against A549 and SKBR-3, with IC50 values of 0.81 µM and 1.41 µM, respectively. This activity surpassed lapatinib, which has an IC50 of 11.57 µM on A549 and 8.54 µM on SKBR-3 cells. Furthermore, 19a, 16b, and 22b exhibited superior EGFR inhibitory efficacy compared with lapatinib (IC50 = 0.13 µM), with IC50 values of 0.08, 0.06, and 0.07 µM, respectively. Regarding HER2, 22b demonstrated the greatest potency with an IC50 of 0.03 µM, equipotent to lapatinib (IC50 = 0.03 µM). Flow cytometry analysis of A549 cells treated with 19a and 22b indicated their ability to arrest the cell cycle during the G1 phase and to trigger cellular apoptosis. Conclusions: Compounds 19a, 16b, and 22b represent intriguing candidates for the development of an anticancer agent targeting EGFR and HER2 kinases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

7 pages, 806 KiB  
Communication
Two Cocrystals of Phenazine with Different Phenylboronic Acids
by Stijn Germonpré, Subhrajyoti Bhandary and Kristof Van Hecke
Molbank 2025, 2025(3), M2036; https://doi.org/10.3390/M2036 - 14 Jul 2025
Viewed by 337
Abstract
Boronic acids are an important class of molecules diversely used in organic synthesis, catalysis, medicinal chemistry, and for the design of functional materials. Particularly, aryl boronic acids in the solid state are known to exhibit pharmaceutical and photoluminescent properties for antimicrobial, sensing, and [...] Read more.
Boronic acids are an important class of molecules diversely used in organic synthesis, catalysis, medicinal chemistry, and for the design of functional materials. Particularly, aryl boronic acids in the solid state are known to exhibit pharmaceutical and photoluminescent properties for antimicrobial, sensing, and drug delivery applications. Furthermore, the phenazine molecule is known for its diverse pharmacological properties, including antibiotic activity. In the case of molecular crystalline solids, it is well established that understanding noncovalent interactions remains key to designing or engineering their functional properties. While both aryl boronic acids and phenazine molecules individually represent an important class of compounds, their co-assembly in the crystalline state is of interest within the context of supramolecular chemistry and crystal engineering. Herein, we report the supramolecular features of two newly synthesized cocrystals, which are composed of para-F/CF3-substituted phenylboronic acids, respectively, and phenazine, as demonstrated by structure analysis by single-crystal X-ray diffraction. Full article
Show Figures

Figure 1

22 pages, 1305 KiB  
Review
Hydrogel Conjugation: Engineering of Hydrogels for Drug Delivery
by Linh Dinh, Sung-Joo Hwang and Bingfang Yan
Pharmaceutics 2025, 17(7), 897; https://doi.org/10.3390/pharmaceutics17070897 - 10 Jul 2025
Viewed by 580
Abstract
Background: Hydrogels are 3D networks of hydrophilic polymers with various biomedical applications, including tissue regeneration, wound healing, and localized drug delivery. Hydrogel conjugation links therapeutic agents to a hydrogel network, creating a delivery system with adjustable and flexible hydrogel properties and drug [...] Read more.
Background: Hydrogels are 3D networks of hydrophilic polymers with various biomedical applications, including tissue regeneration, wound healing, and localized drug delivery. Hydrogel conjugation links therapeutic agents to a hydrogel network, creating a delivery system with adjustable and flexible hydrogel properties and drug activity, allowing for controlled release and enhanced drug stability. Conjugating therapeutic agents to hydrogels provides innovative delivery formats, including injectable and sprayable dosage forms, which facilitate localized and long-lasting delivery. This approach enables non-viral therapeutic methods, such as insertional mutagenesis, and minimally invasive drug administration. Scope and Objectives: While numerous reviews have analyzed advancements in hydrogel synthesis, characterization, properties, and hydrogels as a drug delivery vehicle, this review focuses on hydrogel conjugation, which enables the precise functionalization of hydrogels with small molecules and macromolecules. Subsequently, a description and discussion of several bio-conjugated hydrogel systems, as well as binding motifs (e.g., “click” chemistry, functional group coupling, enzymatic ligation, etc.) and their potential for clinical translation, are provided. In addition, the integration of therapeutic agents with nucleic acid-based hydrogels can be leveraged for sequence-specific binding, representing a leap forward in biomaterials. Key findings: Special attention was given to the latest conjugation approaches and binding motifs that are useful for designing hydrogel-based drug delivery systems. The review systematically categorizes hydrogel conjugates for drug delivery, focusing on conjugating hydrogels with major classes of therapeutic agents, including small-molecule drugs, nucleic acids, proteins, etc., each with distinct conjugation challenges. The design principles were discussed along with their properties and drug release profiles. Finally, future opportunities and current limitations of conjugated hydrogel systems are addressed. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

24 pages, 1889 KiB  
Article
In Silico Approach for Early Antimalarial Drug Discovery: De Novo Design of Virtual Multi-Strain Antiplasmodial Inhibitors
by Valeria V. Kleandrova, M. Natália D. S. Cordeiro and Alejandro Speck-Planche
Microorganisms 2025, 13(7), 1620; https://doi.org/10.3390/microorganisms13071620 - 9 Jul 2025
Viewed by 324
Abstract
Plasmodium falciparum is the causative agent of malaria, a parasitic disease that affects millions of people in terms of prevalence and is associated with hundreds of thousands of deaths. Current antimalarial medications, in addition to exhibiting moderate to serious adverse reactions, are not [...] Read more.
Plasmodium falciparum is the causative agent of malaria, a parasitic disease that affects millions of people in terms of prevalence and is associated with hundreds of thousands of deaths. Current antimalarial medications, in addition to exhibiting moderate to serious adverse reactions, are not efficacious enough due to factors such as drug resistance. In silico approaches can speed up the discovery and design of new molecules with wide-spectrum antimalarial activity. Here, we report a unified computational methodology combining a perturbation theory machine learning model based on multilayer perceptron networks (PTML-MLP) and the fragment-based topological design (FBTD) approach for the prediction and design of novel molecules virtually exhibiting versatile antiplasmodial activity against diverse P. falciparum strains. Our PTML-MLP achieved an accuracy higher than 85%. We applied the FBTD approach to physicochemically and structurally interpret the PTML-MLP, subsequently extracting several suitable molecular fragments and designing new drug-like molecules. These designed molecules were predicted as multi-strain antiplasmodial inhibitors, thus representing promising chemical entities for future synthesis and biological experimentation. The present work confirms the potential of combining PTML modeling and FBTD for early antimalarial drug discovery while opening new horizons for extended computational applications for antimicrobial research and beyond. Full article
(This article belongs to the Special Issue Infectious Diseases: New Approaches to Old Problems, 3rd Edition)
Show Figures

Figure 1

30 pages, 5942 KiB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Viewed by 383
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

10 pages, 1659 KiB  
Brief Report
Pathogen Enzyme-Mediated Alkoxyamine Homolysis as a Killing Mechanism of Aspergillus fumigatus
by Marion Filliâtre, Pierre Voisin, Seda Seren, Ines Kelkoul, Olivier Glehen, Philippe Mellet, Sophie Thétiot-Laurent, Jean Menotti, Sylvain R. A. Marque, Gérard Audran and Abderrazzak Bentaher
J. Fungi 2025, 11(7), 503; https://doi.org/10.3390/jof11070503 - 4 Jul 2025
Viewed by 470
Abstract
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The [...] Read more.
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The synthesis of an alkoxyamine linked to a peptide substrate recognized by A. fumigatus-secreted dipeptidyl peptidase is described. Kinetic experiments show a stable prodrug prior to enzymatic activation. Ensuing peptide cleavage and spontaneous homolysis resulted in the generation of a stable nitroxide and a reactive alkyl radical moiety. Next, the exposure of A. fumigatus spores to the prodrug lead to pathogen growth inhibition in a compound concentration-dependent fashion (e.g., 42% inhibition at 10 µg/L). Importantly, the designed alkoxyamine inhibited not only the growth of a clinical voriconazole-susceptible A. fumigatus strain, but also the growth of a strain resistant to this azole. To determine the antifungal importance of the reactive alkyl radical, its substitution with a non-radical structure did not prevent A. fumigatus growth. Furthermore, the introduction of succinic group in the peptide substrate resulted in the loss of alkoxyamine antifungal properties. Our work reports a novel chemical strategy for antifungal therapy against A. fumigatus based on the pathogen enzyme-mediated generation of toxic radicals. Significantly, these findings are timely since they could overcome the emerged resistance to conventional drugs that are known to target defined pathogen biologic mechanisms such as ergosterol synthesis. Full article
(This article belongs to the Special Issue Fungal Infections and Antifungals)
Show Figures

Graphical abstract

25 pages, 3908 KiB  
Review
Hybrid Molecules with Purine and Pyrimidine Derivatives for Antitumor Therapy: News, Perspectives, and Future Directions
by Simona Iacob (Ciobotaru), Claudia-Simona Stefan, Aurel Nechita, Madalina-Nicoleta Matei, Elena-Lacramioara Lisa, Dana Tutunaru, Iuliu Fulga, Ana Fulga, Alina-Georgiana Cristea (Hohota) and Oana-Maria Dragostin
Molecules 2025, 30(13), 2707; https://doi.org/10.3390/molecules30132707 - 23 Jun 2025
Viewed by 1002
Abstract
Cancer is a leading cause of death globally, claiming millions of lives each year. Despite the availability of numerous anticancer drugs, the need for new treatment options remains essential. Many current therapies come with significant toxicity, lead to various side effects, or do [...] Read more.
Cancer is a leading cause of death globally, claiming millions of lives each year. Despite the availability of numerous anticancer drugs, the need for new treatment options remains essential. Many current therapies come with significant toxicity, lead to various side effects, or do not consistently deliver the expected therapeutic results. Purines and pyrimidines are fundamental building blocks of nucleic acids and play crucial roles in cellular metabolism and signaling. Recent advances in medicinal chemistry have led to the development and synthesis of various derivatives that exhibit selective cytotoxic effects against cancer cells while minimizing toxicity to healthy tissues. Purine and pyrimidine scaffolds, due to their well-established biological roles and structural versatility, have emerged as key pharmacophoric fragments in anticancer drug discovery. In recent years, the rational design of hybrid molecules incorporating these heterocycles has shown promise in overcoming drug resistance, improving target selectivity, and enhancing pharmacological profiles. Purine and pyrimidines scaffolds hold significant potential as foundations for novel antitumor drugs, with established representatives in cancer treatment, including 5-fluorouracil, cladribine, capecitabine, and several others. In addition, the article discusses the challenges and future developments of purine and pyrimidine derivatives and hybrid molecules as antitumor drugs and emphasizes the need for continued research to optimize their effectiveness and reduce side effects. Overall, the innovative use of these compounds represents a major advance in targeted cancer therapy and holds promise for improving the therapeutic efficacy of malignant diseases. Full article
(This article belongs to the Special Issue Small Molecule Hybrids for Anticancer and Antiviral Therapy)
Show Figures

Figure 1

25 pages, 2579 KiB  
Article
Exploring Carboxamide Derivatives as Promising Anticancer Agents: Design, In Vitro Evaluation, and Mechanistic Insights
by Manal M. Al-Najdawi, Maysaa M. Saleh, Dima A. Sabbah, Rima Hajjo, Hiba Zalloum, Suha M. Abudoleh, Duaa A. Abuarqoub, Yusuf M. Al-Hiari, Mohammad Yasin Mohammad, Husam ALSalamat, Hebah Mansour, Nawzat D. Aljbour and Aktham H. Mestareehi
Int. J. Mol. Sci. 2025, 26(12), 5903; https://doi.org/10.3390/ijms26125903 - 19 Jun 2025
Viewed by 677
Abstract
Carboxamide derivatives are a promising class of compounds in anticancer drug discovery, owing to their ability to interact with multiple oncogenic targets and their favorable pharmacological profiles. In this study, we report the design, synthesis, and biological evaluation of a series of N [...] Read more.
Carboxamide derivatives are a promising class of compounds in anticancer drug discovery, owing to their ability to interact with multiple oncogenic targets and their favorable pharmacological profiles. In this study, we report the design, synthesis, and biological evaluation of a series of N-substituted 1H-indole-2-carboxamides as potential anticancer agents. The synthesized compounds were assessed for antiproliferative activity using the MTT assay against MCF-7 (breast cancer), K-562 (leukemia), and HCT-116 (colon cancer) cell lines, with normal human dermal fibroblasts included as a non-cancerous control. Several compounds demonstrated notable cytotoxicity and selectivity. Compounds 12, 14, and 4 exhibited potent activity against K-562 cells, with IC50 values of 0.33 µM, 0.61 µM, and 0.61 µM, respectively. Compound 10 showed the most significant activity against HCT-116 cells (IC50 = 1.01 µM) with a high selectivity index (SI = 99.4). Moderate cytotoxicity was observed against MCF-7 cells. To elucidate the mechanism of action, molecular docking and induced-fit docking studies were conducted against key cancer-related targets, including topoisomerase–DNA (PDB ID: 5ZRF), PI3Kα (4L23), and EGFR (3W32), revealing favorable binding interactions. Additionally, principal component analysis of molecular descriptors indicated that the compounds possess promising drug-like and lead-like properties, particularly compound 10. Overall, this study highlights N-substituted indole-2-carboxamides as promising scaffolds for further optimization. The integration of synthetic chemistry, biological assays, and computational modeling provides a robust foundation for the continued development of these compounds as potential anticancer agents. Full article
(This article belongs to the Special Issue Biological Hallmarks and Therapeutic Strategies in Cancer)
Show Figures

Figure 1

Back to TopTop