From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
Abstract
1. Introduction
2. Polysaccharides and Protein-Based Biomaterials from Marine Source
2.1. Chitosan
2.2. Alginate
2.3. Marine Collagen and Gelatin
2.4. Fucoidan
2.5. Carrageenan
2.6. Ulvan
2.7. Hydroxyapatite
Biopolymers | Fabrication Process | References |
---|---|---|
Chitosan | Dissolution: Chitosan is dissolved in an acidic solution, such as acetic acid, to disrupt its rigid crystalline structure and facilitate the formation of a viscous solution. Nanoparticle Preparation: Chitosan nanoparticles are synthesized using various techniques, including solvent evaporation, coacervation, or ionic gelation, where polyanions like sodium tripolyphosphate (TPP) facilitate nanoparticle formation through electrostatic interactions. Crosslinking: Chemical crosslinkers (e.g., glutaraldehyde, genipin) may be used to enhance stability and control the degradation rate. Formulation: The nanoparticles are then incorporated into various formulations such as hydrogels, films, or scaffolds, depending on the intended application (drug delivery, wound healing, etc.). | [71,72,73,74] |
Alginate | Gelation: Alginate is typically dissolved in water, forming a gel-like structure. Ionotropic Gelation: Alginate forms gels when exposed to divalent cations (e.g., Ca2+). This process is used to create alginate beads, microcapsules, or hydrogels for drug delivery or tissue engineering. Crosslinking: Additional crosslinking agents (e.g., poly-L-lysine) can be introduced to modify the gel strength and stability. Fabrication: Cast into 3D scaffolds or employed in encapsulation systems. | [75,76,77] |
Collagen | Extraction: Marine-derived type I collagen is extracted from various techniques but most prominently an acid extraction technique where acids (such as HCl and AcOH) hydrolyze the triple helix of collagen and solubilize its single chains in solution, where heavy-weight proteins are depolymerized into shorter peptides (0.3–8 kDa). Gelation: In aqueous solvents, collagen molecules can form collagen fibers. The self-assembly of collagen is an innovative approach to hydrogel formation. This process can be influenced by mechanical, physical, and environmental factors. Crosslinking: To increase the mechanical properties and stability of collagen matrices, chemical or physical crosslinking methods (e.g., glutaraldehyde or UV light) are applied. Fabrication: Cast into films, scaffolds, or hydrogels, which are then used in tissue engineering, wound healing, and cosmetic applications. | [47,48,49,78,79] |
Fucoidan | Extraction: Fucoidan is extracted from brown seaweed through hot and pressurized aqueous and acidic extraction processes. Microwave-assisted extraction and ultrasound-assisted extraction are employed to prevent degradation of the cell wall and release the polysaccharide into the aqueous phase. Purification: The extracted fucoidan is purified by techniques such as dialysis, precipitation, or chromatography to remove impurities. Gel Formation: Fucoidan can be dissolved in water or combined with other gelling agents (e.g., alginate) to form hydrogels. Cross Linking: Fucoidan-based hydrogels may undergo physical or chemical crosslinking to control degradation rates and mechanical properties. Fabrication: Processed into nanoparticles, films, or scaffolds for use in drug delivery, wound healing, and biomedical applications. | [52,54] |
Carrageenan | Extraction: From red edible seaweeds (e.g., alkaline treatment, cooking) Precipitation: Using alcohol or potassium chloride Post-processing: Washing, drying, and milling into powder | [80,81] |
Ulvan | Extraction: From green algae (e.g., hot water, alkaline, enzyme-assisted, deep eutectic solvents) Processing: Into membranes/nanofibers via crosslinking (e.g., with BDDE) or blending with polymers (e.g., PVA, PEO, PCL) Scaffold Formation: Combination with PDLLA for scaffolds via CO2 sintering | [80,82,83] |
Hydroxyapatite | Synthesis: From calcium and phosphate precursors (e.g., precipitation, hydrolysis, sol–gel) Reaction Control: Controlled mixing of solutions, adjusting pH/temperature Thermal Treatment: Calcination/sintering Advanced Fabrication: Hydrothermal, EPD, polymer-assisted for specific morphologies | [84,85] |
Biopolymer | Model | Formulation | Outcome | Study Type |
---|---|---|---|---|
Chitosan | Full-thickness rat model | Chitosan hydrogel with aloe vera | Complete wound closure in 14 days; enhanced epidermal thickness; reduced inflammation | Preclinical |
Chitosan | Clinical (tooth extraction, patients with coagulation disorders) | Chitosan-based dressings | Reduced hemostasis time to 9.80 ± 15.49 min vs. 44.23 ± 22.41 min (control) | Clinical |
Chitosan | Clinical | Chitosan sponge | Hemostasis time: 38 ± 8.7 s; faster clotting than controls | Clinical |
Chitosan | In vivo rat model | Chitosan–graphene scaffold | 87% reduction in clotting time vs. QuikClot | Preclinical |
Alginate | Clinical (burn wounds) | Alginate dressings | Healing time: 7 ± 3.5 days vs. 14 ± 4.2 days (control) | Clinical |
Alginate | Clinical (pressure ulcers) | Alginate dressings | 74% of treated patients had ≥40% wound area reduction in 4 weeks vs. 42% in control | Clinical |
Collagen | Sheep wound model | Collagen-based skin scaffolds (CBSSs) | Enhanced keratinocyte migration; increased granulation; reduced inflammation; upregulation of VEGF-A, hKER | Preclinical |
Fucoidan | Murine full-thickness skin wounds | 1.2% fucoidan topical gel | Faster wound closure from day 6; ~30% increase in granulation tissue; ~40% more collagen deposition | Preclinical |
Fucoidan | In vivo angiogenesis model | Fucoidan | Enhanced CD31+/α-SMA+ vascular structures; increased angiogenesis markers (eNOS, VEGF, Nrf2, HIF-1α) | Preclinical |
Ulvan | Clinical (24 subjects after cryosurgery) | Ulvan/PEO nanofiber patches | POSAS score from 8 to 2 over 21 days; normalized hydration, TEWL, erythema, and melanin | Clinical |
Ulvan | SKH-hr2 murine burn model | 5% ulvan gel | Improved healing at later stages; enhanced antioxidant and anti-inflammatory activity | Preclinical |
Hydroxyapatite | Murine wound model | Gelatin-chitosan-CNC-HAp scaffold | 50% faster healing; complete closure by day 7; delayed healing with crosslinked scaffold | Preclinical |
3. Comparative Analysis of Marine Biopolymers
4. Challenges and Future Direction
4.1. Production Challenges
4.2. Emerging Technologies
5. Sustainability Strategies in Marine Biomaterials
5.1. Bioconversion of Seafood By-Products
5.2. Development of Synthetic Analogues
5.3. Optimization of Extraction Processes
5.4. Controlled Aquaculture
5.5. Ethical Bioprospecting
6. Regulatory and Safety Considerations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudovica, V.; Rotter, A. Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Front. Mar. Sci. 2021, 8, 723333. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, X.; Hu, H. Marine Polysaccharides as a Versatile Biomass for the Construction of Nano Drug Delivery Systems. Mar. Drugs 2021, 19, 345. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Chen, M.; Guo, C.; Wang, W.; Chen, D. Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr. Res. 2024, 529, 109071. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.C.; Islam, M.R.; Sadia, S.; Yeasmin, M.; Park, J.-S.; Lee, H.-J.; Chun, B.-S. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds. Mar. Drugs 2023, 21, 485. [Google Scholar] [CrossRef] [PubMed]
- Trinh, X.-T.; Long, N.-V.; Van Anh, L.T.; Nga, P.T.; Giang, N.N.; Chien, P.N.; Nam, S.-Y.; Heo, C.-Y. A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int. J. Mol. Sci. 2022, 23, 9573. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L.; Wang, Y.; Wang, X.; Qian, D.; Yan, J.; Sun, Z.; Cui, P.; Yu, L.; Wu, J.; et al. Marine biomaterials in biomedical nano/micro-systems. J. Nanobiotechnol. 2023, 21, 408. [Google Scholar] [CrossRef] [PubMed]
- Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.-H.; Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers 2021, 13, 3015. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019, 4, 271–292. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, F.; Heidari, M.; Mostafavi, S.; Mortazavi, S.M.; Haeri, A. A review of preparation methods and biomedical applications of poly(ε-caprolactone)-based novel formulations. J. Mater. Sci. 2024, 59, 10587–10622. [Google Scholar] [CrossRef]
- Wan, M.C.; Qin, W.; Lei, C.; Li, Q.H.; Meng, M.; Fang, M.; Song, W.; Chen, J.H.; Tay, F.; Niu, L.N. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact. Mater. 2021, 6, 4255–4285. [Google Scholar] [CrossRef] [PubMed]
- Brooker, C.; Tronci, G. A collagen-based theranostic wound dressing with visual, long-lasting infection detection capability. Int. J. Biol. Macromol. 2023, 236, 123866. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.I.; Serrasqueiro, F.; Moniz, T.; Costa Lima, S.A.; Reis, S. Marine Polysaccharides for Skin Drug Delivery: Hydrogels and Microneedle Solutions. In Marine Polysaccharides; Springer: Singapore, 2021; pp. 167–191. [Google Scholar] [CrossRef]
- Kurul, F.; Turkmen, H.; Cetin, A.E.; Topkaya, S.N. Nanomedicine: How nanomaterials are transforming drug delivery, bio-imaging, and diagnosis. Next Nanotechnol. 2025, 7, 100129. [Google Scholar] [CrossRef]
- Alberts, A.; Lungescu, I.A.; Niculescu, A.-G.; Grumezescu, A.M. Natural Products for Improving Soft Tissue Healing: Mechanisms, Innovations, and Clinical Potential. Pharmaceutics 2025, 17, 758. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zheng, Y.; Shen, Y.; Shi, Y.; Li, F.; Su, C.; Zhao, L. Chitosan nanoparticles loaded hydrogels promote skin wound healing through the modulation of reactive oxygen species. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 1), 138–149. [Google Scholar] [CrossRef] [PubMed]
- Naskar, S.; Kuotsu, K.; Sharma, S. Chitosan-based nanoparticles as drug delivery systems: A review on two decades of research. J. Drug Target. 2019, 27, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Farshidfar, N.; Iravani, S.; Varma, R.S. Alginate-based biomaterials in tissue engineering and regenerative medicine. Mar. Drugs 2023, 21, 189. [Google Scholar] [CrossRef] [PubMed]
- Mndlovu, H.; Kumar, P.; du Toit, L.C.; Choonara, Y.E. In situ forming chitosan-alginate interpolymer complex bioplatform for wound healing and regeneration. AAPS PharmSciTech 2022, 23, 247. [Google Scholar] [CrossRef] [PubMed]
- Keast, D.H.; Janmohammad, A. The hemostatic and wound healing effect of chitosan following debridement of chronic ulcers. Wounds 2021, 33, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Shaw, A.; Ramalingam, B.; Das, S.K. Nanoengineered and highly porous 3D chitosan-graphene scaffold for enhanced antibacterial activity and rapid hemostasis. Int. J. Biol. Macromol. 2025, 306 Pt 3, 141521. [Google Scholar] [CrossRef] [PubMed]
- Chiari, W.; Damayanti, R.; Harapan, H.; Puspita, K.; Saiful, S.; Rahmi, R.; Rizki, D.R.; Iqhrammullah, M. Trend of Polymer Research Related to COVID-19 Pandemic: Bibliometric Analysis. Polymers 2022, 14, 3297. [Google Scholar] [CrossRef] [PubMed]
- Abourehab, M.A.S.; Pramanik, S.; Abdelgawad, M.A.; Abualsoud, B.M.; Kadi, A.; Ansari, M.J.; Deepak, A. Recent Advances of Chitosan Formulations in Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 10975. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Aggarwal, A.; Kadi, A.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Koul, K.; Deepak, A.; Bellucci, S. Chitosan alchemy: Transforming tissue engineering and wound healing. RSC Adv. 2024, 14, 19219–19256. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.M.; Reis, C.P.; Pacheco, R. Marine-Derived Compounds Combined with Nanoparticles: A Focus on the Biomedical and Pharmaceutical Sector. Mar. Drugs 2025, 23, 207. [Google Scholar] [CrossRef] [PubMed]
- Sepe, F.; Valentino, A.; Marcolongo, L.; Petillo, O.; Conte, R.; Margarucci, S.; Peluso, G.; Calarco, A. Marine-Derived Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Compounds. Int. J. Mol. Sci. 2025, 26, 764. [Google Scholar] [CrossRef] [PubMed]
- Le, L.T.T.; Giang, N.N.; Chien, P.N.; Trinh, X.T.; Long, N.V.; VANAnh, L.T.; Nga, P.T.; Zhang, X.R.; Nam, S.Y.; Heo, C.Y. Enhancement of Wound Healing Efficacy by Chitosan-based Hydrocolloid on Sprague Dawley Rats. In Vivo 2023, 37, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.A.; Chen, H.Y.; Chang, J.S.; Hsu, F.Y. Electrospun nanofiber composite mat based on ulvan for wound dressing applications. Int. J. Biol. Macromol. 2023, 253, 126646. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.A.; Andryukov, B.G.; Besednova, N.N.; Zaporozhets, T.S.; Kalinin, A.V. Marine algae polysaccharides as basis for wound dressings, drug delivery, and tissue engineering: A review. J. Mar. Sci. Eng. 2020, 8, 481. [Google Scholar] [CrossRef]
- Chellapandian, H.; Jeyachandran, S.; Park, K.; Kwak, I.S. Marine-Derived Functional Biomaterials: Advancements in Biomedicine and Drug Delivery Applications. Nat. Prod. Commun. 2025, 20, 1934578X241302009. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Riaz, T.; Mahmood, S.; Bilal, M.; Manzoor, M.F.; Qamar, S.A.; Qi, X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 354–380. [Google Scholar] [CrossRef] [PubMed]
- Rajinikanth, B.S.; Rajkumar, D.S.R.; Keerthika, K.; Vijayaragavan, V. Chitosan-Based Biomaterial in Wound Healing: A Review. Cureus 2024, 16, e55193. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, H. Clinical efficacy of chitosan-based hydrocolloid dressing in the treatment of chronic refractory wounds. Int. Wound J. 2022, 19, 2012–2018. [Google Scholar] [CrossRef] [PubMed]
- Hoang, N.H.; Le Thanh, T.; Sangpueak, R.; Treekoon, J.; Saengchan, C.; Thepbandit, W.; Papathoti, N.K.; Kamkaew, A.; Buensanteai, N. Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management. Polymers 2022, 14, 662. [Google Scholar] [CrossRef] [PubMed]
- Singh Jolly, S.; Rattan, V. Is chitosan-based dressing more effective than gauze pressure in achieving early hemostasis after dental extractions in patients with deranged coagulation profiles? Arch. Craniofac. Surg. 2025, 26, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, T.; Liu, Y.; Li, T.; Yang, J.; Li, X.; Wang, L. A self-elastic chitosan sponge integrating active and passive hemostatic mechanisms for effectively managing uncontrolled coagulopathic hemorrhage. Mater. Today Bio 2024, 26, 101031. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Zeng, Y.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules 2023, 28, 1473. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, A.; Aljabali, A.A.A.; Mishra, V.; Tambuwala, M.M.; Serrano-Aroca, Á. Alginate: Enhancement Strategies for Advanced Applications. Int. J. Mol. Sci. 2022, 23, 4486. [Google Scholar] [CrossRef] [PubMed]
- Łętocha, A.; Miastkowska, M.; Sikora, E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers 2022, 14, 3834. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Klar, A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10, 1169. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Rehman, A.; Feng, J.; Noreen, A.; Assadpour, E.; Kharazmi, M.S.; Lianfu, Z.; Jafari, S.M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv. Colloid Interface Sci. 2022, 307, 102744. [Google Scholar] [CrossRef] [PubMed]
- Tomić, S.L.; Babić Radić, M.M.; Vuković, J.S.; Filipović, V.V.; Nikodinovic-Runic, J.; Vukomanović, M. Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. Mar. Drugs 2023, 21, 177. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Xiang, Z.; Zhu, X.; Song, J.; Huang, N.; Li, J.; Jin, G.; Cui, S.; Xu, P.; Le, X.; et al. Evaluating the therapeutic efficacy and safety of alginate-based dressings in burn wound and donor site wound management associated with burn surgery: A systematic review and meta-analysis of contemporary randomized controlled trials. BMC Surg. 2025, 25, 215. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Wang, Y.; Niu, Q.; Wen, W.; Ding, G.; Liu, W. Alginate Dressings in Wound Care: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Exp. Dermatol. Res. 2023, 14, 640. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Mar. Drugs 2020, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Steele, C. Collagen: A review of clinical use and efficacy. Nutr. Med. J. 2022, 1, 12–36. [Google Scholar]
- Geahchan, S.; Baharlouei, P.; Rahman, A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Mar. Drugs 2022, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Kusnadi, K.; Herdiana, Y.; Rochima, E.; Putra, O.N.; Mohd Gazzali, A.; Muchtaridi, M. Collagen-Based Nanoparticles as Drug Delivery System in Wound Healing Applications. Int. J. Nanomed. 2024, 19, 11321–11341. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lau, C.S.; Liang, K.; Wen, F.; Teoh, S.H. Marine collagen scaffolds in tissue engineering. Curr. Opin. Biotechnol. 2022, 74, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Shen, Y.T.; Tsai, Y.A.; Chen, C.C. An analysis of the preliminary benefits of aquaculture smart aeration control. IET Smart Cities 2023, 5, 35–40. [Google Scholar] [CrossRef]
- Melotti, L.; Martinello, T.; Perazzi, A.; Iacopetti, I.; Ferrario, C.; Sugni, M.; Sacchetto, R.; Patruno, M. A Prototype Skin Substitute, Made of Recycled Marine Collagen, Improves the Skin Regeneration of Sheep. Animals 2021, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.I.; Lima, S.A.C.; Yousef, I.; Reis, S. Evaluating the Skin Interactions and Permeation of Alginate/Fucoidan Hydrogels Per Se and Associated with Different Essential Oils. Pharmaceutics 2023, 15, 190. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.N.; Lobo, F.C.M.; Rodrigues, L.C.; Fernandes, E.M.; Williams, D.S.; Mearns-Spragg, A.; Sotelo, C.G.; Perez-Martín, R.I.; Reis, R.L.; Gelinsky, M.; et al. Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissues. Gels 2023, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, L.; Sun, Z.; Ji, Y.; Wang, D.; Mei, L.; Shen, P.; Li, Z.; Tang, S.; Zhang, H.; et al. Fucoidan as a marine-origin prebiotic modulates the growth and antibacterial ability of Lactobacillus rhamnosus. Int. J. Biol. Macromol. 2021, 180, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Ferdushi, R.; Kim, D.; Sriramulu, D.K.; Hwang, Y.; Park, K.; Key, J. Computational insights into fucoidan-receptor binding: Implications for fucoidan-based targeted drug delivery. Drug Discov. Today 2025, 30, 104315. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.H.; Chiang, C.S.; Hsu, C.H.; Cheng, H.W.; Chen, S.Y. Development and Characterization of a Fucoidan-Based Drug Delivery System by Using Hydrophilic Anticancer Polysaccharides to Simultaneously Deliver Hydrophobic Anticancer Drugs. Biomolecules 2020, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Yang, L.; Wang, X.; Zhang, H.; Wu, F.; Xu, K.; Chen, S.; Liao, Z. Fucoidan promotes angiogenesis and accelerates wound healing through AKT/Nrf2/HIF-1α signalling pathway. Int. Wound J. 2023, 20, 3606–3618. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Park, D.J.; Kim, S.C.; Kang, H.W.; Lee, B.; Kim, H.W.; Kim, Y.M.; Linh, N.V.; Jung, W.K. Wound healing effect of fucoidan-loaded gelatin/oxidized carboxymethyl cellulose hydrogel. Int. J. Biol. Macromol. 2025, 286, 138254. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Quito, E.-M.; Ruiz-Caro, R.; Veiga, M.-D. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Statha, D.; Papaioannou, A.; Kikionis, S.; Kostaki, M.; Sfiniadakis, I.; Vitsos, A.; Anastassopoulou, J.; Ioannou, E.; Roussis, V.; Rallis, M.C. Healing Potential of the Marine Polysaccharides Carrageenan and Ulvan on Second-Degree Burns. J. Funct. Biomater. 2024, 15, 257. [Google Scholar] [CrossRef] [PubMed]
- Hazt, B.; Read, D.J.; Harlen, O.G.; Poon, W.C.K.; O’Connell, A.; Sarkar, A. Mucoadhesion across scales: Towards the design of protein-based adhesives. Adv. Colloid Interface Sci. 2024, 334, 103322. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vicens, L.; Mejía-Méndez, J.L.; López-Mena, E.R.; Bernal-Chávez, S.A. Development of κ-Carrageenan Films Reinforced with Magnesium Oxide Nanoparticles for the Potential Treatment of Chronic Wounds: In Vitro and In Vivo Insights. Polysaccharides 2025, 6, 45. [Google Scholar] [CrossRef]
- Gao, Y.; Ismail, N.A.; Yusoff, M.; Razali, M.H. 3D nanocomposite scaffold of TiO2-nanotube-incorporated carrageenan for wound healing. Bioinspired Biomim. Nanobiomater. 2022, 11, 23–31. [Google Scholar] [CrossRef]
- Sulastri, E.; Lesmana, R.; Zubair, M.S.; Elamin, K.M.; Wathoni, N. A Comprehensive Review on Ulvan Based Hydrogel and Its Biomedical Applications. Chem. Pharm. Bull. 2021, 69, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Kidgell, J.T.; Carnachan, S.M.; Magnusson, M.; Lawton, R.J.; Sims, I.M.; Hinkley, S.F.; de Nys, R.; Glasson, C.R.K. Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohydr. Polym. 2021, 264, 118010. [Google Scholar] [CrossRef] [PubMed]
- Pari, R.F.; Uju, U.; Hardiningtyas, S.D.; Ramadhan, W.; Wakabayashi, R.; Goto, M.; Kamiya, N. Ulva Seaweed-Derived Ulvan: A Promising Marine Polysaccharide as a Sustainable Resource for Biomaterial Design. Mar. Drugs 2025, 23, 56. [Google Scholar] [CrossRef] [PubMed]
- Kikionis, S.; Koromvoki, M.; Tagka, A.; Polichronaki, E.; Stratigos, A.; Panagiotopoulos, A.; Kyritsi, A.; Karalis, V.; Vitsos, A.; Rallis, M.; et al. Ulvan-Based Nanofibrous Patches Enhance Wound Healing of Skin Trauma Resulting from Cryosurgical Treatment of Keloids. Mar. Drugs 2022, 20, 551. [Google Scholar] [CrossRef] [PubMed]
- Massironi, A.; Morelli, A.; Puppi, D.; Chiellini, F. Renewable Polysaccharides Micro/Nanostructures for Food and Cosmetic Applications. Molecules 2020, 25, 4886. [Google Scholar] [CrossRef] [PubMed]
- Chelu, M.; Calderon Moreno, J.M.; Masuk, A.M.; Popa, M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024, 10, 547. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hao, L.; Luo, Y.; Gao, J.; Xu, F.; Li, H.; Hao, C.; Lin, C.P.; Yu, H.P.; Zhu, Y.J.; et al. A composite dressing combining ultralong hydroxyapatite nanowire bio-paper and a calcium alginate hydrogel accelerates wound healing. J. Mater. Chem. B 2025, 13, 997–1012. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.; Ma, X.; Wang, X.; Liu, L. Structure and properties of chitosan films: Effect of the type of solvent acid. Food Sci. Technol. 2021, 135, 109984. [Google Scholar] [CrossRef]
- Akdaşçi, E.; Duman, H.; Eker, F.; Bechelany, M.; Karav, S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. Nanomaterials 2025, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Saadh, M.J.; Hsu, C.Y.; Mustafa, M.A.; Mutee, A.F.; Kaur, I.; Ghildiyal, P.; Ali, A.A.; Adil, M.; Ali, M.S.; Alsaikhan, F.; et al. Advances in chitosan-based blends as potential drug delivery systems: A review. Int. J. Biol. Macromol. 2024, 273 Pt 1, 132916. [Google Scholar] [CrossRef] [PubMed]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef] [PubMed]
- Abka-Khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Muzzin, N.; Toufanian, S.; Slick, R.A.; Lawlor, M.W.; Seifried, B.; Moquin, P.; Latulippe, D.; Hoare, T. Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater. 2020, 112, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, K.; Klochko, N.; Miroshnichenko, D.; Cherkashina, A.; Bogoyavlenska, O.; Lebedev, V. Design and Research of Thermo-Responsive Gelatin-Alginate-Humic Nanocomposite Hydrogels for Controlled Drug Delivery. In Proceedings of the IEEE 14th International Conference Nanomaterials: Applications & Properties (NAP), Riga, Latvia, 8–13 September 2024. [Google Scholar] [CrossRef]
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xue, M.; Sun, T.; Yang, J.; Pei, Z.; Qin, K. Fucoidan as an Autophagy Regulator: Mechanisms and Therapeutic Potentials for Cancer and Other Diseases. Nutr. Cancer 2022, 74, 1568–1579. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Shrivastav, P.S. Fucoidan, a brown seaweed polysaccharide in nanodrug delivery. Drug Deliv. Transl. Res. 2023, 13, 2427–2446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Li, Y.; Yang, Y.; Jin, M.; Lin, X.; Zhuang, Z.; Guo, K.; Zhang, T.; Tan, W. Application of Collagen-Based Hydrogel in Skin Wound Healing. Gels 2023, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Idris, M.I.; Adzhari, M.F.; Bakil, S.N.A.; Lee, T.C.; Selimin, M.A.; Abdullah, H.Z. Surface Properties of Alginate/Chitosan Biofilm for Wound Healing Application. Mater. Sci. Forum 2020, 1010, 602–607. [Google Scholar] [CrossRef]
- Alam, M.R.; Shahid, M.A.; Alimuzzaman, S.; Khan, A.N. Sources, extractions and applications of bio-maker collagen—A review. Biomed. Eng. Adv. 2022, 4, 100064. [Google Scholar] [CrossRef]
- Dormont, F.; Rouquette, M.; Mahatsekake, C.; Gobeaux, F.; Peramo, A.; Brusini, R.; Calet, S.; Testard, F.; Lepetre-Mouelhi, S.; Desmaële, D.; et al. Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles. J. Control. Release 2019, 307, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Tennakoon, P.; Chandika, P.; Yi, M.; Jung, W.K. Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative. iScience 2023, 26, 106404. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.; Patel, K.D.; Perriman, A.W.; Sung, J.S.; Patel, M.; Bouchard, L.S.; Patel, R. Tissue adhesives based on chitosan for biomedical applications. J. Mater. Chem. B 2024, 12, 10446–10465. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jiang, X.; Lai, H.; Zhang, X. Smart Bacteria-Responsive Drug Delivery Systems in Medical Implants. J. Funct Biomater. 2022, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Jathar, M.; Sawant, B.K.S.; Warde, T. Scale-Up of Nanoparticle Manufacturing Process. In Pharmaceutical Process Engineering and Scale-up Principles; Jindal, A.B., Ed.; AAPS Introductions in the Pharmaceutical Sciences; Springer: Cham, Switzerland, 2023; Volume 13. [Google Scholar] [CrossRef]
- Han, S.; Cruz, S.H.; Park, S.; Shin, S.R. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 2023, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Front. Sustain. Food Syst. 2021, 5, 611835. [Google Scholar] [CrossRef]
- Shawky, E.; Zhu, W.; Tian, J. A review of innovative extraction technologies for protein recovery from plant-based by-products: A step toward zero-waste processing. Int. J. Biol. Macromol. 2025, 315 Pt 1, 144301. [Google Scholar] [CrossRef] [PubMed]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Macromol. Rapid Commun. 2021, 42, e2100130. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Maietta, I.; Torres, M.D.; Simón-Vázquez, R.; Domínguez, H. Optimization of ultrasound-assisted extraction of bioactive compounds and biopolymers from Ulva spp. using response surface methodology. J. Appl. Phycol. 2025, 37, 2031–2050. [Google Scholar] [CrossRef]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef] [PubMed]
- Martínez, H.; Santos, M.; Pedraza, L.; Testera, A.M. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar. Drugs 2025, 23, 69. [Google Scholar] [CrossRef] [PubMed]
- Secretariat of the Convention on Biological Diversity. Nagoya Protocol on Access and Benefit-Sharing: Status and Implementation; Convention on Biological Diversity: Montreal, QC, Canada, 2024; Available online: https://www.cbd.int/abs/ (accessed on 20 July 2025).
- Rusyaev, S.M.; Orlov, A.M. The phenomenon of marine bioprospecting. Žurnal Obŝej Biologii 2023, 84, 195–214. [Google Scholar] [CrossRef]
- Lee Chang, K.J.; Nichols, P.D. Marine Biotechnology for Sustainability of Ecologically Significant Resources. Sustainability 2024, 16, 10664. [Google Scholar] [CrossRef]
- Csóka, I.; Ismail, R.; Jójárt-Laczkovich, O.; Pallagi, E. Regulatory Considerations, Challenges and Risk-based Approach in Nanomedicine Development. Curr. Med. Chem. 2021, 28, 7461–7476. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices. Off. J. Eur. Union 2017, L117, 1–175. [Google Scholar]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices. Part 1: Evaluation and Testing within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
- ISO 10993-5:2009; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- U.S. Food and Drug Administration. Considering Whether an FDA-Regulated Product Involves the Application of Nano-Technology: Guidance for Industry; FDA: Silver Spring, MD, USA, 2014. Available online: https://www.fda.gov/media/88423/download (accessed on 20 July 2025).
- International Council for Harmonisation (ICH). ICH Harmonised Tripartite Guideline M3(R2): Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals. 2009. Available online: https://database.ich.org/sites/default/files/M3_R2__Guideline.pdf (accessed on 20 July 2025).
- Kulka, K.; Sionkowska, A. Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023, 28, 1817. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Paxton, M.; Auclair, J. Regulating the AI-enabled ecosystem for human therapeutics. Commun. Med. 2025, 5, 181. [Google Scholar] [CrossRef] [PubMed]
Biopolymer | Solubility | Biodegradability | Bioactivity | Notable Functionalities |
---|---|---|---|---|
Chitosan | Soluble in acidic solutions | Enzymatically degraded (lysozyme) | Antimicrobial, hemostatic, immunomodulatory | Mucoadhesion, pH-sensitive release, supports tissue regeneration |
Alginate | Water soluble; forms gels with divalent cations | Ion exchange and enzymatic degradation | Anti-inflammatory (mild) | Moisture retention, ionic crosslinking, wound exudate absorption |
Collagen | Soluble after acid or enzymatic treatment | Biodegradable by collagenase | Promotes cell adhesion and proliferation | Structural ECM mimicry, angiogenesis promotion |
Gelatin | Water soluble (thermoresponsive) | Biodegradable by proteases | Supports tissue growth | Easy to process, film-forming, thermo-sensitive for drug release |
Fucoidan | Water soluble | Slow enzymatic degradation | Antioxidant, anti-inflammatory, antiviral | Stimulates fibroblasts, enhances immune response, and promotes probiotic synergy |
Carrageenan | Soluble in hot water; forms gels depending on ionic strength (K+, Ca2+ ions) | Biodegradable; degradation rate varies by type (κ, ι, λ) | Moderate; can promote cell adhesion and proliferation | Gelling agent; wound dressing; drug delivery matrix; antiviral, antitumor, and anti-inflammatory potential |
Ulvan | Water soluble; solubility increases with temperature and ionic strength | Highly biodegradable by ulvan lyases or gut microbiota | Immunomodulatory, antioxidant, and antimicrobial activities | Green algae-derived; sulfate-rich; forms hydrogels; potential for skin regeneration, vaccine delivery, and antioxidant wound healing |
Hydroxyapetite | Poorly soluble in water; slightly soluble in acidic environments | Biodegradable; resorbability depends on crystallinity | High; supports osteointegration, bone bonding, and osteoinduction | Bone graft substitute; dental implant coatings; drug carrier; supports mineralization and cell adhesion; mimics natural bone composition |
Biopolymer | Drug Release Mechanisms | Moisture Retention and Barrier Properties | Biocompatibility and Regulatory Status |
---|---|---|---|
Chitosan | Mucoadhesive and pH-responsive systems; ionic crosslinking with polyanions (e.g., TPP) enables sustained release of bioactives | Forms semi-permeable films with moisture-preserving and antimicrobial barrier effects | High biocompatibility; GRAS status; FDA-cleared for wound dressings and DDS |
Alginate | Ionotropic gelation with divalent cations enables controlled release kinetics, suitable for hydrophilic drug encapsulation | Crosslinked hydrogels retain exudate, promote a moist wound environment, and act as passive microbial barriers | Widely used in medical devices; strong clinical track record in wound management |
Collagen | Carrier for growth factors and peptides; diffusion-controlled release within the fibrillar network | Supports granulation tissue, ECM deposition, and hydration; acts as a biological scaffold | Gold standard for biocompatibility; minimal immunogenicity; CE/FDA-approved |
Gelatin | Protease-responsive matrix for controlled drug delivery; customizable via physical or chemical crosslinking | Maintains a moist microenvironment and enables gas exchange; semi-occlusive properties | High tolerability; extensively used in biofabrication and pharmaceutical formulations |
Fucoidan | Controlled release via electrostatic or covalent incorporation in carriers; suited for anti-inflammatory, antioxidant, and anticancer agents | Enhances hydration; exhibits antioxidative and antimicrobial barrier effects | Demonstrates low cytotoxicity; immunomodulatory; promising for mucosal and dermal applications |
Carrageenan | Ion-sensitive gelation enables controlled release; release rate tunable by ionic environment and gel strength | High water retention; forms semi-permeable gel barriers ideal for wound care and mucosal delivery | Generally high; widely approved in food/pharma (e.g., FDA GRAS), but usage in injectables under scrutiny |
Ulvan | Forms hydrogels; allows diffusion-based or degradation-controlled drug release depending on formulation | Excellent moisture retention due to sulfate groups; forms protective films | High; low cytotoxicity; immunomodulatory properties; emerging biomaterial; not yet broadly approved but considered promising; requires case-specific validation |
Hydroxyapetite | Surface adsorption/desorption and ion exchange; enables sustained release of charged drugs and biomolecules | Limited moisture retention; primarily acts as porous scaffold rather than barrier | Very high; mimics natural bone mineral; approved by FDA/EMA for bone grafts, dental implants, and some drug delivery devices |
Strategy | Description | Environmental/Social Benefits |
---|---|---|
Bioconversion of seafood by-products | Recovery of by-products (e.g., skins, bones, shells) to obtain high-value biomaterials such as collagen, chitosan, and bioactive peptides. | Waste reduction, valorization of residues, and support for the circular economy. |
Development of synthetic analogues | Design of synthetic biopolymeric materials that mimic the properties of marine biopolymers, reducing reliance on natural sources. | Reduced overexploitation, independence from resource seasonality. |
Optimization of extraction processes | Improvement of extraction processes to minimize waste and increase yield, reducing environmental impact. | Greater sustainability of production processes, reduced toxic residues. |
Controlled aquaculture | Sustainable cultivation of seaweed and crustaceans in controlled environments to reduce pressure on wild populations. | Low ecological impact, traceability, and environmental condition control. |
Ethical bioprospecting | Ensuring fair compensation and benefit sharing with local communities that depend on marine resources. | Sustainable local development, increased acceptance and cooperation in research projects. |
Product Name | Marine Biomaterial | Clinical Application | Regulatory Status |
---|---|---|---|
ChitoFlex® PRO | Chitosan | Hemostatic wound dressing (trauma, surgery) | FDA 510(k) |
HemCon® Bandage | Chitosan | Emergency hemostatic dressing | FDA 510(k) |
Celox™ Gauze | Chitosan | Hemostatic agent (civilian and military use) | CE marked (EU MDR, Class III) |
Kaltostat® | Calcium alginate | Absorptive wound dressing | FDA 510(k) + CE marked (MDD legacy) |
Algisite™ M | Calcium alginate | Primary dressing for moderate-to-heavy exudate | FDA 510(k) + CE marked (MDD legacy) |
SeaSorb® Ag | Alginate + Silver | Antimicrobial dressing for infected wounds | CE marked (MDD legacy) |
Maritech® Fucoidan | Fucoidan (from brown algae) | Functional food ingredient, under wound care R&D | FDA GRAS (GRN No. 000626); EU Novel Food approved |
MedSkin Solutions Collagen/Elastin Matrix | Marine collagen and elastin (from fish skin) | Dermal regeneration, chronic wounds | CE marked (EU MDR, Class III) |
Collagen Matrix® Wound Dressing | Fish-derived collagen | Temporary wound covering, absorbable scaffold | FDA 510(k) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilwant, M.; Paganini, V.; Di Gangi, M.; Brignone, S.G.; Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S. From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing. Pharmaceuticals 2025, 18, 1093. https://doi.org/10.3390/ph18081093
Chilwant M, Paganini V, Di Gangi M, Brignone SG, Chetoni P, Burgalassi S, Monti D, Tampucci S. From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing. Pharmaceuticals. 2025; 18(8):1093. https://doi.org/10.3390/ph18081093
Chicago/Turabian StyleChilwant, Mansi, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti, and Silvia Tampucci. 2025. "From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing" Pharmaceuticals 18, no. 8: 1093. https://doi.org/10.3390/ph18081093
APA StyleChilwant, M., Paganini, V., Di Gangi, M., Brignone, S. G., Chetoni, P., Burgalassi, S., Monti, D., & Tampucci, S. (2025). From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing. Pharmaceuticals, 18(8), 1093. https://doi.org/10.3390/ph18081093