Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Characterization
2.3. Structure Optimization and NMR Spectra Prediction
2.4. QTAIM Analysis
2.5. Cytotoxicity
3. Materials and Methods
3.1. Chemicals
3.2. General Considerations
3.3. Synthesis of Compounds
3.3.1. DAPTA (3,5-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]-nonan)
3.3.2. Synthesis of cis-[Pt(COMe)2(PASO2)2] (1)
3.3.3. Synthesis of cis-[Pt(COMe)2(DAPTA)2] (2)
3.3.4. Synthesis of trans-[Pt(COMe)Cl(PASO2)] (3)
3.3.5. Synthesis of trans-[Pt(COMe)Cl(DAPTA)] (4)
3.4. Theoretical Structural Analysis
3.5. In Vitro Cytotoxic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zoń, A.; Bednarek, I. Cisplatin in Ovarian Cancer Treatment—Known Limitations in Therapy Force New Solutions. Int. J. Mol. Sci. 2023, 24, 7585. [Google Scholar] [CrossRef] [PubMed]
- Coffetti, G.; Moraschi, M.; Facchetti, G.; Rimoldi, I. The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives. Molecules 2023, 28, 3407. [Google Scholar] [CrossRef] [PubMed]
- Kaluderovic, G.N.; Paschke, R. Anticancer Metallotherapeutics in Preclinical Development. Curr. Med. Chem. 2011, 18, 4738–4752. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleki, S.; Khaksar, S.; Aliabadi, A.; Panjehpour, A.; Motieiyan, E.; Marabello, D.; Faraji, M.H.; Beihaghi, M. Cytotoxicity and Mechanism of Action of Metal Complexes: An Overview. Toxicology 2023, 492, 153516. [Google Scholar] [CrossRef] [PubMed]
- Biswal, S.; Panda, M.; Sahoo, R.K.; Tripathi, S.K.; Biswal, B.K. Tumour Microenvironment and Aberrant Signaling Pathways in Cisplatin Resistance and Strategies to Overcome in Oral Cancer. Arch. Oral Biol. 2023, 151, 105697. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, F.; Khan, H.Y.; Tabassum, S. Progress of Metal-Based Anticancer Chemotherapeutic Agents in Last Two Decades and Their Comprehensive Biological (DNA/RNA Binding, Cleavage and Cytotoxicity Activity) Studies. Chem. Rec. 2023, 23, e202200247. [Google Scholar] [CrossRef] [PubMed]
- Todorov, L.; Kostova, I. Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs. Molecules 2023, 28, 1959. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Pathak, P.; Grishina, M.; Yadav, J.P.; Verma, A.; Kumar, P. Metal Complexes in Cancer Treatment: Journey So Far. Chem. Biodivers. 2023, 20, e202300061. [Google Scholar] [CrossRef] [PubMed]
- Predarska, I.; Saoud, M.; Morgan, I.; Lönnecke, P.; Kaluđerović, G.N.; Hey-Hawkins, E. Triphenyltin(IV) Carboxylates with Exceptionally High Cytotoxicity against Different Breast Cancer Cell Lines. Biomolecules 2023, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.F.; Khan, H.Y.; Tabassum, S.; Arjmand, F. Advances in Anticancer Alkaloid-Derived Metallo-Chemotherapeutic Agents in the Last Decade: Mechanism of Action and Future Prospects. Pharmacol. Ther. 2023, 241, 108335. [Google Scholar] [CrossRef] [PubMed]
- Schatzschneider, U. 14. Metallointercalators and Metalloinsertors: Structural Requirements for DNA Recognition and Anticancer Activity. In Metallo-Drugs: Development and Action of Anticancer Agents; De Gruyter: Berlin, Germany, 2018; pp. 387–436. [Google Scholar]
- Ferraro, M.G.; Piccolo, M.; Misso, G.; Santamaria, R.; Irace, C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022, 14, 954. [Google Scholar] [CrossRef] [PubMed]
- Borutzki, Y.; Skos, L.; Gerner, C.; Meier-Menches, S.M. Exploring the Potential of Metal-Based Candidate Drugs as Modulators of the Cytoskeleton. ChemBioChem 2023, 24, e202300178. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, A.; Gonsalvi, L. From Traditional PTA to Novel CAP: A Comparison between Two Adamantane Cage-Type Aminophosphines. Inorganica Chim. Acta 2021, 518, 120251. [Google Scholar] [CrossRef]
- Fisher, K.J.; Dance, I.G.; Willett, G.D.; Zhang, R.; Alyea, E.C. Electrospray Studies of a Water Soluble Platinum (II) Phosphine Complex, Chlorotris(1,3,5-Triaza-7-Phosphaadamantane)Platinum (II) Chloride (TPA)3PtCl2. Eur. J. Mass Spectrom. 2000, 6, 23–30. [Google Scholar] [CrossRef]
- Phillips, A.D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. Coordination Chemistry of 1,3,5-Triaza-7-Phosphaadamantane (PTA). Coord. Chem. Rev. 2004, 248, 955–993. [Google Scholar] [CrossRef]
- Živković, M.D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D.D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(ii) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorg. Chem. Front. 2018, 5, 39–53. [Google Scholar] [CrossRef]
- Smoleński, P.; Śliwińska-Hill, U.; Kwiecień, A.; Wolińska, J.; Poradowski, D. Design, Synthesis, and Anti-Cancer Evaluation of Novel Water-Soluble Copper(I) Complexes Bearing Terpyridine and PTA Ligands. Molecules 2024, 29, 945. [Google Scholar] [CrossRef] [PubMed]
- López-Sánchez, B.; Scalambra, F.; Romerosa, A. Transformation of the Pheromone 3-methyl-2-cyclohexen-1-ol in the Presence of [RuClCp (PTA)2] and [RuCp (OH2)(PTA)2]CF3SO3. Appl. Organom. Chemis. 2024, 38, e7368. [Google Scholar] [CrossRef]
- Lorenzon, T.; Vescovo, M.; Maiullari, M.; Tonon, G.; Conceição, N.R.; Carabineiro, S.A.C.; Mahmoud, A.G.; Dietl, M.C.; Demitri, N.; Orian, L.; et al. Influence of the Charge of 1,3,5-Triaza-7-Phosphaadamantane-Based Ligands on the Anticancer Activity of Organopalladium Complexes. RSC Adv. 2025, 15, 14058–14071. [Google Scholar] [CrossRef] [PubMed]
- Braddock-Wilking, J.; Acharya, S.; Rath, N.P. Synthesis and Characterization of Pt(II) and Pd(II) PTA and DAPTA Complexes. Polyhedron 2014, 79, 16–28. [Google Scholar] [CrossRef]
- Sheelakumari, S.P.; Cappellari, M.V.; Rivas Aiello, M.B.; Hepp, A.; Strassert, C.A. Synthesis and Photophysical Evaluation of Isoleptic Pt(II) and Pd(II) Complexes Utilizing N^N^N Ligands as Luminophoric Chelators with Different Ancillary Ligands. Inorganics 2024, 12, 58. [Google Scholar] [CrossRef]
- Smoleński, P.; Mukhopadhyay, S.; Guedes Da Silva, M.F.C.; Charmier, M.A.J.; Pombeiro, A.J.L. New Water-Soluble Azido- and Derived Tetrazolato-Platinum(Ii) Complexes with PTA. Easy Metal-Mediated Synthesis and Isolation of 5-Substituted Tetrazoles. Dalton Trans. 2008, 6546–6555. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, E.; Miranda, S.; Lüttenberg, S.; Fröhlich, N.; Koenen, J.-M.; Mohr, F.; Cerrada, E.; Laguna, M.; Mendía, A. Trans -Thionate Derivatives of Pt(II) and Pd(II) with Water-Soluble Phosphane PTA and DAPTA Ligands: Antiproliferative Activity against Human Ovarian Cancer Cell Lines. Inorg. Chem. 2013, 52, 6635–6647. [Google Scholar] [CrossRef] [PubMed]
- Mohr, F.; Cerrada, E.; Laguna, M. Organometallic Gold(I) and Gold(III) Complexes Containing 1,3,5-Triaza-7-Phosphaadamantane (TPA): Examples of Water-Soluble Organometallic Gold Compounds. Organometallics 2006, 25, 644–648. [Google Scholar] [CrossRef]
- Mohr, F.; Sanz, S.; Tiekink, E.R.T.; Laguna, M. Water-Soluble and Water-Stable Organometallic Gold(II) Complexes. Organometallics 2006, 25, 3084–3087. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Yarbrough, J.C.; Lewis, S.J. 2-Thia-1,3,5-Triaza-7-Phosphaadamantane 2,2-Dioxide (PASO2). Comparative Structural and Reactivity Investigation with the Water-Soluble Phosphine Ligand 1,3,5-Triaza-7-Phosphaadamantane (PTA). Organometallics 2003, 22, 2050–2056. [Google Scholar] [CrossRef]
- Mahmoud, A.; Smoleński, P.; Guedes Da Silva, M.; Pombeiro, A. Water-Soluble O-, S- and Se-Functionalized Cyclic Acetyl-Triaza-Phosphines. Synthesis, Characterization and Application in Catalytic Azide-Alkyne Cycloaddition. Molecules 2020, 25, 5479. [Google Scholar] [CrossRef] [PubMed]
- Gosavi, T.; Rusanov, E.; Schmidt, H.; Steinborn, D. Reactivity of Platina-β-Diketones towards Chelating Nitrogen and Sulfur Donors: Formation of Acyl(Hydrido)Platinum(IV) and Acyl(Chloro)Platinum(II) Complexes. Inorganica Chim. Acta 2004, 357, 1781–1788. [Google Scholar] [CrossRef]
- Kluge, T.; Mendicute-Fierro, C.; Bette, M.; Rodríguez-Diéguez, A.; Garralda, M.A.; Steinborn, D. On the Reactivity of Platina-β-diketone and Acetylplatinum(II) Complexes toward 2-(Diphenylphosphanyl)Benzaldehyde and Its Dioxolane Derivative. Eur. J. Inorg. Chem. 2013, 2013, 5418–5427. [Google Scholar] [CrossRef]
- Albrecht, C.; Wagner, C.; Steinborn, D. Zur Reaktivität von Dinuklearen Platina-β-Diketonen Gegenüber Phosphanen: Diacetylplatin(II)-Komplexe Und Mononukleare Platina-β-Diketone. Z. Anorg. Allg. Chem. 2008, 634, 2858–2866. [Google Scholar] [CrossRef]
- Albrecht, C. Synthese und Charakterisierung Neuartiger Platinkomplexe und -Cluster. Ph.D. Dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, 2007. [Google Scholar]
- Hesse, M.; Meier, H.; Zeeh, B. Spektroskopische Methoden in Der Organischen Chemie, 7th ed.; Georg Thieme Verlag: Stuttgart, Germany, 2002. [Google Scholar]
- Steinborn, D.; Hoffmann, T.; Gerisch, M.; Bruhn, C.; Schmidt, H.; Nordhoff, K.; Davies, J.A.; Kirschbaum, K.; Jolk, I. On the Reactivity of Platina-β-Diketones—Synthesis and Characterization of Acylplatinum(II) Complexes. Z. Anorg. Allg. Chem. 2000, 626, 661–666. [Google Scholar] [CrossRef]
- Bippus, P.; Skocic, M.; Jakupec, M.A.; Keppler, B.K.; Mohr, F. Synthesis, Structures and In Vitro Cytotoxicity of Some Cationic Cis-Platinum(II) Complexes Containing Chelating Thiocarbamates. J. Inorg. Biochem. 2011, 105, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.D.; Telma, K.A.; Chang, K.-E.; Lee, T.D.; Madigan, J.P.; Lloyd, J.R.; Goldlust, I.S.; Hoeschele, J.D.; Gottesman, M.M. Say No to DMSO: Dimethylsulfoxide Inactivates Cisplatin, Carboplatin, and Other Platinum Complexes. Cancer Res. 2014, 74, 3913–3922. [Google Scholar] [CrossRef] [PubMed]
- Yousef, R.I.; Bette, M.; Kaluđerović, G.N.; Paschke, R.; Yiran, C.; Steinborn, D.; Schmidt, H. Structure Determination and Investigation on Cytotoxicity of Potassium Dichlorido(l-Prolinato)Platinate(II) versus Chlorido(Dimethyl Sulfoxide)(l-Prolinato)Platinum(II) Complex—In Vitro Antitumor Deactivation by Cl−/Dmso Ligand Exchange. Polyhedron 2011, 30, 1990–1996. [Google Scholar] [CrossRef]
- Moto Ongagna, J.; Tamafo Fouegue, A.D.; Ateba Amana, B.; Mouzong D’ambassa, G.; Zobo Mfomo, J.; Mbaze Meva’A, L.; Bikele Mama, D. B3LYP, M06 and B3PW91 DFT Assignment of Nd8 Metal-Bis-(N-Heterocyclic Carbene) Complexes. J. Mol. Model 2020, 26, 246. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, İ.; Acar-Selçuki, N.; Coles, S.J.; Pekdemir, F.; Şengül, A. Spectroscopic, Structural and DFT Studies of Luminescent Pt(II) and Ag(I) Complexes with an Asymmetric 2,2′-Bipyridine Chelating Ligand. J. Mol. Struct. 2021, 1223, 129271. [Google Scholar] [CrossRef]
- Carpenter, J.P.; Lukehart, C.M. Probing the Electronic Structure of Selected Diplatinum (μ-Alkenylidene) Complexes. Inorganica Chim. Acta 1991, 190, 7–10. [Google Scholar] [CrossRef]
- Cohen, R.D.; Wood, J.S.; Lam, Y.-H.; Buevich, A.V.; Sherer, E.C.; Reibarkh, M.; Williamson, R.T.; Martin, G.E. DELTA50: A Highly Accurate Database of Experimental 1H and 13C NMR Chemical Shifts Applied to DFT Benchmarking. Molecules 2023, 28, 2449. [Google Scholar] [CrossRef] [PubMed]
- Pankratyev, E.Y.; Tulyabaev, A.R.; Khalilov, L.M. How Reliable Are GIAO Calculations of 1H and 13C NMR Chemical Shifts? A Statistical Analysis and Empirical Corrections at DFT (PBE/3z) Level. J. Comput. Chem. 2011, 32, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Kasalović, M.P.; Dimić, D.; Jelača, S.; Maksimović-Ivanić, D.; Mijatović, S.; Zmejkovski, B.B.; Schreiner, S.H.F.; Rüffer, T.; Pantelić, N.; Kaluđerović, G.N. Trimethyltin(IV) Bearing 3-(4-Methyl-2-Oxoquinolin-1(2H)-Yl)Propanoate Causes Lipid Peroxidation-Mediated Autophagic Cell Death in Human Melanoma A375 Cells. Pharmaceuticals 2024, 17, 372. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, G.; Chen, D. Theoretical Investigation of Hydrogen Bonding between Water and Platinum(II): An Atom in Molecule (AIM) Study. Mol. Phys. 2012, 110, 179–184. [Google Scholar] [CrossRef]
- Kasalović, M.P.; Jelača, S.; Milanović, Ž.; Maksimović-Ivanić, D.; Mijatović, S.; Lađarević, J.; Božić, B.; Marković, Z.; Dunđerović, D.; Rüffer, T.; et al. Novel Triphenyltin(iv) Compounds with Carboxylato N-Functionalized 2-Quinolones as Promising Potential Anticancer Drug Candidates: In Vitro and In Vivo Evaluation. Dalton Trans. 2024, 53, 8298–8314. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.M.; Albering, J.; Abu-Youssef, M.A.M. Structural Analyses of Two New Highly Distorted Octahedral Copper(II) Complexes with Quinoline-Type Ligands; Hirshfeld, AIM and NBO Studies. Polyhedron 2017, 127, 36–50. [Google Scholar] [CrossRef]
- Lepetit, C.; Vabre, B.; Canac, Y.; Alikhani, M.E.; Zargarian, D. Pentacoordinated, Square Pyramidal Cationic PCP Ni(II) Pincer Complexes: ELF and QTAIM Topological Analyses of Nickel–Triflate Interactions. Theor. Chem. Acc. 2018, 137, 141. [Google Scholar] [CrossRef]
- Bianchi, R.; Gervasio, G.; Marabello, D. Experimental Electron Density Analysis of Mn 2 (CO) 10: Metal−Metal and Metal−Ligand Bond Characterization. Inorg. Chem. 2000, 39, 2360–2366. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Szmigiel-Bakalarz, K.; Nentwig, M.; Oeckler, O.; Malik-Gajewska, M.; Filip-Psurska, B.; Morzyk-Ociepa, B. 7-Azaindole-3-Carboxylic Acid and Its Pt(II) and Pd(II) Complexes: Crystal Structure of the Ligand, Vibrational Spectra, DFT Calculations and In Vitro Antiproliferative Activity. J. Mol. Struct. 2020, 1203, 127441. [Google Scholar] [CrossRef]
- Werner, M.; Bruhn, C.; Steinborn, D. From Platina-β-Diketones to Diacetylplatinum(II) Complexes—Synthesis, Characterization and Structural Features. J. Organomet. Chem. 2008, 693, 2369–2376. [Google Scholar] [CrossRef]
- Gerisch, M.; Heinemann, F.W.; Bruhn, C.; Scholz, J.; Steinborn, D. Reactivity of Dinuclear Platina-β-Diketones toward Phosphines and Pyridines: Formation of Mononuclear Platina-β-Diketones and Acyl(Chloro)Platinum(II) Complexes. Organometallics 1999, 18, 564–572. [Google Scholar] [CrossRef]
- Renfrew, A.K.; Phillips, A.D.; Egger, A.E.; Hartinger, C.G.; Bosquain, S.S.; Nazarov, A.A.; Keppler, B.K.; Gonsalvi, L.; Peruzzini, M.; Dyson, P.J. Influence of Structural Variation on the Anticancer Activity of RAPTA-Type Complexes: Ptn versus Pta. Organometallics 2009, 28, 1165–1172. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Wadt, W.R.; Hay, P.J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [Google Scholar] [CrossRef]
- Mohamed, D.S.; Al-Jibori, S.A.; Behjatmanesh-Ardakani, R.; Faihan, A.S.; Yousef, T.A.; Alhamzani, A.G.; Abou-Krisha, M.M.; Al-Janabi, A.S.M.; Hsiao, B.S. Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-Phenylthiourea and Phosphine/Diamine Ligands. Inorganics 2023, 11, 125. [Google Scholar] [CrossRef]
- Sankarganesh, M.; Solomon, R.V.; Raja, J.D. Platinum Complex with Pyrimidine- and Morpholine-Based Ligand: Synthesis, Spectroscopic, DFT, TDDFT, Catalytic Reduction, In Vitro Anticancer, Antioxidant, Antimicrobial, DNA Binding and Molecular Modeling Studies. J. Biomol. Struct. Dyn. 2021, 39, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Ditchfield, R. Self-Consistent Perturbation Theory of Diamagnetism. Mol. Phys. 1974, 27, 789–807. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Slee, T.S.; Cremer, D.; Kraka, E. Description of Conjugation and Hyperconjugation in Terms of Electron Distributions. J. Am. Chem. Soc. 1983, 105, 5061–5068. [Google Scholar] [CrossRef]
- Demakova, M.Y.; Luzyanin, K.V.; Starova, G.L.; Kukushkin, V.Y. Facile Alternative Route to Cis -[PtCl 2 (PTA) 2] and [PtCl(PTA) 3]Cl (PTA = 1,3,5-Triaza-7-Phosphaadamantane). Inorg. Chem. Commun. 2014, 50, 17–18. [Google Scholar] [CrossRef]
δ(Pnot coor.) | δ(P) (1JPt,P) | Δδ a | PtCOCH3 | PCH2N | PtCOCH3 | PtCOCH3 | |
---|---|---|---|---|---|---|---|
δH (3JPt,H) | δC (2JPt,C) | δC | |||||
1 | −113.4 | −77.3 (1440) | 36.1 | 1.93 (15.9) | 3.97 b | 44.1 (330.2) | 242.4 |
2 | −74.1 | −42.2 (1496) | 32.0 | 2.13 (17.2) | 3.80 b | 44.4 (280.9) | 253.1 |
3 | −113.4 | −67.2 (3325) | 46.2 | 2.21 (12.6) | 4.13 b | 48.1 | 209.3 |
4 | −74.1 | −35.0 (3200) | 39.1 | 2.31 (n.o.[c]) | 3.85 b | - | - |
1H NMR | Experimental | Theoretical | 13C NMR | Experimental | Theoretical | Corrected Theoretical |
---|---|---|---|---|---|---|
NCOCH3 | 2.07 | 1.94 | NCOCH3 | 21.4 | 24.1 | 23.4 |
PtCOCH3 | 2.13 | 1.97 | NCOCH3 | 21.8 | 24.6 | 23.9 |
PCH2N | 3.53 | 2.91 | PCH2N | 40.6 | 44.3 | 43.0 |
PCH2N | 3.8 | 3.50 | PCH2N | 45.4 | 46.9 | 45.5 |
PCH2N+ NCH2N | 4.12 | 3.71 | PtCOCH3+PCH2N | 44.4 | 51.4 | 49.9 |
PCH2N | 4.55 | 3.86 | NCH2N | 66.9 | 66.6 | 64.6 |
NCH2N | 4.68 | 4.46 | NCH2N | 68.1 | 71.5 | 69.4 |
NCH2N | 5.08 | 4.70 | NCOCH3 | 171.9 | 172.3 | 167.3 |
PCH2N | 5.26 | 5.06 | NCOCH3 | 172.2 | 173.9 | 168.8 |
NCH2N | 5.7 | 5.82 | PtCOCH3 | 253.1 | 264.7 | 257.0 |
R2 | 0.996 | R2 | 0.999 | 0.999 | ||
MAE [ppm] | 0.32 | MAE [ppm] | 3.5 | 2.8 | ||
RMSD [ppm] | 0.38 | RMSD [ppm] | 4.8 | 3.2 | ||
Slope | 0.996 | Slope | 0.971 | 1.00 | ||
Bias [ppm] | 0.13 | Bias [ppm] | −3.4 | −0.7 |
Bond | ρ(r) [a.u.] | ∇2ρ(r) [a.u.] | G(r) [kJ mol−1] | V(r) [kJ mol−1] | H(r) [kJ mol−1] | −G(r)/V(r) | Ebond [kJ mol−1] |
---|---|---|---|---|---|---|---|
1 | |||||||
Pt−P | 0.082 | 0.147 | 166.5 | −236.7 | −70.2 | 0.7 | −118.3 |
Pt−C | 0.130 | 0.171 | 252.5 | −392.9 | −140.4 | 0.6 | −196.4 |
O∙∙∙H | 0.010 | 0.033 | 18.3 | −15.2 | 3.1 | 1.2 | −7.6 |
H∙∙∙H | 0.006 | 0.019 | 10.1 | −7.8 | 2.3 | 1.3 | −3.9 |
2 | |||||||
Pt−P | 0.084 | 0.150 | 171.0 | −243.7 | −72.8 | 0.7 | −121.9 |
Pt−C | 0.131 | 0.183 | 260.9 | −401.6 | −140.7 | 0.6 | −200.8 |
O∙∙∙H | 0.007 | 0.022 | 12.5 | −10.8 | 1.7 | 1.2 | −5.4 |
H∙∙∙H | 0.006 | 0.020 | 10.6 | −8.2 | 2.4 | 1.3 | −4.1 |
3 | |||||||
Pt−P | 0.098 | 0.142 | 190.4 | −287.5 | −97.2 | 0.7 | −143.8 |
Pt−C | 0.144 | 0.168 | 277.7 | −445.3 | −167.6 | 0.6 | −222.6 |
Pt−Cl | 0.059 | 0.163 | 139.6 | −172.3 | −32.7 | 0.8 | −86.2 |
O∙∙∙H | 0.006 | 0.020 | 11.2 | −9.1 | 2.1 | 1.2 | −4.6 |
H∙∙∙H | 0.004 | 0.134 | 7.1 | −5.4 | 1.7 | 1.3 | −2.7 |
H∙∙∙Cl | 0.008 | 0.025 | 13.6 | −10.6 | 3.1 | 1.3 | −5.3 |
4 | |||||||
Pt−P | 0.098 | 0.140 | 187.4 | −282.5 | −95.2 | 0.7 | −141.3 |
Pt−C | 0.145 | 0.172 | 282.0 | −451.4 | −169.3 | 0.6 | −225.7 |
Pt−Cl | 0.059 | 0.163 | 139.6 | −172.5 | −32.8 | 0.8 | −86.2 |
O∙∙∙H | 0.007 | 0.026 | 14.4 | −11.9 | 2.5 | 1.2 | −6.0 |
H∙∙∙H | 0.005 | 0.018 | 9.6 | −7.3 | 2.3 | 1.3 | −3.6 |
H∙∙∙Cl | 0.008 | 0.025 | 13.3 | −10.5 | 2.9 | 1.3 | −5.2 |
IC50 [µM] ± SD | |||||
---|---|---|---|---|---|
Compound | 8505C | A253 | A549 | A2780 | DLD-1 |
PASO2, DAPTA | >100 | >100 | >100 | >100 | >100 |
1 | 2.52 ± 0.11 | 2.33 ± 0.27 | 1.03 ± 0.18 | 0.59 ± 0.02 | 48.85 ± 1.07 |
2 | 9.50 ± 0.30 | 9.64 ± 0.19 | 10.25 ± 1.13 | 0.65 ± 0.22 | >150 |
4 | 57.20 ± 3.14 | 76.19 ± 3.05 | 6.56 ± 2.08 | 1.22 ± 0.29 | >150 |
cisplatin | 5.02 ± 0.23 | 0.81 ± 0.20 | 1.51 ± 0.02 | 0.55 ± 0.03 | 5.14 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, S.; Dimić, D.; Kaluđerović, M.R.; Mohr, F.; Kaluđerović, G.N. Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands. Inorganics 2025, 13, 253. https://doi.org/10.3390/inorganics13080253
Richter S, Dimić D, Kaluđerović MR, Mohr F, Kaluđerović GN. Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands. Inorganics. 2025; 13(8):253. https://doi.org/10.3390/inorganics13080253
Chicago/Turabian StyleRichter, Stefan, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr, and Goran N. Kaluđerović. 2025. "Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands" Inorganics 13, no. 8: 253. https://doi.org/10.3390/inorganics13080253
APA StyleRichter, S., Dimić, D., Kaluđerović, M. R., Mohr, F., & Kaluđerović, G. N. (2025). Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands. Inorganics, 13(8), 253. https://doi.org/10.3390/inorganics13080253