Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = droplet printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3760 KB  
Review
Artificial Intelligence Informed Hydrogel Biomaterials in Additive Manufacturing
by Zhizhou Zhang, Zach Z. Tao, Ruiling Du, Runxin Huo and Xiangrui Zheng
Gels 2025, 11(12), 981; https://doi.org/10.3390/gels11120981 - 6 Dec 2025
Viewed by 193
Abstract
Hydrogel additive manufacturing underpins soft tissue models, biointerfaces, and soft robotics. The coupled choices of formulation, rheology, and process conditions limit the progress. This review maps how artificial intelligence links composition to printability across direct ink writing, inkjet, vat photopolymerization, and laser-induced forward [...] Read more.
Hydrogel additive manufacturing underpins soft tissue models, biointerfaces, and soft robotics. The coupled choices of formulation, rheology, and process conditions limit the progress. This review maps how artificial intelligence links composition to printability across direct ink writing, inkjet, vat photopolymerization, and laser-induced forward transfer, and how vision-guided control improves fidelity and viability during printing. Interpretable predictors connect routine rheology to strand stability, data-driven classifiers chart droplet regimes, and optical dose models with learning enhance voxel accuracy. Polymer informatics, including BigSMILES based representations, supports generative screening of precursors and crosslinkers. Bayesian optimization and active learning reduce experimental burden while honoring biological constraints, and emerging autonomous platforms integrate in situ sensing with rapid iteration. A strategic framework outlines a technological progression from current open-loop data gathering toward real-time closed-loop correction and ultimately predictive fault prevention through digital twins. The synthesis provides quantitative routes from formulation through process to function, establishing a practical foundation for predictive, reproducible hydrogel manufacturing and application-oriented design. Full article
(This article belongs to the Special Issue Innovative Soft Materials with a Focus on Gels)
Show Figures

Figure 1

18 pages, 4894 KB  
Article
Study on Microdroplets Generation and Detection Method in Four-Way Microfluid Structure (FWMS) by Double Photoresist Method Pulses
by Lele Luo and Lu Zhang
Micromachines 2025, 16(11), 1205; https://doi.org/10.3390/mi16111205 - 23 Oct 2025
Viewed by 400
Abstract
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and [...] Read more.
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and complex systems for capacitance detection, and high-throughput imaging detections are challenging. In this study, four-way microfluid structure (FWMS) is proposed for microdroplets generation and detection. FWMS, fixed on a 3D-printed holder, is designed to generate microdroplets (100–500 µm), with optical fibers embedded to collect double photoresist method pulses of scattering light by fast-moving microdroplets. The size and volume of the microdroplets are retrieved by tracking the double pulse signal in the time sequence. In the experiments, 50 groups of microdroplets (a total of 105 microdroplets) with size ranging from 100 to 450 µm were generated and detected. Compared with traditional imaging detection, this method has a better sampling rate and detection error of less than 1.42%, which can provide a simple and accurate integrated microfluid system for microdroplet generation and synchronous detection. Full article
Show Figures

Figure 1

15 pages, 3948 KB  
Article
Study on the Preparation of Metallic Aluminum Powder by Nitrogen Atomization
by Xiaoyun Yu, Jiasheng Yang, Guozhi Wang, Qingchun Yu, Yong Deng and Weijin Yu
Processes 2025, 13(10), 3264; https://doi.org/10.3390/pr13103264 - 13 Oct 2025
Viewed by 562
Abstract
Metal additive manufacturing represents the most promising application for Three-dimensional printing systems. Gas atomization is an important method for the preparation of metal powders. In this work, aluminum powders were prepared via vacuum induction atomization. Morphology and microstructure were investigated. Results demonstrated that [...] Read more.
Metal additive manufacturing represents the most promising application for Three-dimensional printing systems. Gas atomization is an important method for the preparation of metal powders. In this work, aluminum powders were prepared via vacuum induction atomization. Morphology and microstructure were investigated. Results demonstrated that optimal atomization occurred at 3 MPa with a 2.5 mm delivery tube diameter, yielding powders with an average particle size of 63.8 μm and a sphericity of more than 90%. Variations in droplet size caused differential cooling rates, enabling rapidly solidified small droplets to adhere to incompletely cooled large droplets and form satellite spheres. Quantitative analysis confirmed a positive correlation between metal powder particle size and surface satellite spheres. Large droplets exhibited long cooling times, resulting in more pronounced dendritic microstructures. This study provides theoretical insights for the preparation of metal powders. Full article
(This article belongs to the Special Issue Microstructure Properties and Characterization of Metallic Material)
Show Figures

Figure 1

50 pages, 2762 KB  
Review
Inkjet Printing for Batteries and Supercapacitors: State-of-the-Art Developments and Outlook
by Juan C. Rubio and Martin Bolduc
Energies 2025, 18(20), 5348; https://doi.org/10.3390/en18205348 - 11 Oct 2025
Viewed by 1357
Abstract
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern [...] Read more.
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern performance. For batteries, reported inkjet-printed electrodes commonly deliver capacities of ~110–150 mAh g−1 for oxide cathodes at C/2–1 C, with coulombic efficiency ≥98% and stability over 102–103 cycles; silicon anodes reach ~1.0–2.0 Ah g−1 with efficiency approaching 99% under stepwise formation. Typical current densities are ~0.5–5 mA cm−2 depending on areal loading, and multilayer designs with optimized drying and parameter tuning can yield rate and discharge behavior comparable to cast films. For supercapacitors, inkjet-printed microdevices report volumetric capacitances in the mid-hundreds of F cm−3, translating to ~9–34 mWh cm−3 and ~0.25–0.41 W cm−3, with 80–95% retention after 10,000 cycles and coulombic efficiency near 99%. In solid-state configurations, stability is enhanced, although often accompanied by reduced areal capacitance. Although solids loading is lower than in screen printing, precise material placement together with thermal or photonic sintering enables competitive capacity, rate capability, and cycle life while minimizing waste. The review consolidates practical guidance on ink formulation, printability, and defect control and outlines opportunities in greener chemistries, oxidation-resistant metallic systems, and scalable high-throughput printing. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

16 pages, 3491 KB  
Article
Rapid Screening of Liquid Metal Wetting for a Materials Compatibility Library
by Shahryar Mooraj, Alexander Baker, Connor J. Rietema, Jesse Ahlquist, Hunter Henderson and Viktor Sukhotskiy
Metals 2025, 15(10), 1121; https://doi.org/10.3390/met15101121 - 10 Oct 2025
Viewed by 870
Abstract
Wetting behavior of molten metals on solid substrates is a critical phenomenon influencing numerous industrial applications, including welding, anti-corrosion coatings, and metal additive manufacturing (AM). In particular, molten metal jetting (MMJ), an emerging AM technology, requires that the molten metal remain pinned at [...] Read more.
Wetting behavior of molten metals on solid substrates is a critical phenomenon influencing numerous industrial applications, including welding, anti-corrosion coatings, and metal additive manufacturing (AM). In particular, molten metal jetting (MMJ), an emerging AM technology, requires that the molten metal remain pinned at the nozzle exit. Thus, each new metal requires a specific nozzle material to ensure consistent droplet ejection and deposition, making it important to rapidly identify the appropriate wetting combinations. However, traditional measurements of wetting angles require expensive equipment and only allow one combination of materials to be investigated at a time which can be time consuming. This work introduces a rapid screening method based on sessile droplet experiments to evaluate wetting profiles across multiple metal–substrate combinations simultaneously. This study investigates the wetting interactions of molten Al alloy (Al4008), Cu, and Sn on various ceramic and metal substrates to identify optimal material combinations for MMJ nozzle designs. Results demonstrate that Al4008 achieves wetting on ceramic substrates such as AlN, TiO2, and SiC, with varying mechanisms including chemical reactions and weak surface interactions. Additionally, theoretical predictions regarding miscibility gaps and melting point differences were verified for Cu and Sn on refractory metals like Mo and W. Findings from this study contribute to the establishment of a materials compatibility library, enabling the selection of wetting/non-wetting combinations for stable MMJ operation. This resource not only advances MMJ technologies but also provides valuable insights for broader applications such as welding, coating, and printed electronics. Full article
Show Figures

Graphical abstract

17 pages, 5751 KB  
Article
Laser-Induced Forward Transfer in Organ-on-Chip Devices
by Maria Anna Chliara, Antonios Hatziapostolou and Ioanna Zergioti
Photonics 2025, 12(9), 877; https://doi.org/10.3390/photonics12090877 - 30 Aug 2025
Viewed by 1026
Abstract
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of [...] Read more.
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of 4 × 4 spot arrays. Droplet velocity was quantified and jet trajectory characterized, revealing that increased distances reduced spatial resolution, with significant shape deterioration observed beyond 2.0 mm. Thus, a maximum 2.0 mm donor–receiver gap was determined as optimal for acceptable printing resolution. As an application, a microfluidic device was fabricated using LCD 3D printing with a biocompatible resin and glass-bottomed configuration. The chamber height was matched to the validated 2.0 mm distance, ensuring compatibility with LIFT printing. Computational fluid dynamics simulations were conducted to model fluid flow conditions within the device. Subsequently, LLC cells were successfully printed inside the microfluidic chamber, cultured under continuous flow for 24 h, and demonstrated normal proliferation. This work highlights LIFT bioprinting’s viability and precision for integrating cells within microfluidic platforms, presenting promising potential for organ-on-chip applications and future biomedical advancements. Full article
Show Figures

Figure 1

14 pages, 3743 KB  
Article
Three-Dimensional-Printed Lateral Extraction Enhanced Desorption Electrospray Ionization Source for Mass Spectrometry
by Jilin Liu and Xiang Qian
Appl. Sci. 2025, 15(17), 9468; https://doi.org/10.3390/app15179468 - 28 Aug 2025
Cited by 1 | Viewed by 827
Abstract
This paper introduces a novel Lateral Extraction Enhanced Desorption Electrospray Ionization (LEE-DESI) source. This source is specifically designed to tackle the crucial issue of electric field interference in dual-channel ambient ionization mass spectrometry (AIMS). By incorporating dual-channel spraying-based desorption and extraction into a [...] Read more.
This paper introduces a novel Lateral Extraction Enhanced Desorption Electrospray Ionization (LEE-DESI) source. This source is specifically designed to tackle the crucial issue of electric field interference in dual-channel ambient ionization mass spectrometry (AIMS). By incorporating dual-channel spraying-based desorption and extraction into a 3D-printed chamber with optimized spatial parameters, the system effectively reduces cross-channel interference while boosting ionization efficiency. The desorption spray is responsible for desorbing analytes from untreated samples, and the extraction spray further ionizes more neutral droplets through charge transfer, which substantially enhances sensitivity. Compared with traditional DESI, the LEE-DESI source demonstrates improved detection limits, reproducibility, and operational simplicity, as validated using Rhodamine B, L-arginine, and Angiotensin I, as well as drug standards including methadone, ketamine, and fentanyl. This highlights its potential for high-throughput analysis of complex matrices in proteomics, metabolomics, and biomedical applications. Full article
(This article belongs to the Special Issue Analytical Chemistry: Techniques and Applications)
Show Figures

Figure 1

39 pages, 27477 KB  
Review
Three-Dimensional Printing and Bioprinting Strategies for Cardiovascular Constructs: From Printing Inks to Vascularization
by Min Suk Kim, Yuri Choi and Keel Yong Lee
Polymers 2025, 17(17), 2337; https://doi.org/10.3390/polym17172337 - 28 Aug 2025
Cited by 3 | Viewed by 3085
Abstract
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that [...] Read more.
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that support surgical planning and biomedical applications. In contrast, 3D bioprinting has emerged as a transformative biofabrication technology that allows for the spatially controlled deposition of living cells and biomaterials to construct functional tissues in vitro. Bioinks—derived from natural biomaterials such as collagen and decellularized matrix, synthetic polymers such as polyethylene glycol (PEG) and polycaprolactone (PCL), or hybrid combinations—have been engineered to replicate extracellular environments while offering tunable mechanical properties. These formulations ensure biocompatibility, appropriate mechanical strength, and high printing fidelity, thereby maintaining cell viability, structural integrity, and precise architectural resolution in the printed constructs. Advanced bioprinting modalities, including extrusion-based bioprinting (such as the FRESH technique), droplet/inkjet bioprinting, digital light processing (DLP), two-photon polymerization (TPP), and melt electrowriting (MEW), enable the fabrication of complex cardiovascular structures such as vascular patches, ventricle-like heart pumps, and perfusable vascular networks, demonstrating the feasibility of constructing functional cardiac tissues in vitro. This review highlights the respective strengths of these technologies—for example, extrusion’s ability to print high-cell-density bioinks and MEW’s ultrafine fiber resolution—as well as their limitations, including shear-induced cell stress in extrusion and limited throughput in TPP. The integration of optimized bioink formulations with appropriate printing and bioprinting platforms has significantly enhanced the replication of native cardiac and vascular architectures, thereby advancing the functional maturation of engineered cardiovascular constructs. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

24 pages, 4225 KB  
Review
Recent Advances in Plant-Based Emulsion Gels: Preparation, Characterization, Applications, and Future Perspectives
by Yunfei Huang, Chunmei Li and David Julian McClements
Gels 2025, 11(8), 641; https://doi.org/10.3390/gels11080641 - 13 Aug 2025
Cited by 1 | Viewed by 3404
Abstract
Plant-based foods have emerged as a major focus of the modern food industry as it tries to create more sustainable, environmentally friendly, and healthy products. Plant-based emulsion gels (PBEGs) can be used to provide valuable structures, textures, and functions in many plant-based food [...] Read more.
Plant-based foods have emerged as a major focus of the modern food industry as it tries to create more sustainable, environmentally friendly, and healthy products. Plant-based emulsion gels (PBEGs) can be used to provide valuable structures, textures, and functions in many plant-based food applications. For instance, they can be used as a matrix to form semi-solid plant-based meat, fish, egg, or dairy analogs, delivery systems for bioactive compounds in functional foods, and edible inks in 3D food printing. The most common PBEGs used in the food industry consist of oil droplets embedded within an aqueous phase containing a biopolymer network. However, PBEGs may also be formed from high-internal-phase emulsions (HIPEs) or aggregated emulsions. PBEGs combine the benefits of emulsions and gels, such as the ability to encapsulate both polar and non-polar functional ingredients, as well as to create desirable textural attributes. This review summarizes recent advances (2017–2025) in the development and application of PBEGs in the food sector, with a focus on their preparation methods, characterization techniques, and potential applications. The future perspectives and challenges associated with PBEGs are also discussed. Overall, this review provides a useful platform for directing future research efforts and for the practical implementation of PBEGs in plant-based food systems. Full article
Show Figures

Figure 1

15 pages, 6688 KB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 - 2 Aug 2025
Viewed by 1017
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

18 pages, 7553 KB  
Article
Investigating Experimental and Computational Fluid Dynamics of 3D-Printed TPMS and Lattice Porous Structures
by Guru Varun Penubarthi, Kishore Bhaskar Suresh Babu, Senthilkumar Sundararaj and Shung Wen Kang
Micromachines 2025, 16(8), 883; https://doi.org/10.3390/mi16080883 - 29 Jul 2025
Viewed by 1457
Abstract
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with [...] Read more.
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with 16 μL water droplets dropping from 30 mm at 0.77 m/s. Results showed variable contact angles, with Isotruss and Octet having higher angles, while Diamond faced measurement challenges due to surface roughness. Numerical simulations of TPMS-Gyroid of 2 mm3 unit cells validated the experimental results, and Diamond, Octet, and Isotruss structures were simulated. Capillary performance was assessed through deionized (DI) water weight–time (w-t) measurements, identifying that the TPMS-Gyroid structure performed adequately. Structures with 4 mm3 unit cells had low capillary performance, excluding them from permeability testing, whereas smaller 2 mm3 structures demonstrated capillary effects but had printability and cleaning issues. Permeability results indicated that Octet performed best, followed by Isotruss, Diamond, and TPMS-Gyroid. Findings emphasize unit cell size, beam thickness, and droplet positioning as key factors in optimizing fluid dynamics for cooling, filtration, and fluid management. Full article
(This article belongs to the Special Issue Micro Thermal Devices and Their Applications, 2nd Edition)
Show Figures

Figure 1

12 pages, 4156 KB  
Article
Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning
by Yu Ju Han, Myung Seo Kim, Seong Min Yoon, Seo Na Yoon, Woo Young Kim, Seok Kim and Young Tae Cho
Molecules 2025, 30(15), 3146; https://doi.org/10.3390/molecules30153146 - 27 Jul 2025
Cited by 1 | Viewed by 1539
Abstract
The coffee-ring effect, while harnessed in diverse fields such as biosensing and printing, poses challenges for achieving uniform particle deposition. Controlling this phenomenon is thus essential for precision patterning. This study proposes a novel method to regulate coffee-ring formation by tuning surface wettability [...] Read more.
The coffee-ring effect, while harnessed in diverse fields such as biosensing and printing, poses challenges for achieving uniform particle deposition. Controlling this phenomenon is thus essential for precision patterning. This study proposes a novel method to regulate coffee-ring formation by tuning surface wettability via integrated nanoporous and hexagonal microstructures. Four distinct surface types were fabricated using UV nanoimprint lithography: planar, porous planar, hexagonal wall, and porous hexagonal wall. The evaporation behavior of colloidal droplets and subsequent particle aggregation were analyzed through contact angle measurements and confocal microscopy. Results demonstrated that nanoscale porosity significantly increased surface wettability and accelerated evaporation, while the hexagonal pattern enhanced droplet stability and suppressed contact line movement. The porous hexagonal surface, in particular, enabled the formation of connected dual-ring patterns with higher particle accumulation near the contact edge. This synergistic design facilitated both stable evaporation and improved localization of particles. The findings provide a quantitative basis for applying patterned porous surfaces in evaporation-driven platforms, with implications for enhanced sensitivity and reproducibility in surface-enhanced Raman scattering (SERS) and other biosensing applications. Full article
(This article belongs to the Special Issue Novel Porous Materials for Environmental Applications)
Show Figures

Graphical abstract

18 pages, 16074 KB  
Article
DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing
by Jiacheng Cai, Jiankui Chen, Wei Tang, Jinliang Wu, Jingcheng Ruan and Zhouping Yin
Machines 2025, 13(8), 657; https://doi.org/10.3390/machines13080657 - 27 Jul 2025
Viewed by 587
Abstract
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet [...] Read more.
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet imaging. To address this, we propose a physics-informed degradation model, Diffraction–Gaussian–Motion–Noise (DGMN), that integrates Fraunhofer diffraction, defocus blur, motion blur, and adaptive noise to replicate real-world degradation in droplet images. To optimize the multi-parameter configuration of DGMN, we introduce the MISABO (Multi-strategy Improved Subtraction-Average-Based Optimizer), which incorporates Sobol sequence initialization for search diversity, lens opposition-based learning (LensOBL) for enhanced accuracy, and dimension learning-based hunting (DLH) for balanced global–local optimization. Benchmark function evaluations demonstrate that MISABO achieves superior convergence speed and accuracy. When applied to generate synthetic droplet images based on real droplet images captured from a self-developed OLED inkjet printer, the proposed MISABO-optimized DGMN framework significantly improves realism, enhancing synthesis quality by 37.7% over traditional manually configured models. This work lays a solid foundation for generating high-quality synthetic data to support droplet image restoration and downstream inkjet printing processes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

16 pages, 2767 KB  
Article
Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer
by Zihan Cao, Yu Xing, Shasha Zhou, Feifan Li, Lixin Wang, Juanjuan Zhang, Xiaoxi Yang and Yumiao Lang
Foods 2025, 14(14), 2518; https://doi.org/10.3390/foods14142518 - 18 Jul 2025
Cited by 1 | Viewed by 818
Abstract
Due to the health-driven demand for fat replacers in meat products, Lycopene (Lyc)-loaded yeast protein (YP) high internal phase Pickering emulsions (HIPPEs) were explored as fat replacers for 3D-printed meat products. HIPPEs with varying Lyc concentrations were formulated, and their encapsulation efficiency and [...] Read more.
Due to the health-driven demand for fat replacers in meat products, Lycopene (Lyc)-loaded yeast protein (YP) high internal phase Pickering emulsions (HIPPEs) were explored as fat replacers for 3D-printed meat products. HIPPEs with varying Lyc concentrations were formulated, and their encapsulation efficiency and antioxidant activity (DPPH and ABTS assays) were evaluated. The encapsulation efficiency of Lyc exceeded 90% for all samples. Microscopic analysis revealed significant droplet enlargement in emulsions containing Lyc concentrations of 1.25 mg/mL and 1.50 mg/mL. Antioxidant activity peaked at a Lyc concentration of 1.00 mg/mL. Three-dimensional-printed meat products with different fat replacement ratios (0%, 25%, 50%, 75% and 100%) were prepared using both Lyc-loaded and non-loaded emulsions, and their printing precision, cooking loss, color, pH, texture, and lipid oxidation were assessed. The replacement ratio had no significant impact on printing precision, while cooking yield improved with higher fat replacement levels. Lyc emulsions notably influenced meat color, resulting in lower lightness and higher redness and yellowness. pH values remained stable across formulations. Lipid oxidation decreased with increasing fat replacement levels. The results indicate that Lyc-loaded YP Pickering emulsions have great potential as effective fat replacers for 3D-printed meat products, enhancing antioxidant performance while preserving product quality. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

33 pages, 11174 KB  
Review
Photopolymer Flexographic Printing Plate Mold for PDMS Microfluidic Manufacture
by Ana Belén Peñaherrera-Pazmiño, Gustavo Iván Rosero, Maximiliano Pérez and Betiana Lerner
Polymers 2025, 17(13), 1723; https://doi.org/10.3390/polym17131723 - 20 Jun 2025
Cited by 1 | Viewed by 2463
Abstract
Flexographic printing, traditionally used in the packaging industry, has emerged as a promising technology for microfluidic device fabrication due to enabling high resolution and being commercially available at a low cost compared to conventional techniques. This review explores the adaptation of a photopolymer [...] Read more.
Flexographic printing, traditionally used in the packaging industry, has emerged as a promising technology for microfluidic device fabrication due to enabling high resolution and being commercially available at a low cost compared to conventional techniques. This review explores the adaptation of a photopolymer flexographic printing plate mold (FMold) for microfluidics, examining its advantages, challenges, and applications. It offers a state-of-the-art view of the application of FMold for microfluidic systems, which offers a unique opportunity in terms of cost-effectiveness, scalability, and rapid prototyping. Applications are diverse: FMold has enabled the fabrication of microfluidic devices used in enhanced oil recovery to prepare rock-on-a-chip models, droplet generation and storage, suspension cell culture, monoclonal antibody production, complex cell differentiation pattern creation, phage screening, drug screening, cell detection, and cancer stem cell culture. Since its first appearance in 2018, FMold has been utilized in 50 publications in different laboratories around the world. Key advancements, current research trends, and future prospects are discussed to provide a comprehensive overview of this evolving tool. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Materials for Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop