Recent Advances in Plant-Based Emulsion Gels: Preparation, Characterization, Applications, and Future Perspectives
Abstract
1. Introduction
- (i)
- Polymer-gelled emulsions: This type of emulsion gel consists of oil droplets dispersed within a gelled aqueous phase. Typically, the aqueous phase is gelled using an appropriate biopolymer-based gelling agent, such as a protein and/or polysaccharide. The elastic properties of this type of system are, therefore, mainly determined by the nature of the gel in the aqueous phase.
- (ii)
- Aggregated emulsions: this type of emulsion gel contains a 3D network of aggregated oil droplets that extends throughout the entire volume of the system, thereby providing elastic properties.
- (iii)
- Jammed emulsions: In this type of emulsion gel, the droplet concentration is so high that the droplets are jammed tightly together, and so they cannot easily move past each other when the sample is deformed. The elastic properties of this type of gel are, therefore, a result of the resistance of the tightly packed oil droplets to move. High-internal-phase emulsions (HIPEs) are an example of this kind of emulsion gel.
2. Preparation of Plant-Based Emulsion Gels
2.1. Protein-Based Emulsion Gels
2.1.1. Heat-Set Gelation
2.1.2. Salt-Set Gelation
2.1.3. pH-Set Gelation
2.1.4. Enzyme-Set Gelation
2.1.5. Chemical-Set Emulsion Gels
2.2. Polysaccharide-Based Emulsion Gels
2.2.1. Heat-Set Gelation
2.2.2. Cold-Set Gelation
2.2.3. Salt-Set Gelation
2.2.4. pH-Set Gelation
2.2.5. Enzyme-Set Gelation
2.3. Protein/Polysaccharide-Based Emulsion Gels
3. Characterization Methods
3.1. Dynamic Shear Rheology
3.2. Texture Analysis: Compression/Tensile Testing
3.3. Microscopy and Microstructure Analysis
3.4. Particle Size
3.4.1. Dynamic Light Scattering (DLS)
3.4.2. Laser Diffraction (LD)
3.4.3. Microscopy and Image Analysis
3.5. Zeta-Potential Analysis
3.6. Thermal Analysis
3.7. Characterization of Functional Groups and Interactions
3.8. Water- and Oil-Holding Capacities (WHC and OHC)
3.9. In Vitro Digestion Studies
3.10. Sensory Properties
4. Application of PBEGs in Food
4.1. Fat Replacers in Low-Fat Foods
4.2. Plant-Based Meat Products
4.3. Delivery of Bioactive Compounds
4.4. Additive Manufacturing: 3D Printed Foods
4.5. Baked Filling Applications
5. Future Perspectives
- (1)
- An improved understanding of the factors impacting the formation of different kinds of PBEGs is still needed, particularly the nature of the interactions between lipid droplets, polysaccharides, and proteins. Advanced techniques, such as small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations, may lead to appreciable advances in this area. For instance, NMR relaxation studies provide information about the mobility of water and oil molecules in emulsion gels, which can provide insights into their structure and properties [122]. MD simulations can model the molecular interactions of proteins, polysaccharides, lipids, and water, providing insights into the molecular basis of emulsion gel properties [147].
- (2)
- Greater attention should be given to exploring how natural bioactive compounds (e.g., vitamins, minerals, nutraceuticals, ω-3 fatty acids, and probiotics) affect the physicochemical properties and nutritional profiles of PBEGs, with the aim of striking a balance between nutritional value and desirable sensory attributes.
- (3)
- Poor sensory attributes remain a major barrier to industrial application. This could be addressed by employing advanced flavor enhancement strategies, such as reducing oral friction and incorporating optimized flavoring agents.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Guo, C.; Li, X.; Yuan, K.; Yang, X.; Guo, Y.; Yang, X. Preparation and Structural Characteristics of Composite Alginate/Casein Emulsion Gels: A Microscopy and Rheology Study. Food Hydrocoll. 2021, 118, 106792. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Li, H.; Zhang, H.; Chi, Y.; Xia, N.; Li, Z.; Jiang, L.; Zhang, X.; Rayan, A.M. Fabrication and Digestive Characteristics of High Internal Phase Pickering Emulsions Stabilized by Ovalbumin-Pectin Complexes for Improving the Stability and Bioaccessibility of Curcumin. Food Chem. 2022, 389, 133055. [Google Scholar] [CrossRef]
- Li, X.; Cao, Q.; Liu, G. Advances, Applications, Challenges and Prospects of Alternative Proteins. J. Food Compos. Anal. 2025, 137, 106900. [Google Scholar] [CrossRef]
- Abe-Inge, V.; Aidoo, R.; Moncada De La Fuente, M.; Kwofie, E.M. Plant-Based Dietary Shift: Current Trends, Barriers, and Carriers. Trends Food Sci. Technol. 2024, 143, 104292. [Google Scholar] [CrossRef]
- Zhi, L.; Liu, Z.; Wu, C.; Ma, X.; Hu, H.; Liu, H.; Adhikari, B.; Wang, Q.; Shi, A. Advances in Preparation and Application of Food-Grade Emulsion Gels. Food Chem. 2023, 424, 136399. [Google Scholar] [CrossRef]
- Cen, S.; Meng, Z. Advances of Plant-Based Fat Analogs in 3D Printing: Manufacturing Strategies, Printabilities, and Food Applications. Food Res. Int. 2024, 197, 115178. [Google Scholar] [CrossRef]
- Li, R.; Guo, Y.; Dong, A.; Yang, X. Protein-Based Emulsion Gels as Materials for Delivery of Bioactive Substances: Formation, Structures, Applications and Challenges. Food Hydrocoll. 2023, 144, 108921. [Google Scholar] [CrossRef]
- Cen, S.; Li, S.; Meng, Z. Advances of Protein-Based Emulsion Gels as Fat Analogues: Systematic Classification, Formation Mechanism, and Food Application. Food Res. Int. 2024, 191, 114703. [Google Scholar] [CrossRef]
- Hoehnel, A.; Zannini, E.; Arendt, E.K. Targeted Formulation of Plant-Based Protein-Foods: Supporting the Food System’s Transformation in the Context of Human Health, Environmental Sustainability and Consumer Trends. Trends Food Sci. Technol. 2022, 128, 238–252. [Google Scholar] [CrossRef]
- Harper, B.A.; Barbut, S.; Lim, L.-T.; Marcone, M.F. Characterization of ‘Wet’ Alginate and Composite Films Containing Gelatin, Whey or Soy Protein. Food Res. Int. 2013, 52, 452–459. [Google Scholar] [CrossRef]
- Cui, H.; Mu, Z.; Xu, H.; Bilawal, A.; Jiang, Z.; Hou, J. Seven Sour Substances Enhancing Characteristics and Stability of Whey Protein Isolate Emulsion and Its Heat-Induced Emulsion Gel under the Non-Acid Condition. Food Res. Int. 2024, 192, 114764. [Google Scholar] [CrossRef]
- Zhan, F.; Tang, X.; Sobhy, R.; Li, B.; Chen, Y. Structural and Rheology Properties of Pea Protein Isolate-stabilised Emulsion Gel: Effect of Crosslinking with Transglutaminase. Int. J. Food Sci. Tech. 2022, 57, 974–982. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, J.; Xiong, Y.L. Genipin-Aided Protein Cross-Linking to Modify Structural and Rheological Properties of Emulsion-Filled Hempseed Protein Hydrogels. J. Agric. Food Chem. 2019, 67, 12895–12903. [Google Scholar] [CrossRef]
- Wang, Z.; Neves, M.A.; Kobayashi, I.; Uemura, K.; Nakajima, M. Preparation, Characterization, and in Vitro Gastrointestinal Digestibility of Oil-in-Water Emulsion-Agar Gels. Biosci. Biotechnol. Biochem. 2013, 77, 467–474. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Z.; Chen, F.; Luo, X.; McClements, D.J. Impact of Delivery System Type on Curcumin Stability: Comparison of Curcumin Degradation in Aqueous Solutions, Emulsions, and Hydrogel Beads. Food Hydrocoll. 2017, 71, 187–197. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Jia, F.; Wu, J.; Jin, W.; Zhao, W.; Cao, J.; Cheng, Y.; Shi, L.; Yun, S.; et al. Exploring the Effect of pH-Shifting on the Gel Properties and Interaction of Heat-Induced Flammulina Velutipes Polysaccharide-Porcine Myofibrillar Protein for Improving the Quality of Flammulina Velutipes-Pork Patties. Food Chem. 2025, 465, 142187. [Google Scholar] [CrossRef]
- Liu, Y.; Yadav, M.P.; Yin, L. Enzymatic Catalyzed Corn Fiber Gum-Bovine Serum Albumin Conjugates: Their Interfacial Adsorption Behaviors in Oil-in-Water Emulsions. Food Hydrocoll. 2018, 77, 986–994. [Google Scholar] [CrossRef]
- Gao, T.; Wu, X.; Gao, Y.; Teng, F.; Li, Y. Construction of Emulsion Gel Based on the Interaction of Anionic Polysaccharide and Soy Protein Isolate: Focusing on Structural, Emulsification and Functional Properties. Food Chem. X 2024, 22, 101377. [Google Scholar] [CrossRef]
- Wang, Z.; Long, J.; Zhang, C.; Hua, Y.; Li, X. Effect of Polysaccharide on Structures and Gel Properties of Microgel Particle Reconstructed Soybean Protein Isolate/Polysaccharide Complex Emulsion Gels as Solid Fat Mimetic. Carbohydr. Polym. 2025, 347, 122759. [Google Scholar] [CrossRef]
- Ju, Q.; Li, N.; McClements, D.J.; Liu, N.; Lu, L.; Yao, X. Emulsion Gels Formed by Complexation or Phase-Separation Using Artemisia sphaerocephala Krasch. Polysaccharide/Whey Protein Isolate Fibrils: Fabrication and Applications. Food Hydrocoll. 2025, 168, 111579. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Ding, M.-Y.; Chen, Y.; Hu, X.-T.; Zhang, Y.-X.; Fang, Z.-W.; Chen, H.-H. Double Cross-Linked Emulsion Gels Stabilized by Flaxseed Protein and Chitosan: Effects of CaCO3 Content on Gel Properties, Stability and Curcumin Digestive Characteristics. Food Chem. 2025, 477, 143503. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, X.; Cheng, Y.; Zhao, G.; Zhou, Y. Gelation Mechanism of Alkali Induced Heat-Set Konjac Glucomannan Gel. Trends Food Sci. Technol. 2021, 116, 244–254. [Google Scholar] [CrossRef]
- Schmitt, C.; Silva, J.V.; Amagliani, L.; Chassenieux, C.; Nicolai, T. Heat-Induced and Acid-Induced Gelation of Dairy/Plant Protein Dispersions and Emulsions. Curr. Opin. Food Sci. 2019, 27, 43–48. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion Gels: The Structuring of Soft Solids with Protein-Stabilized Oil Droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Hu, X.; Xiang, X.; Ju, Q.; Li, S.; Julian McClements, D. Impact of Lipid Droplet Characteristics on the Rheology of Plant Protein Emulsion Gels: Droplet Size, Concentration, and Interfacial Properties. Food Res. Int. 2024, 191, 114734. [Google Scholar] [CrossRef]
- Teng, C.; Campanella, O.H. A Plant-Based Animal Fat Analog Produced by an Emulsion Gel of Alginate and Pea Protein. Gels 2023, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Singhal, R.S. Inclusion of Konjac Glucomannan in Pea Protein Hydrogels Improved the Rheological and in Vitro Release Properties of the Composite Hydrogels. Int. J. Biol. Macromol. 2024, 257, 128689. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.C.; Keeley, F.W.; Weiss, A.S. Coacervation of Tropoelastin. Adv. Colloid. Interface Sci. 2011, 167, 94–103. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, K.; Ye, C.; Shang, Y.; Wang, F. Preparation and Characterization of Microemulsions Formulated with PEG Fatty Acid Glycerides. Colloids Surf. B Biointerfaces 2025, 254, 114826. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, L.; Wang, Y.; Liu, S.; Cao, J.; Li, H.; Liu, X. Salt Ions Improve Soybean Protein Isolate/Curdlan Complex Fat Substitutes: Effect of Molecular Interactions on Freeze-Thaw Stability. Int. J. Biol. Macromol. 2024, 272, 132774. [Google Scholar] [CrossRef] [PubMed]
- Nephomnyshy, I.; Rosen-Kligvasser, J.; Davidovich-Pinhas, M. The Development of a Direct Approach to Formulate High Oil Content Zein-Based Emulsion Gels Using Moderate Temperatures. Food Hydrocoll. 2020, 101, 105528. [Google Scholar] [CrossRef]
- Mantovani, R.A.; Cavallieri, Â.L.F.; Cunha, R.L. Gelation of Oil-in-Water Emulsions Stabilized by Whey Protein. J. Food Eng. 2016, 175, 108–116. [Google Scholar] [CrossRef]
- Lin, D.; Kelly, A.L.; Miao, S. The Impact of pH on Mechanical Properties, Storage Stability and Digestion of Alginate-Based and Soy Protein Isolate-Stabilized Emulsion Gel Beads with Encapsulated Lycopene. Food Chem. 2022, 372, 131262. [Google Scholar] [CrossRef]
- Masiá, C.; Ong, L.; Logan, A.; Stockmann, R.; Gambetta, J.; Jensen, P.E.; Rahimi Yazdi, S.; Gras, S. Enhancing the Textural and Rheological Properties of Fermentation-Induced Pea Protein Emulsion Gels with Transglutaminase. Soft Matter 2024, 20, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Qayum, A.; Hussain, M.; Li, M.; Li, J.; Shi, R.; Li, T.; Anwar, A.; Ahmed, Z.; Hou, J.; Jiang, Z. Gelling, Microstructure and Water-Holding Properties of Alpha-Lactalbumin Emulsion Gel: Impact of Combined Ultrasound Pretreatment and Laccase Cross-Linking. Food Hydrocoll. 2021, 110, 106122. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, L.; Yan, W.; Gao, C.; Jia, X. Preparation and Characterization of a Novel Soy Protein Isolate-Sugar Beet Pectin Emulsion Gel and Its Application as a Multi-Phased Nutrient Carrier. Foods 2022, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Zi, Y.; Shi, C.; Kan, G.; Peng, J.; Gong, H.; Wang, X.; Zhong, J. Two Types of pH-Responsive Genipin-Crosslinked Gelatin Conjugates with High Surface Hydrophobicity for Emulsion Stabilization. Food Hydrocoll. 2024, 150, 109718. [Google Scholar] [CrossRef]
- Xu, D.; Hui, Y.-Y.; Zhang, W.; Zhao, M.-N.; Gao, K.; Tao, X.-R.; Wang, J.-W. Genipin-Crosslinked Hydrogels for Food and Biomedical Applications: A Scientometric Review. Int. J. Biol. Macromol. 2024, 282, 137478. [Google Scholar] [CrossRef]
- Eghbaljoo, H.; Sani, I.K.; Sani, M.A.; Rahati, S.; Mansouri, E.; Molaee-Aghaee, E.; Fatourehchi, N.; Kadi, A.; Arab, A.; Sarabandi, K.; et al. Advances in Plant Gum Polysaccharides; Sources, Techno-Functional Properties, and Applications in the Food Industry - A Review. Int. J. Biol. Macromol. 2022, 222, 2327–2340. [Google Scholar] [CrossRef]
- Liu, X.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. Mechanistic Studies of Starch Retrogradation and Its Effects on Starch Gel Properties. Food Hydrocoll. 2021, 120, 106914. [Google Scholar] [CrossRef]
- McClements, D.J. Composite Hydrogels Assembled from Food-Grade Biopolymers: Fabrication, Properties, and Applications. Adv. Colloid. Interface Sci. 2024, 332, 103278. [Google Scholar] [CrossRef]
- Ryu, J.; McClements, D.J. Impact of Heat-Set and Cold-Set Gelling Polysaccharides on Potato Protein Gelation: Gellan Gum, Agar, and Methylcellulose. Food Hydrocoll. 2024, 149, 109535. [Google Scholar] [CrossRef]
- Jiang, F.; Xu, X.; Xiao, Q.; Li, Z.; Weng, H.; Chen, F.; Xiao, A. Fabrication, Structure, Characterization and Emulsion Application of Citrate Agar. Int. J. Biol. Macromol. 2024, 268, 131451. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Li, X.; McClements, D.J.; Ji, H.; Jin, Z.; Qiu, C. Biopolymer-Based Emulsion Gels as Fat Replacers: A Review of Their Design, Fabrication, and Applications. Int. J. Biol. Macromol. 2025, 305, 141297. [Google Scholar] [CrossRef]
- Ye, X.; Wei, L.; Sun, L.; Xu, Q.; Cao, J.; Li, H.; Pang, Z.; Liu, X. Fabrication of Food Polysaccharide, Protein, and Polysaccharide-Protein Composite Gels via Calcium Ion Inducement: Gelation Mechanisms, Conditional Factors, and Applications. Int. J. Biol. Macromol. 2024, 279, 135397. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.A.; Brito, A.C.F.; De Paula, R.C.M.; Feitosa, J.P.A.; Paula, H.C.B. Effect of Mono and Divalent Salts on Gelation of Native, Na and Deacetylated Sterculia Striata and Sterculia Urens Polysaccharide Gels. Carbohydr. Polym. 2003, 54, 229–236. [Google Scholar] [CrossRef]
- Li, A.; Gong, T.; Yang, X.; Guo, Y. Interpenetrating Network Gels with Tunable Physical Properties: Glucono-δ-Lactone Induced Gelation of Mixed Alg/Gellan Sol Systems. Int. J. Biol. Macromol. 2020, 151, 257–267. [Google Scholar] [CrossRef]
- Donati, I.; Benegas, J.; Paoletti, S. On the Molecular Mechanism of the Calcium-Induced Gelation of Pectate. Different Steps in the Binding of Calcium Ions by Pectate. Biomacromolecules 2021, 22, 5000–5019. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, Q.; Du, L.; Meng, Z. Edible Polysaccharide-Based Oleogels and Novel Emulsion Gels as Fat Analogues: A Review. Carbohydr. Polym. 2023, 322, 121328. [Google Scholar] [CrossRef]
- Evageliou, V. Effect of pH, Sugar Type and Thermal Annealing on High-Methoxy Pectin Gels. Carbohydr. Polym. 2000, 42, 245–259. [Google Scholar] [CrossRef]
- Zhu, Y.; McClements, D.J.; Zhou, W.; Peng, S.; Zhou, L.; Zou, L.; Liu, W. Influence of Ionic Strength and Thermal Pretreatment on the Freeze-Thaw Stability of Pickering Emulsion Gels. Food Chem. 2020, 303, 125401. [Google Scholar] [CrossRef]
- Lin, Q.; Hu, Y.; Qiu, C.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Xu, X.; Wang, J.; et al. Peanut Protein-Polysaccharide Hydrogels Based on Semi-Interpenetrating Networks Used for 3D/4D Printing. Food Hydrocoll. 2023, 137, 108332. [Google Scholar] [CrossRef]
- Meng, W.; Sun, H.; Mu, T.; Garcia-Vaquero, M. Pickering Emulsions with Chitosan and Macroalgal Polyphenols Stabilized by Layer-by-Layer Electrostatic Deposition. Carbohydr. Polym. 2023, 300, 120256. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Wandersleben, T.; Marqués, A.M.; Rubilar, M. Multilayer Emulsions Stabilized by Vegetable Proteins and Polysaccharides. Curr. Opin. Colloid. Interface Sci. 2016, 25, 51–57. [Google Scholar] [CrossRef]
- Guo, W.; Ding, X.; Zhang, H.; Liu, Z.; Han, Y.; Wei, Q.; Okoro, O.V.; Shavandi, A.; Nie, L. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels 2024, 10, 175. [Google Scholar] [CrossRef]
- Lin, D.; Kelly, A.L.; Miao, S. Preparation, Structure-Property Relationships and Applications of Different Emulsion Gels: Bulk Emulsion Gels, Emulsion Gel Particles, and Fluid Emulsion Gels. Trends Food Sci. Technol. 2020, 102, 123–137. [Google Scholar] [CrossRef]
- Li, M.; Feng, L.; Dai, Z.; Li, D.; Zhang, Z.; Zhou, C.; Yu, D. Improvement of 3D Printing Performance of Whey Protein Isolate Emulsion Gels by Regulating Rheological Properties: Effect of Polysaccharides Incorporation. Food Bioprocess. Technol. 2025, 18, 633–647. [Google Scholar] [CrossRef]
- Al-Sharify, Z.T.; Al-Najjar, S.Z.; Anumudu, C.K.; Hart, A.; Miri, T.; Onyeaka, H. Non-Thermal Technologies in Food Processing: Implications for Food Quality and Rheology. Appl. Sci. 2025, 15, 3049. [Google Scholar] [CrossRef]
- Grau, R.; Pérez, A.J.; Hernández, S.; Barat, J.M.; Talens, P.; Verdú, S. Data from Chewing and Swallowing Processes as a Fingerprint for Characterizing Textural Food Product Properties. Food Bioprocess. Technol. 2024, 17, 205–216. [Google Scholar] [CrossRef]
- Zhu, P.; Chu, Y.; Yang, J.; Chen, L. Thermally Reversible Emulsion Gels and High Internal Phase Emulsions Based Solely on Pea Protein for 3D Printing. Food Hydrocoll. 2024, 157, 110391. [Google Scholar] [CrossRef]
- Scholten, E. Composite Foods: From Structure to Sensory Perception. Food Funct. 2017, 8, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Christoph, V.; Bender, D.; Xia, W.; Domig, K.J.; Fuhrmann, P.L. Thermo-Responsive Droplet-Droplet Interactions in High Internal Phase Emulsions: A Strategy for Adipose Tissue Substitution. Food Hydrocoll. 2025, 166, 111298. [Google Scholar] [CrossRef]
- Choi, M.; Choi, H.W.; Jo, M.; Hahn, J.; Choi, Y.J. High-Set Curdlan Emulsion Gel Fortified by Transglutaminase: A Promising Animal Fat Substitute with Precisely Simulated Texture and Thermal Stability of Animal Fat. Food Hydrocoll. 2024, 154, 110063. [Google Scholar] [CrossRef]
- Liu, X.; Yang, C.; Qin, J.; Li, J.; Li, J.; Chen, J. Challenges, Process Technologies, and Potential Synthetic Biology Opportunities for Plant-Based Meat Production. LWT 2023, 184, 115109. [Google Scholar] [CrossRef]
- Li, S.; Luo, M.; Wannasin, D.; Hu, X.; Ryu, J.; Ju, Q.; McClements, D.J. Exploring the Potential of Plant-Based Emulsion Gels Enriched with β-Glucan and Potato Protein as Egg Yolk Alternatives. Food Hydrocoll. 2024, 148, 109511. [Google Scholar] [CrossRef]
- Liu, X.T.; Zhang, H.; Wang, F.; Luo, J.; Guo, H.Y.; Ren, F.Z. Rheological and Structural Properties of Differently Acidified and Renneted Milk Gels. J. Dairy. Sci. 2014, 97, 3292–3299. [Google Scholar] [CrossRef]
- Li, M.; Feng, L.; Xu, Y.; Nie, M.; Li, D.; Zhou, C.; Dai, Z.; Zhang, Z.; Zhang, M. Rheological Property, β-Carotene Stability and 3D Printing Characteristic of Whey Protein Isolate Emulsion Gels by Adding Different Polysaccharides. Food Chem. 2023, 414, 135702. [Google Scholar] [CrossRef]
- Yang, Z.; He, X.; Song, Y.; Zhang, W.; Chen, L.; Jiang, L.; Huang, Z.; Tian, T. Fabrication and Characterization of Novel Curcumin-Loaded Thermoreversible High Amylose Maize Starch Emulsion Gel. Int. J. Biol. Macromol. 2024, 280, 136173. [Google Scholar] [CrossRef]
- Cappa, E.R.; Sponton, O.E.; Olivares, M.L.; Santiago, L.G.; Perez, A.A. Effects of pH, Kappa-Carrageenan Concentration and Storage Time on the Textural and Rheological Properties of Pea Protein Emulsion-Gels. Int. J. Food Sci. Technol. 2024, 59, 8408–8418. [Google Scholar] [CrossRef]
- Gåmbaro, A.; Varela, P.; Giménez, A.; Aldrovandi, A.; Fiszman, S.M.; Hough, G. TEXTURAL QUALITY OF WHITE PAN BREAD BY SENSORY AND INSTRUMENTAL MEASUREMENTS. J. Texture Stud. 2002, 33, 401–413. [Google Scholar] [CrossRef]
- Kothuri, V.; Keum, D.H.; Lee, H.J.; Han, J.H.; Han, S.G. Emulsion Gels with Chia Flour Enhance Quality of Plant-Based Meat Analogs by Reducing Fat and Improving Texture. LWT 2024, 214, 117140. [Google Scholar] [CrossRef]
- Wei, L.; Ren, Y.; Huang, L.; Ye, X.; Li, H.; Li, J.; Cao, J.; Liu, X. Quality, Thermo-Rheology, and Microstructure Characteristics of Cubic Fat Substituted Pork Patties with Composite Emulsion Gel Composed of Konjac Glucomannan and Soy Protein Isolate. Gels 2024, 10, 111. [Google Scholar] [CrossRef]
- Pei, Z.; Wang, H.; Xia, G.; Hu, Y.; Xue, C.; Lu, S.; Li, C.; Shen, X. Emulsion Gel Stabilized by Tilapia Myofibrillar Protein: Application in Lipid-Enhanced Surimi Preparation. Food Chem. 2023, 403, 134424. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Grossmann, L. A Brief Review of the Science behind the Design of Healthy and Sustainable Plant-Based Foods. npj Sci. Food 2021, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- D’Alessio, G.; Iervese, F.; Valbonetti, L.; Faieta, M.; Pittia, P.; Di Mattia, C.D. Tailoring Pea Proteins Gelling Properties by High-Pressure Homogenization for the Formulation of a Model Spreadable Plant-Based Product. LWT 2024, 207, 116627. [Google Scholar] [CrossRef]
- Baune, M.-C.; Schroeder, S.; Witte, F.; Heinz, V.; Bindrich, U.; Weiss, J.; Terjung, N. Analysis of Protein-Network Formation of Different Vegetable Proteins during Emulsification to Produce Solid Fat Substitutes. Food Meas. 2021, 15, 2399–2416. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Liang, R.; Sun, H.; Wu, L.; Yang, C.; Liu, Y. Development and Characterization of Ultrastable Emulsion Gels Based on Synergistic Interactions of Xanthan and Sodium Stearoyl Lactylate. Food Chem. 2023, 400, 133957. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, C.; Yuan, J.; Wu, Y.; Li, F.; Waterhouse, G.I.N.; Li, D.; Huang, Q. Exploiting the Robust Network Structure of Zein/Low-Acyl Gellan Gum Nanocomplexes to Create Pickering Emulsion Gels with Favorable Properties. Food Chem. 2021, 349, 129112. [Google Scholar] [CrossRef]
- Aston, R.; Sewell, K.; Klein, T.; Lawrie, G.; Grøndahl, L. Evaluation of the Impact of Freezing Preparation Techniques on the Characterisation of Alginate Hydrogels by Cryo-SEM. Eur. Polym. J. 2016, 82, 1–15. [Google Scholar] [CrossRef]
- Reyntjens, S.; Kübel, C. Scanning/Transmission Electron Microscopy and Dual-Beam Sample Preparation for the Analysis of Crystalline Materials. J. Cryst. Growth 2005, 275, e1849–e1856. [Google Scholar] [CrossRef]
- Yang, X.; Gong, T.; Lu, Y.; Li, A.; Sun, L.; Guo, Y. Compatibility of Sodium Alginate and Konjac Glucomannan and Their Applications in Fabricating Low-Fat Mayonnaise-like Emulsion Gels. Carbohydr. Polym. 2020, 229, 115468. [Google Scholar] [CrossRef]
- Xing, X.; Dan, Y.; Xu, Z.; Xiang, L. Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. Oxidative Med. Cell. Longev. 2022, 2022, 7881717. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.K.; Kim, K.; Jeong, J.; Hong, S.; Park, Y.; Shin, J. In Silico Full-Angle High-Dynamic Range Scattering of Microscopic Objects Exploiting Holotomography. Biomed. Opt. Express 2024, 15, 5238. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wei, Q.; Du, L.; Guo, Z.; Li, Y. In Vitro Evaluation and in Situ Intestinal Absorption Characterisation of Paeoniflorin Nanoparticles in a Rat Model. RSC Adv. 2024, 14, 22113–22122. [Google Scholar] [CrossRef]
- Martin-Piñero, M.J.; García, M.C.; Muñoz, J.; Alfaro-Rodriguez, M.-C. Influence of the Welan Gum Biopolymer Concentration on the Rheological Properties, Droplet Size Distribution and Physical Stability of Thyme Oil/W Emulsions. Int. J. Biol. Macromol. 2019, 133, 270–277. [Google Scholar] [CrossRef]
- Araújo, E.A.M.; Lima, G.R.; Santos De Melo, L.A.D.; Sousa, L.B.D.; Vasconcellos, M.C.D.; Conde, N.C.D.O.; Toda, C.; Hanan, S.A.; Alves Filho, A.D.O.; Bandeira, M.F.C.L. Effect of a Copaiba Oil-Based Dental Biomodifier on the Inhibition of Metalloproteinase in Adhesive Restoration. Adv. Pharmacol. Pharm. Sci. 2021, 2021, 8840570. [Google Scholar] [CrossRef] [PubMed]
- Pochapski, D.J.; Carvalho Dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef]
- Liu, C.; Teng, Z.; Lu, Q.-Y.; Zhao, R.-Y.; Yang, X.-Q.; Tang, C.-H.; Liao, J.-M. Aggregation Kinetics and ζ-Potential of Soy Protein during Fractionation. Food Res. Int. 2011, 44, 1392–1400. [Google Scholar] [CrossRef]
- Mao, Y.; McClements, D.J. Modulation of Bulk Physicochemical Properties of Emulsions by Hetero-Aggregation of Oppositely Charged Protein-Coated Lipid Droplets. Food Hydrocoll. 2011, 25, 1201–1209. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Wang, L.-J.; Li, S.-J.; Adhikari, B. Effects of Drying Methods on the Functional Properties of Flaxseed Gum Powders. Carbohydr. Polym. 2010, 81, 128–133. [Google Scholar] [CrossRef]
- Chung, C.; Degner, B.; McClements, D.J. Controlled Biopolymer Phase Separation in Complex Food Matrices Containing Fat Droplets, Starch Granules, and Hydrocolloids. Food Res. Int. 2013, 54, 829–836. [Google Scholar] [CrossRef]
- Limpisophon, K.; Ma, X.; Sagis, L.M.C.; Nonthakaew, A.; Hirunrattana, P. Synergistic Effects of Alkaline and Heat Treatments on Structural and Functional Properties of Mung Bean Protein Isolate: Improving Physicochemical Stability of Plant-Based Emulsions. Int. J. Food Sci. Technol. 2024, 59, 9203–9219. [Google Scholar] [CrossRef]
- Fan, H.; Meng, L.; Wang, Y.; Wu, X.; Liu, S.; Li, Y.; Kang, W. Superior Thermal Stability Gel Emulsion Produced by Low Concentration Gemini Surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 194–199. [Google Scholar] [CrossRef]
- Parniakov, O.; Bals, O.; Barba, F.J.; Mykhailyk, V.; Lebovka, N.; Vorobiev, E. Application of Differential Scanning Calorimetry to Estimate Quality and Nutritional Properties of Food Products. Crit. Rev. Food Sci. Nutr. 2016, 1–24. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Gong, Y.; Li, Z.; Guo, Y.; Yu, D.; Pan, M. Emulsion Gels Stabilized by Soybean Protein Isolate and Pectin: Effects of High Intensity Ultrasound on the Gel Properties, Stability and β-Carotene Digestive Characteristics. Ultrason. Sonochemistry 2021, 79, 105756. [Google Scholar] [CrossRef]
- Jennings, C.C.; Devenport, J.C.; Marshall, A.; Kenealey, J.D. Differential Scanning Calorimetry Quantification of Whey Proteins. J. Agric. Food Chem. 2025, 73, 14070–14078. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Sun, X.; Liu, Y.; Yu, Z.; Wang, X.; Xu, N. Freeze-Thaw Stability of Transglutaminase-Induced Soy Protein-Maltose Emulsion Gel: Focusing on Morphology, Texture Properties, and Rheological Characteristics. Int. J. Biol. Macromol. 2024, 261, 129716. [Google Scholar] [CrossRef]
- Luo, Y.; Cui, H.; Tang, W.; Fu, Z.; Pu, C.; Sun, Q. Regulating Effect of Glycated Rice Bran Protein Aggregates and Resultant Emulsions on the Gelatinization and Retrogradation Properties of Rice Starch. Food Hydrocoll. 2025, 160, 110785. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Hao, J.; Li, X.; Xu, D.; Cao, Y. In Vitro Digestion of Solid-in-Oil-in-Water Emulsions for Delivery of CaCO3. Food Hydrocoll. 2022, 129, 107605. [Google Scholar] [CrossRef]
- Galvão, A.M.M.T.; Costa, G.F.D.; Santos, M.D.; Pollonio, M.A.R.; Hubinger, M.D. Replacing the Animal Fat in Bologna Sausages Using High Internal Phase Emulsion Stabilized with Lentil Protein Isolate (Lens culinaris). Meat Sci. 2024, 216, 109589. [Google Scholar] [CrossRef] [PubMed]
- Sompongse, W.; Hongviangjan, W.; Sakamut, P. Interaction of Polysaccharides on Gel Characteristics and Protein Microstructure of Threadfin Bream Surimi Gel. Int. J. Food Sci. Technol. 2024, 59, 5096–5104. [Google Scholar] [CrossRef]
- Liang, B.; Feng, S.; Zhang, X.; Ye, Y.; Sun, C.; Ji, C.; Li, X. Physicochemical Properties and in Vitro Digestion Behavior of Emulsion Micro-Gels Stabilized by κ-Carrageenan and Whey Protein: Effects of Sodium Alginate Addition. Int. J. Biol. Macromol. 2024, 271, 132512. [Google Scholar] [CrossRef]
- Galić, N.; Dijanošić, A.; Kontrec, D.; Miljanić, S. Structural Investigation of Aroylhydrazones in Dimethylsulphoxide/Water Mixtures. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2012, 95, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Liu, C.; Liu, Y.; Yi, S.; Li, J.; Zhang, B.; Li, X. Improving the Gel Properties of Nemipterus Virgatus Myosin Gel Using Soy Protein Isolate-Stabilized Pickering Emulsion. Food Chem. 2025, 478, 143610. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Liu, Y.; Li, J.; Zhang, B.; Liu, C.; Li, X. Mechanism of Improving Water-Holding Capacity of Nemipterus Virgatus Myosin Gel by Soy Protein Isolate-Stabilized Pickering Emulsion. LWT 2025, 218, 117512. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, B.; Li, J.; Cheong, K.L.; Li, R.; Chen, J.; Liu, X.; Jia, X.; Song, B.; Wang, Z.; et al. Emulsion-Filled Surimi Gel: A Promising Approach for Enhancing Gel Properties, Water Holding Capacity, and Flavor. Trends Food Sci. Technol. 2024, 152, 104663. [Google Scholar] [CrossRef]
- Urbonaite, V.; Van Der Kaaij, S.; De Jongh, H.H.J.; Scholten, E.; Ako, K.; Van Der Linden, E.; Pouvreau, L. Relation between Gel Stiffness and Water Holding for Coarse and Fine-Stranded Protein Gels. Food Hydrocoll. 2016, 56, 334–343. [Google Scholar] [CrossRef]
- Zhao, J.; Chang, B.; Wen, J.; Fu, Y.; Luo, Y.; Wang, J.; Zhang, Y.; Sui, X. Fabrication of Soy Protein Isolate-Konjac Glucomannan Emulsion Gels to Mimic the Texture, Rheological Behavior and in Vitro Digestion of Pork Fat. Food Chem. 2025, 468, 142462. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, L.; Zhao, Y.; Jin, F.; Wang, F. Walnut Glutenin Peptide-Based-Rhamnolipid Composite Emulsion Gels: Preparation, Characterization and Application as Margarine Alternatives. Food Chem. 2025, 487, 144659. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, Y.; Lu, Y.; Gao, Y.; Mao, L. Structural Responses of Zein-Based Oil-in-Glycerol Emulsion Gels during Freeze-Thawing and Heating. Colloids Surf. A Physicochem. Eng. Asp. 2024, 689, 133747. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Wen, Z.; Wang, J.; Roopesh, M.S.; Pan, D.; Du, L. Functionality Enhancement of Pea Protein Isolate through Cold Plasma Modification for 3D Printing Application. Food Res. Int. 2024, 197, 115267. [Google Scholar] [CrossRef] [PubMed]
- Baydin, T.; Arntsen, S.W.; Hattrem, M.N.; Draget, K.I. Physical and Functional Properties of Plant-Based Pre-Emulsified Chewable Gels for the Oral Delivery of Nutraceuticals. Appl. Food Res. 2022, 2, 100225. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, L.; Julian McClements, D. Design, Characterization and Digestibility of β-Carotene-Loaded Emulsion System Stabilized by Whey Protein with Chitosan and Potato Starch Addition. Food Chem. 2024, 440, 138131. [Google Scholar] [CrossRef] [PubMed]
- Kozu, H.; Kobayashi, I.; Ichikawa, S. A Review on In Vitro Evaluation of Chemical and Physical Digestion for Controlling Gastric Digestion of Food. Foods 2025, 14, 1435. [Google Scholar] [CrossRef]
- Nie, Y.; Xiong, Y.L.; Jiang, J. Texture, Microstructure, and in Vitro Digestion of Hybrid Meat Gel-Type Sausages Formulated with Functionalized Pea Protein. Food Hydrocoll. 2025, 167, 111422. [Google Scholar] [CrossRef]
- Cui, C.; Wei, Z.; Hong, Z.; Zong, J.; Li, H.; Peng, C.; Cai, H.; Hou, R. Preparation of Water-in-Oil Pickering Emulsion Stabilized by Camellia Oleifera Seed Cake Protein and Its Application as EGCG Delivery System. LWT 2023, 179, 114656. [Google Scholar] [CrossRef]
- Giacalone, D.; Bredie, W.L.P.; Frøst, M.B. “All-In-One Test” (AI1): A Rapid and Easily Applicable Approach to Consumer Product Testing. Food Qual. Prefer. 2013, 27, 108–119. [Google Scholar] [CrossRef]
- Badar, I.H.; Li, Y.; Liu, H.; Chen, Q.; Liu, Q.; Kong, B. Effect of Vegetable Oil Hydrogel Emulsion as a Fat Substitute on the Physicochemical Properties, Fatty Acid Profile, and Color Stability of Modified Atmospheric Packaged Buffalo Burgers. Meat Sci. 2023, 199, 109143. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Chen, H.; Zhang, R.; Wang, L. Pomelo Fiber-Stabilized Oil-in-Water Emulsion Gels: Fat Mimetic in Plant-Based Ice Cream. Food Bioprocess. Technol. 2025, 18, 422–432. [Google Scholar] [CrossRef]
- Hu, X.; Xiang, X.; Cao, M.; Li, S.; McClements, D.J. Plant-Based Marbled Salami Analogs: Emulsion-Loaded Microgels Embedded within Protein-Polysaccharide Hydrogel Matrices. Food Hydrocoll. 2025, 159, 110638. [Google Scholar] [CrossRef]
- Yan, J.; Liang, X.; Ma, C.; McClements, D.J.; Liu, X.; Liu, F. Design and Characterization of Double-Cross-Linked Emulsion Gels Using Mixed Biopolymers: Zein and Sodium Alginate. Food Hydrocoll. 2021, 113, 106473. [Google Scholar] [CrossRef]
- Guo, J.; Gu, X.; Meng, Z. Customized 3D Printing to Build Plant-Based Meats: Spirulina Platensis Protein-Based Pickering Emulsion Gels as Fat Analogs. Innov. Food Sci. Emerg. Technol. 2024, 94, 103679. [Google Scholar] [CrossRef]
- Wei, W.; Cui, L.; Meng, Z. The Potential of Protein-Polysaccharide-Based O/W and W/O Emulsion Gels Strengthened by Solid Fat Crystallization as Realistic Fat Analogs. Food Chem. 2025, 464, 141889. [Google Scholar] [CrossRef] [PubMed]
- Kothuri, V.; Han, J.H.; Keum, D.H.; Kwon, H.C.; Kim, D.H.; Han, S.G. Utilization of Emulsion Gels in Plant-Based Meat Analog Formulations: A Review. Food Hydrocoll. 2025, 158, 110499. [Google Scholar] [CrossRef]
- Shaghaghian, S.; McClements, D.J.; Khalesi, M.; Garcia-Vaquero, M.; Mirzapour-Kouhdasht, A. Digestibility and Bioavailability of Plant-Based Proteins Intended for Use in Meat Analogues: A Review. Trends Food Sci. Technol. 2022, 129, 646–656. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef]
- Penchalaraju, M.; Bosco, S.J.D. Leveraging Indian Pulses for Plant-based Meat: Functional Properties and Development of Meatball Analogues. Int. J. Food Sci. Tech. 2022, 57, 5869–5877. [Google Scholar] [CrossRef]
- Czapalay, E.S.; Dobson, S.; Marangoni, A.G. Legume Starch and Flour-Based Emulsion Gels as Adipose Tissue Mimetics in Plant-Based Meat Products. Future Foods 2025, 11, 100578. [Google Scholar] [CrossRef]
- Tahir, A.B.; Jiang, B.; Jingjing, C.; Ali, K. Improving Functional Merit of Commercially Available Pea Protein Isolate by Employing a Combination of Physical, Chemical, and Enzymatic Modification. Food Biosci. 2024, 59, 104161. [Google Scholar] [CrossRef]
- Tahir, A.B.; Khalil, A.A.; Gull, H.; Ali, K.; AlMasoud, N.; Alomar, T.S.; Aït-Kaddour, A.; Aadil, R.M. Enhancing Structural and Functional Properties of Commercially Available Pea Protein Isolate for Plant-Based Meat Analogues Using Combined pH-Shift, High-Intensity Ultrasound, and Heat Treatments. Ultrason. Sonochemistry 2025, 117, 107342. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; McClements, D.J.; Lorenzo, J.M. Encapsulation of Bioactive Phytochemicals in Plant-Based Matrices and Application as Additives in Meat and Meat Products. Molecules 2021, 26, 3984. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; McClements, D.J. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021, 26, 6895. [Google Scholar] [CrossRef]
- Yerramathi, B.B.; Muniraj, B.A.; Kola, M.; Konidala, K.K.; Arthala, P.K.; Sharma, T.S.K. Alginate Biopolymeric Structures: Versatile Carriers for Bioactive Compounds in Functional Foods and Nutraceutical Formulations: A Review. Int. J. Biol. Macromol. 2023, 253, 127067. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, I.; Ruiz-Capillas, C.; Salvador, M.; Herrero, A.M. Emulsion Gels as Delivery Systems for Phenolic Compounds: Nutritional, Technological and Structural Properties. Food Chem. 2021, 339, 128049. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, L.; Li, Y.; Guo, F.; Chen, L.; Wang, G.; Shen, Q.; Liu, X.; Ding, W. Encapsulation of Probiotics (Lactobacillus Plantarum) in Soyasaponin–Soybean Protein Isolate Water-in-Oil-in-Water (W/O/W) Emulsion for Improved Probiotic Survival in the Gastrointestinal Tract. LWT 2024, 199, 116100. [Google Scholar] [CrossRef]
- Farooq, S.; Ijaz Ahmad, M.; Zhang, Y.; Chen, M.; Zhang, H. Fabrication, Characterization and in Vitro Digestion of Camellia Oil Body Emulsion Gels Cross-Linked by Polyphenols. Food Chem. 2022, 394, 133469. [Google Scholar] [CrossRef]
- Jiang, Z.; Liao, Q.; Zhao, Y.; Ying, R.; Hayat, K.; Salamatullah, A.M.; Huang, M. Development of Soy Protein Cold-Set Emulsion Gels for Vitamin D3 Vehiculation: Enhanced Properties, Stability, and Sustained Release. Food Biosci. 2025, 69, 106968. [Google Scholar] [CrossRef]
- Li, B.; Luan, H.; Qin, J.; Zong, A.; Liu, L.; Xu, Z.; Du, F.; Xu, T. Effect of Soluble Dietary Fiber on Soy Protein Isolate Emulsion Gel Properties, Stability and Delivery of Vitamin D3. Int. J. Biol. Macromol. 2024, 262, 129806. [Google Scholar] [CrossRef]
- Abu-El Khair, A.G.; Soliman, T.N.; Hashim, A.F. Development of Composite Nanoemulsion Gels as Carriers for Co-Delivery of Wheat Germ Oil and Probiotics and Their Incorporation in Yoghurt. Food Biosci. 2023, 55, 103001. [Google Scholar] [CrossRef]
- Zhu, S.; Stieger, M.A.; Van Der Goot, A.J.; Schutyser, M.A.I. Extrusion-Based 3D Printing of Food Pastes: Correlating Rheological Properties with Printing Behaviour. Innov. Food Sci. Emerg. Technol. 2019, 58, 102214. [Google Scholar] [CrossRef]
- Mohammadi, A.; Kashi, P.A.; Kashiri, M.; Bagheri, A.; Chen, J.; Ettelaie, R.; Jäger, H.; Shahbazi, M. Self-Assembly of Plant Polyphenols-Grafted Soy Proteins to Manufacture a Highly Stable Antioxidative Pickering Emulsion Gel for Direct-Ink-Write 3D Printing. Food Hydrocoll. 2023, 142, 108851. [Google Scholar] [CrossRef]
- Eveland, R.; Antloga, K.; Meyer, A.; Tuscano, L. Low Temperature Vaporized Hydrogen Peroxide Sterilization of 3D Printed Devices. 3D Print Med. 2024, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Yiu, C.C.-Y.; Liang, S.W.; Mukhtar, K.; Kim, W.; Wang, Y.; Selomulya, C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023, 9, 366. [Google Scholar] [CrossRef]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; De Angelis, D.; Natrella, G.; Summo, C.; Faccia, M. Spreadable Plant-based Cheese Analogue with Dry-fractioned Pea Protein and Inulin–Olive Oil Emulsion-filled Gel. J. Sci. Food Agric. 2022, 102, 5478–5487. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, A.; Zhou, S.; Zhang, H.; Xia, N.; Wang, J.; Ma, Y.; Fan, M. Effect of the Substitution of Butter by Double Cross-Linked Egg Yolk Granules/Sodium Alginate Emulsion Gel on Properties of Baking Dough during Frozen Storage. Food Chem. 2024, 438, 137965. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, K.; Astiasaran, I.; Ansorena, D. Fat Reduced Cookies Using an Olive Oil-Alginate Gelled Emulsion: Sensory Properties, Storage Stability and in Vitro Digestion. Food Res. Int. 2023, 167, 112714. [Google Scholar] [CrossRef]
- Geng, S.; Liu, X.; Ma, H.; Liu, B.; Liang, G. Multi-Scale Stabilization Mechanism of Pickering Emulsion Gels Based on Dihydromyricetin/High-Amylose Corn Starch Composite Particles. Food Chem. 2021, 355, 129660. [Google Scholar] [CrossRef] [PubMed]
Source | Gelling Agent | Preparation Method | Main Interactions | Ref. |
---|---|---|---|---|
Protein-based | Pea protein | Heat (95 °C) | Disulfide bonds | [9] |
Soy protein | Calcium ions | Ionic bonds Hydrophobic interactions | [10] | |
Whey protein | Acidify | Hydrogen bonds Hydrophobic interactions | [11] | |
Pea protein | Transglutaminase pH 7, room temperature | Covalent bonds | [12] | |
Hempseed protein | Genipin Room temperature for 4 h | Covalent bonds | [13] | |
Polysaccharide-based | Agar | Heat (60 °C) | Physical crosslinked network | [14] |
Chitosan | Alginate and calcium ions Room temperature | Ionic bond | [15] | |
Flammulina velutipes polysaccharide | Adjust pH to 9 90 °C for 30 min | Hydrogen bond interactions Hydrophobic interactions | [16] | |
Corn fiber gum | Peroxidase Room temperature | [17] | ||
Protein–polysaccharide-based | Carrageenan Gum arabic–soybean protein | Hold at 90 °C for 30 min Add calcium ions | Ionic bonds Disulfide bonds Hydrogen bonds Hydrophobic interactions | [18] |
Soy protein and polysaccharide microgels | Add transglutaminase 37 °C for 60 min | Covalent bonds Hydrophobic interactions Ionic bonds Hydrogen bonds | [19] | |
Artemisia sphaerocephala Krasch polysaccharides Whey protein fibrils | Add iron ions and place at room temperature for 72 h | Electrostatic interactions | [20] | |
Flaxseed protein Chitosan | Add calcium ions, low acid, and low-temperature, 40 °C gel | Electrostatic interactions | [21] |
Category | Method | Measured Parameter | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Rheological and Textural | Oscillatory rheology | G′ and G′′ | Sensitive to gel strength and viscoelasticity | Requires precise temperature and shear control | [58] |
Texture Profile Analysis (TPA) | Hardness, cohesiveness, springiness | Mimics consumer texture perception | May not detect subtle network differences | [59] | |
Microscopy and Structure | CLSM (Confocal Laser Scanning Microscopy) | Droplet distribution, gel microstructure | 3D visualization with dye labeling | Requires fluorescence labeling; limited penetration depth | [60] |
SEM/Cryo-SEM | Network morphology, surface features | High-resolution imaging | Sample dehydration or freezing may alter ative structure | [53] | |
Particle Size | Dynamic Light Scattering (DLS) | Droplet size distribution (<1 µm) | Rapid and sensitive | Limited accuracy for polydisperse or gelled systems | [54] |
Laser Diffraction Particle Sizer (LD) | Droplet size distribution (1–100 µm) | Fast and efficient | Not suitable for complete 3D gel networks | [61] | |
Zeta Potential | Zetasizer | Surface charge, colloidal stability | Predicting flocculation or aggregation | Sensitive to ionic strength and pH | [62] |
Thermal and Molecular | DSC (Differential Scanning Calorimetry) | Protein denaturation, gel–sol transitions | Quantitative thermal behavior analysis | Cannot identify specific molecular interactions | [25] |
FTIR/Raman Spectroscopy | Hydrogen bonding, protein–polysaccharide interaction | Identifies specific functional group changes | Requires interpretation of overlapping peaks | [63] | |
Functional Stability | Water/Oil-Holding Capacity | WHC, OHC via centrifugation or filtration | Simple, directly relevant to food applications | May not distinguish mechanisms of phase retention | [64] |
Field of Research | Key Challenges |
---|---|
Structure formation mechanism | Limited analytical tools and insufficient understanding of lipid–polysaccharide–protein–water interactions. |
Functional ingredient integration | Limited understanding of the impact of bioactive compound type (e.g., vitamins, nutraceuticals, prebiotics, and probiotics) on emulsion gel structure, stability, and properties. |
Sensory quality | Limited understanding of the factors impacting the appearance, texture, aroma, taste, and mouthfeel of emulsion gels. Limited knowledge of how to design emulsion gels for specific food applications. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, C.; McClements, D.J. Recent Advances in Plant-Based Emulsion Gels: Preparation, Characterization, Applications, and Future Perspectives. Gels 2025, 11, 641. https://doi.org/10.3390/gels11080641
Huang Y, Li C, McClements DJ. Recent Advances in Plant-Based Emulsion Gels: Preparation, Characterization, Applications, and Future Perspectives. Gels. 2025; 11(8):641. https://doi.org/10.3390/gels11080641
Chicago/Turabian StyleHuang, Yunfei, Chunmei Li, and David Julian McClements. 2025. "Recent Advances in Plant-Based Emulsion Gels: Preparation, Characterization, Applications, and Future Perspectives" Gels 11, no. 8: 641. https://doi.org/10.3390/gels11080641
APA StyleHuang, Y., Li, C., & McClements, D. J. (2025). Recent Advances in Plant-Based Emulsion Gels: Preparation, Characterization, Applications, and Future Perspectives. Gels, 11(8), 641. https://doi.org/10.3390/gels11080641