Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. YP Extraction
2.3. Preparation of Lyc-Loaded HIPPEs
2.4. Characteristics of Lyc-Stabilized HIPPEs
2.4.1. Encapsulation of Lyc in HIPPEs
2.4.2. Microscopic Structure Evaluation
2.4.3. Color Measurement
2.4.4. Antioxidant Capacity
2.5. Characteristics of 3D-Printed Meat
2.5.1. Meat Preparation and 3D Printing
2.5.2. Printing Accuracy
2.5.3. Cooking Yield
2.5.4. Color
2.5.5. pH Analysis
2.5.6. Lipid Oxidation
2.5.7. Texture Profile Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Lyc-Stabilized HIPPEs
3.1.1. Encapsulation of Lyc in HIPPEs
3.1.2. Antioxidant Ability
3.1.3. Morphology Evaluation
3.1.4. Color
3.2. Characteristics of 3D-Printed Meat
3.2.1. Printing Accuracy
3.2.2. Cooking Loss
3.2.3. Color Analysis
3.2.4. pH Analysis
3.2.5. Lipid Oxidation
3.2.6. Texture Profile Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bascuas, S.; Morell, P.; Hernando, I.; Quiles, A. Recent trends in oil structuring using hydrocolloids. Food Hydrocoll. 2021, 118, 106612. [Google Scholar] [CrossRef]
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends Food Sci. Technol. 2020, 104, 49–59. [Google Scholar] [CrossRef]
- Guo, J.; Cui, L.; Meng, Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocoll. 2023, 137, 108313. [Google Scholar] [CrossRef]
- Martins, A.J.; Vicente, A.A.; Cunha, R.L.; Cerqueira, M.A. Edible oleogels: An opportunity for fat replacement in foods. Food Funct. 2018, 9, 758–773. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity and Overweight. 2023. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 May 2025).
- Jang, J.; Lee, D.-W. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci. Food 2024, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Lee, J.; Nam, T.G.; Koo, M.; Cho, Y.S. Changes in physicochemical properties and bacterial communities in aged Korean native cattle beef during cold storage. Food Sci. Nutr. 2022, 10, 2590–2600. [Google Scholar] [CrossRef] [PubMed]
- Pintado, T.; Cofrades, S. Quality Characteristics of Healthy Dry Fermented Sausages Formulated with a Mixture of Olive and Chia Oil Structured in Oleogel or Emulsion Gel as Animal Fat Replacer. Foods 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Barbut, S.; Wood, J.; Marangoni, A. Effects of Organogel Hardness and Formulation on Acceptance of Frankfurters. J. Food Sci. 2016, 81, C2183–C2188. [Google Scholar] [CrossRef] [PubMed]
- Del Nobile, M.A.; Conte, A.; Incoronato, A.L.; Panza, O.; Sevi, A.; Marino, R. New strategies for reducing the pork back-fat content in typical Italian salami. Meat Sci. 2009, 81, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Kersting, M.; Kalhoff, H.; Honermeier, B.; Sinningen, K.; Lücke, T. Erucic acid exposure during the first year of life—Scenarios with precise food-based dietary guidelines. Food Sci. Nutr. 2021, 10, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Kirtil, E. Molecular Strategies to Overcome Sensory Challenges in Alternative Protein Foods. Food Bioprocess Technol. 2025, 1–33. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Barbut, S.; Marangoni, A.G. Food-grade filler particles as an alternative method to modify the texture and stability of myofibrillar gels. Sci. Rep. 2017, 7, 11544. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, Y.; Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surfaces A: Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Jug, M.; Yoon, B.K.; Jackman, J.A. Cyclodextrin-based Pickering emulsions: Functional properties and drug delivery applications. J. Incl. Phenom. Macrocycl. Chem. 2021, 101, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Solis, V.; García-Tejeda, Y.V.; Portilla-Rivera, O.M.; Chávez-Murillo, C.E.; Barrera-Figueroa, V. Effect of Mixed Particulate Emulsifiers on Spray-Dried Avocado Oil-in-Water Pickering Emulsions. Polymers 2022, 14, 3064. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Y.; Zhang, M.; Gao, M.; Wang, S.; Wang, Y.; Wang, Z. Electrostatic induced Rana chensinensis ovum protein isolates/xanthan gum complex particles stabilized HIPPE for β-carotene loading and dysphagia. Food Chem. 2025, 478, 143520. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.; Li, Z.; Guo, Z.; Shi, J.; Huang, X.; Zou, X.; Holmes, M. Fabrication of Pickering emulsions stabilized by citrus pectin modified with β-cyclodextrin and its application in 3D printing. Carbohydr. Polym. 2023, 312, 120833. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, M.; Jäger, H.; Mohammadi, A.; Kashi, P.A.; Chen, J.; Ettelaie, R. 3D Printing of Bioactive Gel-like Double Emulsion into a Biocompatible Hierarchical Macroporous Self-Lubricating Scaffold for 3D Cell Culture. ACS Appl. Mater. Interfaces 2023, 15, 49874–49891. [Google Scholar] [CrossRef] [PubMed]
- Keum, D.H.; Han, J.H.; Kwon, H.C.; Kothuri, V.; Hong, S.J.; Kim, Y.J.; Han, S.G. Physicochemical properties of Pickering emulsion fabricated with polysaccharides/pea protein isolate complex and its application in plant-based patty. Int. J. Biol. Macromol. 2024, 257, 128664. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Aider, M. Study of the effect of canola proteins-xanthan based Pickering emulsion as animal fat replacer in a food matrix produced from mechanically separated meat. Meat Sci. 2023, 204, 109283. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.; Estévez, M.; Ferreira, V.C.; Silva, S.A.; Lemos, L.T.; Ida, E.I.; Shimokomaki, M.; Madruga, M.S. Protein and lipid oxidations in jerky chicken and consequences on sensory quality. LWT 2018, 97, 341–348. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Wen, W.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; He, J.; Luo, Y.; Yan, H.; Chen, H.; Zheng, P.; et al. Dietary lycopene supplementation improves meat quality, antioxidant capacity and skeletal muscle fiber type transfor-mation in finishing pigs. Anim. Nutr. 2022, 8, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Qiu, Y.; Zhang, L.; Lu, W.; Pan, Y.; Liu, X.; Li, Z.; Yang, H. Encapsulation of lycopene in Pickering emulsion stabilized by complexes of whey protein isolate fibrils and sodium alginate: Physicochemical property, structural characterization and in vitro digestion property. Food Res. Int. 2024, 191, 114675. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, J.; Zhong, L.; Yang, C.; Zhang, X.; Hu, Q.; Zhang, L. Characterization and stability of lycopene-loaded high internal phase emulsion stabilized by ovalbumin-chitosan complexes. Food Chem. X 2024, 23, 101689. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Park, H.J. Customized oral mucosal adhesive film applied with β-carotene-loaded delivery systems using an embedded 3D printing method. Food Control. 2024, 158, 76–92. [Google Scholar] [CrossRef]
- Wen, Y.; Chao, C.; Che, Q.T.; Kim, H.W.; Park, H.J. Development of plant-based meat analogs using 3D printing: Status and opportunities. Trends Food Sci. Technol. 2023, 132, 76–92. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Post-processing feasibility of composite-layer 3D printed beef. Meat Sci. 2019, 153, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Dick, A.; Bhandari, B.; Prakash, S. 3D printing of meat. Meat Sci. 2019, 153, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, M.; Bhandari, B.; Wang, Y. 3D printing: Printing precision and application in food sector. Trends Food Sci. Technol. 2017, 69, 83–94. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, C.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Wang, J.; Jin, Z. Preparation of high internal phase Pickering emulsion gels stabilized by glycyrrhizic acid-zein composite nanoparticles: Gelation mechanism and 3D printing performance. Food Hydrocoll. 2023, 135, 108128. [Google Scholar] [CrossRef]
- Lim, W.S.; Lim, N.; Kim, H.W.; Park, H.J. Effect of emulsion gel as butter substitute on the dimensional stability and nutritional profile of 3D Printed Cookies. Food Biosci. 2023, 56, 103207. [Google Scholar] [CrossRef]
- Xia, S.; Wang, Q.; Rao, Z.; Lei, X.; Zhao, J.; Lei, L.; Ming, J. High internal phase pickering emulsions stabilized by zein/whey protein nanofibril complexes: Preparation and lycopene loading. Food Chem. 2024, 452, 139564. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Wang, D.; Chen, Y.; Zhu, S.; Zhang, J.; Mao, L.; Gao, Y.; Yuan, F. Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan: Fabrication, characterization and encapsulation. Food Hydrocoll. 2020, 108, 105992. [Google Scholar] [CrossRef]
- Cen, K.; Yu, X.; Gao, C.; Yang, Y.; Tang, X.; Feng, X. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel. Food Chem. 2022, 394, 133456. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yuan, X.; Yang, L.; Zhu, M.; Ma, H.; Zhao, Y. The effects of modified quinoa protein emulsion as fat substitutes in frankfurters. Meat Sci. 2023, 202, 109215. [Google Scholar] [CrossRef] [PubMed]
- Honiball, J.R.; Pepper, M.S.; Prinsloo, E. Step-by-step assembly and testing of a low-cost bioprinting solution for research and educational purposes. MethodsX 2021, 8, 101186. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, B.; Mendiratta, S.; Malav, O.; Talukder, S.; Irshad, A. Efficacy of Peanut Paste as Functional Component in Premium Mutton Nuggets. J. Food Process. Preserv. 2017, 41, e12907. [Google Scholar] [CrossRef]
- Verma, A.K.; Banerjee, R.; Sharma, B.D. Quality of Low Fat Chicken Nuggets: Effect of Sodium Chloride Replacement and Added Chickpea (Cicer arietinum L.) Hull Flour. Asian-Australasian J. Anim. Sci. 2012, 25, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-L.; Meng, R.; Xu, B.-C.; Zhang, B.; Cui, B.; Wu, Z.-Z. Function emulsion gels prepared with carrageenan and zein/carboxymethyl dextrin stabilized emulsion as a new fat replacer in sausages. Food Chem. 2022, 389, 133005. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Han, M.; Kang, Z.-L.; Wang, K.; Bai, Y.; Xu, X.-L.; Zhou, G.-H. Effects of the sugarcane dietary fiber and pre-emulsified sesame oil on low-fat meat batter physicochemical property, texture, and microstructure. Meat Sci. 2016, 113, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Zahari, C.N.M.C.; Mohamad, N.V.; Akinsanya, M.A.; Gengatharan, A. The crimson gem: Unveiling the vibrant potential of lycopene as a functional food ingredient. Food Chem. Adv. 2023, 3, 100510. [Google Scholar] [CrossRef]
- Günal-Köroğlu, D.; Bilgin, A.B.; Karabulut, G.; Saricaoglu, B.; Capanoglu, E. Encapsulation of hydrophobic compounds in yeast cells: Methods, characterization, and applications. Explor. Foods Foodomics 2024, 2, 252–274. [Google Scholar] [CrossRef]
- D’andurain, J.; López, V.; Arazo-Rusindo, M.; Tiscornia, C.; Aicardi, V.; Simón, L.; Mariotti-Celis, M.S. Effect of Curcumin Consumption on Inflammation and Oxidative Stress in Patients on Hemodialysis: A Literature Review. Nutrients 2023, 15, 2239. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, M.; Xu, X.; Liu, X.; Liu, F. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: A review. Front. Nutr. 2022, 9, 999373. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Xiao, C.; Chen, W.; Zhang, Y.; Pan, J.; Jia, Z. Covalent modification of β-lactoglobulin by (−)-epigallocatechin-3-gallate results in a novel antioxidant molecule. Int. J. Biol. Macromol. 2019, 126, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Liu, J.; Shi, J.; He, Y.; Zhu, Y.; Zhan, Y.; Lv, J.; Liu, L.; Huang, Y.; Huang, M.; et al. Improved antioxidant activity and delivery of peppermint oil Pickering emulsion stabilized by resveratrol-grafted zein covalent conjugate/quaternary ammonium chitosan nanoparticles. Int. J. Biol. Macromol. 2023, 253, 127094. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, Y.; Feng, X.; Ma, L.; Dai, H.; Wang, H.; Zhu, H.; Yu, Y.; Zhang, Y. Thermal-induced-stable high internal phase emulsion for lycopene encapsulation and delivery: Pre-heat treatment mediated facilitation on the isomerization, stabilization, and release of lycopene. LWT 2023, 187, 115319. [Google Scholar] [CrossRef]
- Sen Gupta, S.; Ghosh, M. In Vitro Antioxidative Evaluation of α- and β-Carotene, Isolated from Crude Palm Oil. J. Anal. Methods Chem. 2013, 2013, 351671. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Xiao, Q.; Yang, Y.; Liu, M.; Wang, X.; Deng, P.; Wu, K.; Liu, Y.; Peng, B.; Jiang, F.; et al. Investigation and Characterization of Pickering Emulsion Stabilized by Alkali-Treated Zein (AZ)/Sodium Alginate (SA) Composite Particles. Materials 2023, 16, 3164. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chen, C.; van der Meer, B.; Kodger, T.E.; Sen, U.; Deshpande, S.; van der Gucht, J. Understanding the Stability of Poorly Covered Pickering Emulsions Using on-Chip Microfluidics. Adv. Sci. 2025, 12, e2409903. [Google Scholar] [CrossRef] [PubMed]
- Kargar, M.; Fayazmanesh, K.; Alavi, M.; Spyropoulos, F.; Norton, I.T. Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. J. Colloid Interface Sci. 2012, 366, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Hu, Z.; Bai, W.; Zeng, X.; Zhou, F.; Zhao, Q.; Dong, H.; Liu, X. Stability and bioaccessibility of lycopene loaded in a Pickering emulsion stabilized by tannic acid–starch complexes: Effect of starch categories. Food Res. Int. 2025, 211, 116392. [Google Scholar] [CrossRef] [PubMed]
- Darvin, M.E.; Lademann, J.; von Hagen, J.; Lohan, S.B.; Kolmar, H.; Meinke, M.C.; Jung, S. Carotenoids in Human Skin In Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxidants 2022, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Milano, F.; De Caroli, M.; Giotta, L.; Piro, G.; Mita, G.; Frigione, M.; Lenucci, M.S. Tomato Oil Encapsulation by alpha-, beta-, and gamma-Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. Foods 2020, 9, 1553. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Gu, X.; Meng, Z. Customized 3D printing to build plant-based meats: Spirulina platensis protein-based Pickering emulsion gels as fat analogs. Innov. Food Sci. Emerg. Technol. 2024, 94, 103679. [Google Scholar] [CrossRef]
- Abbasi, E.; Sarteshnizi, R.A.; Gavlighi, H.A.; Nikoo, M.; Azizi, M.H.; Sadeghinejad, N. Effect of partial replacement of fat with added water and tragacanth gum (Astragalus gossypinus and Astragalus com-pactus) on the physicochemical, texture, oxidative stability, and sensory property of reduced fat emulsion type sausage. Meat Sci. 2019, 147, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, C.; Casadei, E.; Valli, E.; Tura, M.; Ragni, L.; Bendini, A.; Toschi, T.G. Sustainable Drying and Green Deep Eutectic Extraction of Carotenoids from Tomato Pomace. Foods 2022, 11, 405. [Google Scholar] [CrossRef] [PubMed]
- García, M.L.; Calvo, M.M.; Selgas, M.D. Beef hamburgers enriched in lycopene using dry tomato peel as an ingredient. Meat Sci. 2009, 83, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Naughton, L.-M.; Kakuda, Y.; Bettger, W.; Yeung, D.; Jiang, Y. Bioavailability of Lycopene from Tomato Products. Prev. Nutr. Food Sci. 2004, 9, 98–106. [Google Scholar] [CrossRef]
- Beriain, M.; Gómez, I.; Petri, E.; Insausti, K.; Sarriés, M. The effects of olive oil emulsified alginate on the physico-chemical, sensory, microbial, and fatty acid profiles of low-salt, inulin-enriched sausages. Meat Sci. 2011, 88, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jia, X.; Sun, F.; Jiang, S.; Liu, H.; Liu, Q.; Kong, B. Using a stable pre-emulsified canola oil system that includes porcine plasma protein hydrolysates and oxidized tannic acid to partially replace pork fat in frankfurters. Meat Sci. 2020, 160, 107968. [Google Scholar] [CrossRef] [PubMed]
- Utama, D.T.; Jeong, H.S.; Kim, J.; Barido, F.H.; Lee, S.K. Fatty acid composition and quality properties of chicken sausage formulated with pre-emulsified perilla-canola oil as an animal fat replacer. Poult. Sci. 2019, 98, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Song, H.; Seo, K.-H.; Lee, H.-G.; Kim, H.; Choi, M.-J. Physicochemical and sensory properties of plant-based meat patties using oil-in-water emulsion. Food Biosci. 2023, 56, 103084. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Park, K.-S.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Choi, M.-S.; Lee, S.-Y.; Paik, H.-D.; Kim, C.-J. Quality characteristics of reduced-fat frankfurters with pork fat replaced by sunflower seed oils and dietary fiber extracted from makgeolli lees. Meat Sci. 2013, 93, 652–658. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g) | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
Lean pork | 24.00 | 24.00 | 24.00 | 24.00 | 24.00 |
Salt | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
Pork back fat | 8.00 | 6.00 | 4.00 | 2.00 | 0.00 |
Emulsion (φ = 0.85) | 0.00 | 2.35 | 4.71 | 7.06 | 9.41 |
Water | 7.20 | 6.85 | 6.49 | 6.14 | 5.79 |
Total | 40.00 | 40.00 | 40.00 | 40.00 | 40.00 |
Lyc Concentration (mg/mL) | L* | a* | b* | W |
---|---|---|---|---|
0.00 | 81.15 ± 0.08 a | −4.27 ± 0.07 b | 29.52 ± 0.03 a | 64.72 ± 0.06 a |
0.50 | 62.55 ± 0.79 b | 17.54 ± 0.78 a | 27.96 ± 1.77 ab | 50.06 ± 0.68 b |
0.75 | 61.24 ± 1.13 bc | 17.92 ± 0.91 a | 27.29 ± 0.64 b | 49.32 ± 1.53 b |
1.00 | 60.34 ± 0.31 cd | 18.52 ± 0.80 a | 26.56 ± 0.55 bc | 48.80 ± 0.81 b |
1.25 | 58.63 ± 0.04 de | 18.06 ± 0.92 a | 24.98 ± 0.65 cd | 48.41 ± 0.67 b |
1.50 | 57.66 ± 1.48 e | 18.44 ± 0.10 a | 24.30 ± 0.22 d | 47.81 ± 1.14 b |
Parameters | L* | a* | b* |
---|---|---|---|
blank | 78.36 ± 1.54 Aab | 0.50 ± 0.04 Ad | 13.99 ± 0.43 Ad |
C1 | 77.41 ± 1.20 Ab | 0.92 ± 0.03 Ac | 15.43 ± 0.27 Ac |
C2 | 77.55 ± 0.59 Ab | 1.73 ± 0.18 Aa | 17.49 ± 0.36 Ab |
C3 | 79.14 ± 1.02 Aa | 1.51 ± 0.22 Ab | 19.09 ± 0.61 Aa |
C4 | 79.62 ± 0.60 Aa | 1.00 ± 0.016 Ac | 19.31 ± 0.21 Aa |
blank | 78.36 ± 1.54 Aa | 0.50 ± 0.04 Ae | 13.99 ± 0.43 Ae |
E1 | 68.72 ± 0.82 Bb | 18.63 ± 0.51 Bd | 27.56 ± 0.89 Bd |
E2 | 64.59 ± 0.50 Bc | 22.52 ± 0.63 Bc | 30.15 ± 0.46 Bc |
E3 | 65.31 ± 0.29 Bc | 23.34 ± 0.67 Bb | 31.76 ± 0.48 Bb |
E4 | 64.92 ± 0.95 Bc | 24.71 ± 0.52 Ba | 36.50 ± 0.48 Ba |
Hardness (N) | Resilience (ratio) | Cohesiveness (ratio) | Springiness (mm) | Chewiness (mj) | |
---|---|---|---|---|---|
blank | 2.25 ± 0.09 Ae | 0.12 ± 0.04 Aa | 0.66 ± 0.03 Ab | 0.86 ± 0.03 Aa | 1.05 ± 0.03 Ad |
C1 | 2.54 ± 0.03 Ad | 0.12 ± 0.01 Aa | 0.65 ± 0.02 Abc | 0.86 ± 0.04 Aa | 1.35 ± 0.05 Ac |
C2 | 2.88 ± 0.04 Ac | 0.12 ± 0.04 Aa | 0.65 ± 0.02 Abc | 0.88 ± 0.05 Aa | 1.44 ± 0.34 Abc |
C3 | 3.17 ± 0.06 Ab | 0.10 ± 0.04 Aa | 0.69 ± 0.01 Aa | 0.86 ± 0.06 Aa | 1.61 ± 0.06 Aab |
C4 | 3.43 ± 0.04 Aa | 0.13 ± 0.03 Aa | 0.63 ± 0.01 Ac | 0.88 ± 0.04 Aa | 1.72 ± 0.04 Aa |
blank | 2.25 ± 0.09 Ae | 0.12 ± 0.04 Aa | 0.66 ± 0.03 Aab | 0.86 ± 0.03 Aa | 1.05 ± 0.03 Ab |
E1 | 2.80 ± 0.02 Bd | 0.11 ± 0.02 Aa | 0.64 ± 0.02 Ab | 0.87 ± 0.03 Aa | 1.61 ± 0.04 Ba |
E2 | 3.07 ± 0.04 Bc | 0.10 ± 0.02 Aa | 0.66 ± 0.02 Aab | 0.88 ± 0.02 Aa | 1.68 ± 0.28 Aa |
E3 | 3.27 ± 0.03 Bb | 0.12 ± 0.03 Aa | 0.66 ± 0.03 Bab | 0.88 ± 0.02 Aa | 1.79 ± 0.27 Ba |
E4 | 3.50 ± 0.04 Ba | 0.10 ± 0.03 Ba | 0.68 ± 0.03 Ba | 0.87 ± 0.07 Aa | 1.83 ± 0.52 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Xing, Y.; Zhou, S.; Li, F.; Wang, L.; Zhang, J.; Yang, X.; Lang, Y. Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer. Foods 2025, 14, 2518. https://doi.org/10.3390/foods14142518
Cao Z, Xing Y, Zhou S, Li F, Wang L, Zhang J, Yang X, Lang Y. Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer. Foods. 2025; 14(14):2518. https://doi.org/10.3390/foods14142518
Chicago/Turabian StyleCao, Zihan, Yu Xing, Shasha Zhou, Feifan Li, Lixin Wang, Juanjuan Zhang, Xiaoxi Yang, and Yumiao Lang. 2025. "Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer" Foods 14, no. 14: 2518. https://doi.org/10.3390/foods14142518
APA StyleCao, Z., Xing, Y., Zhou, S., Li, F., Wang, L., Zhang, J., Yang, X., & Lang, Y. (2025). Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer. Foods, 14(14), 2518. https://doi.org/10.3390/foods14142518