molecules-logo

Journal Browser

Journal Browser

Novel Porous Materials for Environmental Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 3231

Special Issue Editors


E-Mail Website
Guest Editor
CQ-UM and CEB-UM, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Interests: zeolites; heterogeneous catalysis; development of biomaterials with tailored functions; healthcare applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
Interests: adsorption; heterogeneous catalysis; capture and conversion of CO2; recovery and transformation of mining waste; preparation and characterization of mesoporous materials; water treatment

E-Mail Website
Guest Editor
CQ-UM and CEB-UM, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Interests: porous materials; heterogeneous catalysis; electro-Fenton; Fenton oxidation; pollutants; water treatment

Special Issue Information

Dear Colleagues,

It is our pleasure to announce a new Special Issue on “Novel Porous Materials for Environmental Applications”, highlighting the achievements of scientists in material chemistry from all around the world.

This topic aligns closely with the objectives outlined in the 2030 Agenda for Sustainable Development by the United Nations (UN); this comprehensive agenda lays out 17 Sustainable Development Goals (SDGs) aimed at tackling poverty, conserving biodiversity, addressing climate change, and enhancing global livelihoods. More specifically, this Special Issue resonates with SDG 6 and 7, which focus on clean water and sanitation, and clean energy.

We cordially invite you to submit your work, performed across all areas of novel porous materials for environmental science and present your latest research from advanced fields addressing these topics.

This Special Issue will include communications, high-quality papers, and review articles in materials chemistry. 

Prof. Dr. Isabel Correia Neves
Prof. Dr. Maria Helena Araujo
Dr. António Maurício Fonseca
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • novel porous materials
  • heterogeneous catalysis
  • adsorption
  • energy
  • water treatment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4156 KiB  
Article
Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning
by Yu Ju Han, Myung Seo Kim, Seong Min Yoon, Seo Na Yoon, Woo Young Kim, Seok Kim and Young Tae Cho
Molecules 2025, 30(15), 3146; https://doi.org/10.3390/molecules30153146 (registering DOI) - 27 Jul 2025
Abstract
The coffee-ring effect, while harnessed in diverse fields such as biosensing and printing, poses challenges for achieving uniform particle deposition. Controlling this phenomenon is thus essential for precision patterning. This study proposes a novel method to regulate coffee-ring formation by tuning surface wettability [...] Read more.
The coffee-ring effect, while harnessed in diverse fields such as biosensing and printing, poses challenges for achieving uniform particle deposition. Controlling this phenomenon is thus essential for precision patterning. This study proposes a novel method to regulate coffee-ring formation by tuning surface wettability via integrated nanoporous and hexagonal microstructures. Four distinct surface types were fabricated using UV nanoimprint lithography: planar, porous planar, hexagonal wall, and porous hexagonal wall. The evaporation behavior of colloidal droplets and subsequent particle aggregation were analyzed through contact angle measurements and confocal microscopy. Results demonstrated that nanoscale porosity significantly increased surface wettability and accelerated evaporation, while the hexagonal pattern enhanced droplet stability and suppressed contact line movement. The porous hexagonal surface, in particular, enabled the formation of connected dual-ring patterns with higher particle accumulation near the contact edge. This synergistic design facilitated both stable evaporation and improved localization of particles. The findings provide a quantitative basis for applying patterned porous surfaces in evaporation-driven platforms, with implications for enhanced sensitivity and reproducibility in surface-enhanced Raman scattering (SERS) and other biosensing applications. Full article
(This article belongs to the Special Issue Novel Porous Materials for Environmental Applications)
Show Figures

Figure 1

20 pages, 20966 KiB  
Article
Electrospun Fibers from Biobased and Recycled Materials for Indoor Air Quality Enhancement
by Natalia Czerwinska, Chiara Giosuè, Nicola Generosi, Mattia Pierpaoli, Rida Jbr, Francesca Luzi, Valeria Corinaldesi and Maria Letizia Ruello
Molecules 2025, 30(6), 1214; https://doi.org/10.3390/molecules30061214 - 8 Mar 2025
Viewed by 955
Abstract
Air filters are crucial components of building ventilation systems. Compared to conventional air filter media like glass fibers and melt-blown fibers, electrospinning membranes are more efficient for capturing various pollutants due to the smaller pores present on the structure. In this paper, activated [...] Read more.
Air filters are crucial components of building ventilation systems. Compared to conventional air filter media like glass fibers and melt-blown fibers, electrospinning membranes are more efficient for capturing various pollutants due to the smaller pores present on the structure. In this paper, activated carbon filters were prepared with eco-friendly polylactic acid (PLA) and microcrystalline cellulose (MCC) using electrospinning to obtain a high-quality factor (QF) fibrous mat for aerosol particle matter (PM) filtration and volatile organic compounds (VOCs) adsorption. Several configurations of the final membranes were investigated and tested for fiber morphology and air filtration performance. Filtering efficiency and adsorption properties were evaluated in a real-scale room by measuring the particle penetration of the newly synthesized and commercial filters against neutralized aerosol particles (3% NaCl aqueous solution) and VOCs (methyl ethyl ketone). The calculated depolluting efficiencies were up to 98% in terms of PM and 55% for VOCs abatement, respectively. Our results indicate that the proposed hybrid membranes represent promising materials for highly efficient and sustainable air filters for home application systems. Full article
(This article belongs to the Special Issue Novel Porous Materials for Environmental Applications)
Show Figures

Figure 1

16 pages, 4355 KiB  
Article
Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment
by Marta S. F. Oliveira, Ouissal Assila, António M. Fonseca, Pier Parpot, Teresa Valente, Elisabetta Rombi and Isabel C. Neves
Molecules 2024, 29(15), 3521; https://doi.org/10.3390/molecules29153521 - 26 Jul 2024
Cited by 2 | Viewed by 1727
Abstract
Acid mine drainage (AMD) is one of the main environmental problems associated with mining activity, whether the mine is operational or abandoned. In this work, several precipitates from this mine drainage generated by the oxidation of sulfide minerals, when exposed to weathering, were [...] Read more.
Acid mine drainage (AMD) is one of the main environmental problems associated with mining activity, whether the mine is operational or abandoned. In this work, several precipitates from this mine drainage generated by the oxidation of sulfide minerals, when exposed to weathering, were used as adsorbents. Such AMD precipitates from abandoned Portuguese mines (AGO, AGO-1, CF, and V9) were compared with two raw materials from Morocco (ClayMA and pyrophyllite) in terms of their efficiency in wastewater treatment. Different analytical techniques, such as XRD diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), N2 adsorption isotherms, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to characterize these natural materials. The adsorption properties were studied by optimizing different experimental factors, such as type of adsorbent, adsorbent mass, and dye concentration by the Box–Behnken Design model, using methylene blue (MB) and crystal violet (CV) compounds as organic pollutants. The obtained kinetic data were examined using the pseudo-first and pseudo-second order equations, and the equilibrium adsorption data were studied using the Freundlich and Langmuir models. The adsorption behavior of the different adsorbents was perfectly fitted by the pseudo-second order kinetic model and the Langmuir isotherm. The most efficient adsorbent for both dyes was AGO-1 due to the presence of the cellulose molecules, with qm equal to 40.5 and 16.0 mg/g for CV and MB, respectively. This study confirms the possibility of employing AMD precipitates to adsorb organic pollutants in water, providing valuable information for developing future affordable solutions to reduce the wastes associated with mining activity. Full article
(This article belongs to the Special Issue Novel Porous Materials for Environmental Applications)
Show Figures

Figure 1

Back to TopTop