Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,762)

Search Parameters:
Keywords = dress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4071 KiB  
Article
Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications
by Amlika Rungrod, Arthit Makarasen, Suwicha Patnin, Supanna Techasakul and Runglawan Somsunan
Polymers 2025, 17(15), 2157; https://doi.org/10.3390/polym17152157 (registering DOI) - 7 Aug 2025
Abstract
Developing a rapidly gel-forming, in situ sprayable hydrogel with wound dressing functionality is essential for enhancing the wound healing process. In this study, a novel sprayable hydrogel-based wound dressing was developed by combining thermo- and pH- responsive polymers including Pluronic F127 (PF127) and [...] Read more.
Developing a rapidly gel-forming, in situ sprayable hydrogel with wound dressing functionality is essential for enhancing the wound healing process. In this study, a novel sprayable hydrogel-based wound dressing was developed by combining thermo- and pH- responsive polymers including Pluronic F127 (PF127) and N-succinyl chitosan (NSC). NSC was prepared by modifying chitosan with succinic anhydride, as confirmed by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The NSC synthesized using a succinic anhydride-to-chitosan molar ratio of 5:1 exhibited the highest degree of substitution, resulting in a water-soluble polymer effective over a broad pH range. The formulation process of the PF127:NSC sprayable hydrogel was optimized and evaluated based on its sol–gel phase transition behavior, clarity, gelation time, liquid and moisture management, stability, and cytotoxicity. These properties can be suitably tailored by adjusting the concentrations of PF127 and NSC. Moreover, the antioxidant capacity of the hydrogels was enhanced by incorporating Azadirachta indica (neem) extract, a bioactive compound, into the optimized sprayable hydrogel. Both neem release and antioxidant activity increased in a dose-dependent manner. Overall, the developed sprayable hydrogel exhibited favorable sprayability, appropriate gelation properties, controlled drug release, and antioxidant activity, underscoring its promising translational potential as a wound dressing. Full article
Show Figures

Graphical abstract

17 pages, 1323 KiB  
Article
The Effect of Nitrogen Fertilizer Placement and Timing on Winter Wheat Grain Yield and Protein Concentration
by Brent Ballagh, Anna Ballagh, Jacob Bushong and Daryl Brian Arnall
Agronomy 2025, 15(8), 1890; https://doi.org/10.3390/agronomy15081890 - 5 Aug 2025
Abstract
Nitrogen (N) fertilizer management in winter wheat production faces challenges from volatilization losses and sub-optimal application strategies. This is particularly problematic in the Southern Great Plains, where environmental conditions during top-dressing periods favor N losses. This study evaluated the effects of a fertilizer [...] Read more.
Nitrogen (N) fertilizer management in winter wheat production faces challenges from volatilization losses and sub-optimal application strategies. This is particularly problematic in the Southern Great Plains, where environmental conditions during top-dressing periods favor N losses. This study evaluated the effects of a fertilizer placement method, enhanced-efficiency fertilizers, and application timing on grain yield and protein concentration (GPC) across six site-years in Oklahoma (2016–2018). Treatments included broadcast applications of untreated urea and SuperU® (urease/nitrification inhibitor-treated urea). These were compared with subsurface placement using single-disc and double-disc drilling systems, applied at 67 kg N ha−1 during January, February, or March. Subsurface placement increased the grain yield by 324–391 kg ha−1 compared to broadcast applications at sites with favorable soil conditions. However, responses varied significantly across environments. Enhanced-efficiency fertilizers showed limited advantages over untreated urea. Benefits were most pronounced during February applications under conditions favoring volatilization losses. Application timing effects were more consistent for GPC than for the yield. Later applications (February–March) increased GPC by 0.8–1.2% compared to January applications. Treatment efficacy was strongly influenced by soil pH, equipment performance, and post-application environmental conditions. This indicates that N management benefits are highly site-specific. These findings demonstrate that subsurface placement can improve nitrogen use efficiency (NUE) under appropriate conditions. However, success depends on matching application strategies to local soil and environmental factors rather than adopting universal recommendations. Full article
(This article belongs to the Special Issue Fertility Management for Higher Crop Productivity)
Show Figures

Figure 1

19 pages, 3100 KiB  
Review
Casein-Based Biomaterials: Fabrication and Wound Healing Applications
by Nikolay Estiven Gomez Mesa, Krasimir Vasilev and Youhong Tang
Molecules 2025, 30(15), 3278; https://doi.org/10.3390/molecules30153278 - 5 Aug 2025
Abstract
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and [...] Read more.
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and hydrophilic nature, calcium phosphate nanocluster structure, and its response to different pH, temperature, and ionic conditions. These characteristics have direct implications for its colloidal stability, including features such as gelation, swelling capacity, and usability as a biomaterial in tissue engineering. This review also discusses industrial derivatives and recent advances in casein biomaterials based on different fabrication types such as hydrogels, electrospun fibres, films, and advanced systems. Furthermore, casein dressings’ functional and biological attributes have shown remarkable exudate absorption, retention of moisture, biocompatibility, and antimicrobial and anti-inflammatory activity in both in vivo and in vitro studies. The gathered evidence highlights casein’s versatile bioactivity and dynamic molecular properties, positioning it as a promising platform to address advanced wound dressing challenges. Full article
Show Figures

Figure 1

33 pages, 4132 KiB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Viewed by 187
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

20 pages, 390 KiB  
Article
Injective Hulls of Infinite Totally Split-Decomposable Metric Spaces
by Maël Pavón
Axioms 2025, 14(8), 606; https://doi.org/10.3390/axioms14080606 - 4 Aug 2025
Viewed by 168
Abstract
We extend the theory of splits in finite metric spaces to infinite ones. Within this more general framework, we investigate the class of spaces having metrics that are integer-valued and totally split-decomposable, as well as the polyhedral complex structure of their injective hulls. [...] Read more.
We extend the theory of splits in finite metric spaces to infinite ones. Within this more general framework, we investigate the class of spaces having metrics that are integer-valued and totally split-decomposable, as well as the polyhedral complex structure of their injective hulls. For this class, we provide a characterization for the injective hull to be combinatorially equivalent to a CAT(0) cube complex. Intermediate results include the generalization of the decomposition theory introduced by Bandelt and Dress in 1992 as well as results on the tight span of totally split-decomposable metric spaces proved by Huber, Koolen, and Moulton in 2006. Next, using results of Lang from 2013, we obtain proper actions on CAT(0) cube complexes for finitely generated groups endowed with a totally split-decomposable word metric and for which the associated splits satisfy a simple combinatorial property. In the case of Gromov hyperbolic groups, the obtained action is both proper aand co-compact. Finally, we obtain as an application that injective hulls of odd cycles are cell complexes isomorphic to CAT(0) cube complexes. Full article
(This article belongs to the Section Geometry and Topology)
Show Figures

Graphical abstract

23 pages, 5029 KiB  
Review
Synthesis and Biomedical Applications of PLA-HPG-Based Biodegradable Nanocarriers: A Review
by Yijun Shen, Xuehan He and Lei Chen
Biosensors 2025, 15(8), 502; https://doi.org/10.3390/bios15080502 - 3 Aug 2025
Viewed by 378
Abstract
The development of biodegradable nanocarriers has long been a priority for researchers and medical professionals in the realm of drug delivery. Because of their inherent benefits, which include superior biocompatibility, customizable degradability, easy surface functionalization, and stealth-like behavior, polylactic acid-hyperbranched polyglycerol (PLA-HPG) copolymers [...] Read more.
The development of biodegradable nanocarriers has long been a priority for researchers and medical professionals in the realm of drug delivery. Because of their inherent benefits, which include superior biocompatibility, customizable degradability, easy surface functionalization, and stealth-like behavior, polylactic acid-hyperbranched polyglycerol (PLA-HPG) copolymers have demonstrated a promising future in the field of biomedical research. The synthesis of PLA-HPG copolymers and the creation of their nanoparticles for biomedical uses have been the focus of current efforts. In this review, we summarize the synthetic strategies of PLA-HPG copolymers and corresponding nanoparticles, and highlight their physicochemical properties, biocompatibility, and degradation properties. Furthermore, we introduce a number of PLA-HPG nanoparticles that are utilized for surface skin delivery, wound dressing, and in vivo drug delivery biological applications. Finally, we conclude by offering our thoughts on how this nanoplatform might advance in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

22 pages, 3797 KiB  
Article
Amygdalin-Doped Biopolymer Composites as Potential Wound Dressing Films: In Vitro Study on E. coli and S. aureus
by Dorinel Okolišan, Gabriela Vlase, Mihaela Maria Budiul, Mariana Adina Matica and Titus Vlase
Gels 2025, 11(8), 609; https://doi.org/10.3390/gels11080609 - 2 Aug 2025
Viewed by 468
Abstract
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in [...] Read more.
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in vitro testing against the bacterial strains typical of chronic wounds: E. coli and S. aureus. Thus, FTIR characterization suggests minimal chemical interaction between amygdalin and the biopolymer matrix components, indicating potential compatibility, while thermogravimetric analysis highlights the thermal behavior of the films as well as the influence of the polymer matrix composition on the amount of bound water and the shift of Tpeak value for the decomposition process of the base polymer. Moreover, the identity of the secondary biopolymer (gelatin or CMC) significantly influences film morphology and antibacterial performance. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 - 2 Aug 2025
Viewed by 276
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 190
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 - 1 Aug 2025
Viewed by 308
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

29 pages, 1505 KiB  
Review
Biological Macromolecule-Based Dressings for Combat Wounds: From Collagen to Growth Factors—A Review
by Wojciech Kamysz and Patrycja Kleczkowska
Med. Sci. 2025, 13(3), 106; https://doi.org/10.3390/medsci13030106 - 1 Aug 2025
Viewed by 391
Abstract
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, [...] Read more.
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, significantly increases the risk of infection, delayed healing, and adverse outcomes. Traditional wound dressings frequently prove inadequate under such extreme conditions, as they have not been designed to address the specific physiological and logistical constraints present during armed conflicts. This review provides a comprehensive overview of recent progress in the development of advanced wound dressings tailored for use in military scenarios. Special attention has been given to multifunctional dressings that go beyond basic wound coverage by incorporating biologically active macromolecules such as collagen, chitosan, thrombin, alginate, therapeutic peptides, and growth factors. These compounds contribute to properties including moisture balance control, exudate absorption, microbial entrapment, and protection against secondary infection. This review highlights the critical role of advanced wound dressings in improving medical outcomes for injured military personnel. The potential of these technologies to reduce complications, enhance healing rates, and ultimately save lives underscores their growing importance in modern battlefield medicine. Full article
(This article belongs to the Collection Advances in Skin Wound Healing)
Show Figures

Figure 1

16 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Viewed by 254
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

18 pages, 12329 KiB  
Article
Red Cabbage Anthocyanin-Loaded Bacterial Cellulose Hydrogel for Colorimetric Detection of Microbial Contamination and Skin Healing Applications
by Hanna Melnyk, Olesia Havryliuk, Iryna Zaets, Tetyana Sergeyeva, Ganna Zubova, Valeriia Korovina, Maria Scherbyna, Lilia Savinska, Lyudmila Khirunenko, Evzen Amler, Maria Bardosova, Oleksandr Gorbach, Sergiy Rogalsky and Natalia Kozyrovska
Polymers 2025, 17(15), 2116; https://doi.org/10.3390/polym17152116 - 31 Jul 2025
Viewed by 314
Abstract
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics [...] Read more.
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics the skin matrix. Biological activities of RCA extract in bacterial cellulose (BC) showed no cytotoxicity and skin-sensitizing potential to human cells at concentrations of RCAs similar to those released from BC/RCA dressings (4.0–40.0 µg/mL). A decrease in cell viability and apoptosis was observed in human cancer cells with RCAs. The invisible eye detection of the early color change signal from RCAs in response to pH alteration by bacteria was recorded with a smartphone application. The incorporation of RCAs into BC polymer has altered the morphology of its matrix, resulting in a denser cellulose microfibril network. The complete coincidence of the vibrational modes detected in the absorption spectra of the cellulose/RCA composite with the modes in RCAs most likely indicates that RCAs retain their structure in the BC matrix. Affordable, sensitive halochromic BC/RCA hydrogels can be recommended for online monitoring of microbial contamination, making them accessible to patients. Full article
Show Figures

Graphical abstract

11 pages, 1118 KiB  
Case Report
Infective Endocarditis with Gerbode Defect and DRESS Syndrome: A Rare Case Report
by Corina Ureche, Diana Lavinia Moldovan, Ionel Vița, Valeria Guila and Teodora Nicola-Varo
Reports 2025, 8(3), 127; https://doi.org/10.3390/reports8030127 - 31 Jul 2025
Viewed by 235
Abstract
Background and Clinical Significance: Infective endocarditis (IE) is a serious condition with rising incidence, frequently caused by Staphylococcus aureus. However, cases involving rare congenital anomalies such as Gerbode’s defect are uncommon. Case Presentation: This report presents the first documented case of IE [...] Read more.
Background and Clinical Significance: Infective endocarditis (IE) is a serious condition with rising incidence, frequently caused by Staphylococcus aureus. However, cases involving rare congenital anomalies such as Gerbode’s defect are uncommon. Case Presentation: This report presents the first documented case of IE in a patient with a congenital Gerbode defect complicated by DRESS syndrome—a severe, drug-induced hypersensitivity reaction typically triggered by antibiotics like oxacillin. A 65-year-old woman developed infective endocarditis involving vegetations on the cardiac device lead, the tricuspid valve, and adjacent to a Gerbode defect. The diagnosis was confirmed by positive blood cultures and echocardiographic findings. She received treatment with oxacillin. Subsequently, she exhibited clinical features consistent with DRESS syndrome, including rash, eosinophilia, and multi-organ involvement. Rapid recognition and management, including corticosteroid therapy and antibiotic modification, led to clinical improvement. Conclusions: This case highlights the importance of vigilance for DRESS syndrome in prolonged antibiotic therapy for IE, especially in the context of rare congenital cardiac anomalies. In addition, guidelines are needed to optimize the diagnosis and treatment of this potentially lethal complication. Full article
(This article belongs to the Section Cardiology/Cardiovascular Medicine)
Show Figures

Figure 1

Back to TopTop