Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of N-Succinyl Chitosan (NSC)
2.3. Characterization of NSC
2.4. Preparation of PF127:NSC Sprayable Hydrogel
2.5. Construction of Sol–Gel Phase Transition Diagrams
2.6. Evaluation of Gel Formulation
2.6.1. Clarity of Formulations
2.6.2. Sprayability
2.6.3. Gelling Capacity
2.6.4. Spreadability Test
2.6.5. Occlusive Property
2.6.6. Fluid Affinity
2.7. Stability of Solution
2.8. Cytotoxicity Assay
2.9. In Vitro Drug Release Studies
2.10. Antioxidant Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of N-Succinyl Chitosan
3.2. Construction of Sol–Gel Phase Transition Diagrams
3.3. Evaluation of Gel Properties
3.3.1. Clarity of Formulations
3.3.2. Gelation Time
3.3.3. Sprayability
3.3.4. Gelling Capacity and Spreadability
3.3.5. Occlusive Property
3.3.6. Fluid Affinity
3.4. Short Term Stability of Solution Studies
3.5. Cytotoxicity Assay
3.6. In Vitro Drug Release Studies
3.7. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ter Horst, B.; Moakes, R.J.A.; Chouhan, G.; Williams, R.L.; Moiemen, N.S.; Grover, L.M. A Gellan-Based Fluid Gel Carrier to Enhance Topical Spray Delivery. Acta Biomater. 2019, 89, 166–179. [Google Scholar] [CrossRef]
- Qi, X.; Shi, Q.; Zhang, C.; Cai, E.; Ge, X.X.; Xiang, Y.; Li, Y.; Zeng, B.; Shen, J. A Hybrid Hydrogel with Intrinsic Immunomodulatory Functionality for Treating Multidrug-Resistant Pseudomonas aeruginosa Infected Diabetic Foot Ulcers. ACS Mater. Lett. 2024, 6, 2533–2547. [Google Scholar] [CrossRef]
- Smith, R.; Brogden, N.; Fiegel, J. Sprayable Ciprofloxacin-Loaded Poloxamer Hydrogels for Wound Infection Treatment. J. Drug Deliv. Sci. Technol. 2023, 89, 105000. [Google Scholar] [CrossRef]
- Jeong, D.; Jang, S.Y.; Roh, S.; Choi, J.H.; Seo, I.J.; Lee, J.H.; Kim, J.; Kwon, I.; Jung, Y.; Hwang, J.; et al. Sprayable Hydrogel with Optical MRNA Nanosensors for Real-Time Monitoring and Healing of Diabetic Wounds. Chem. Eng. J. 2024, 493, 152711. [Google Scholar] [CrossRef]
- Amirsadeghi, A.; Jafari, A.; Hashemi, S.-S.; Kazemi, A.; Ghasemi, Y.; Derakhshanfar, A.; Shahbazi, M.-A.; Niknezhad, S.V. Sprayable Antibacterial Persian Gum-Silver Nanoparticle Dressing for Wound Healing Acceleration. Mater. Today Commun. 2021, 27, 102225. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, W.; Liu, J.; Han, Y.; Yan, Q.; Dong, Y.; Liu, X.; Yang, D.; Ma, G.; Cao, H. A Novel Sprayable Thermosensitive Hydrogel Coupled with Zinc Modified Metformin Promotes the Healing of Skin Wound. Bioact. Mater. 2023, 20, 610–626. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, X.; Jin, X.; Huang, M.; Shan, J.; Chen, X.; Qian, H.; Chen, Z.; Wang, X. Promotion of Wound Healing by a Thermosensitive and Sprayable Hydrogel with Nanozyme Activity and Anti-Inflammatory Properties. Smart Mater. Med. 2023, 4, 134–145. [Google Scholar] [CrossRef]
- Srimai, C.; Sukmongkolwongs, W.; Manokruang, K.; Worajittiphon, P.; Molloy, R.; Mahomed, A.; Somsunan, R. Enhancement of Poly(Vinyl Alcohol) Hydrogel Properties by N-Succinyl Chitosan and Mesona Chinensis Extract for Use as Wound Dressings. Eur. Polym. J. 2024, 215, 113212. [Google Scholar] [CrossRef]
- Mura, C.; Nácher, A.; Merino, V.; Merino-Sanjuán, M.; Manconi, M.; Loy, G.; Fadda, A.M.; Díez-Sales, O. Design, Characterization and in Vitro Evaluation of 5-Aminosalicylic Acid Loaded N-Succinyl-Chitosan Microparticles for Colon Specific Delivery. Colloids Surf. B Biointerfaces 2012, 94, 199–205. [Google Scholar] [CrossRef]
- Nasrine, A.; Narayana, S.; Gulzar Ahmed, M.; Sultana, R.; Noushida, N.; Raunak Salian, T.; Almuqbil, M.; Almadani, M.E.; Alshehri, A.; Alghamdi, A.; et al. Neem (Azadirachta indica) and Silk Fibroin Associated Hydrogel: Boon for Wound Healing Treatment Regimen. Saudi Pharm. J. 2023, 31, 101749. [Google Scholar] [CrossRef]
- Rasheed, U.; Naeem Kiani, M.; Shoaib Butt, M.; Saeed, H.; Hanif, R.; Anwar, S. Fabrication and Biocompatibility of Neem/Chitosan Coated Silk Sutures for Infection Control and Wound Healing. J. King Saud Univ.-Sci. 2024, 36, 103435. [Google Scholar] [CrossRef]
- Hameed, A.; Rehman, T.U.; Rehan, Z.A.; Noreen, R.; Iqbal, S.; Batool, S.; Qayyum, M.A.; Ahmed, T.; Farooq, T. Development of Polymeric Nanofibers Blended with Extract of Neem (Azadirachta indica), for Potential Biomedical Applications. Front. Mater. 2022, 9, 1042304. [Google Scholar] [CrossRef]
- Vanichvattanadecha, C.; Supaphol, P.; Nagasawa, N.; Tamada, M.; Tokura, S.; Furuike, T.; Tamura, H.; Rujiravanit, R. Effect of Gamma Radiation on Dilute Aqueous Solutions and Thin Films of N-Succinyl Chitosan. Polym. Degrad. Stab. 2010, 95, 234–244. [Google Scholar] [CrossRef]
- Aksu, N.B.; Yozgatlı, V.; Okur, M.E.; Ayla, Ş.; Yoltaş, A.; Üstündağ Okur, N. Preparation and Evaluation of QbD Based Fusidic Acid Loaded in Situ Gel Formulations for Burn Wound Treatment. J. Drug Deliv. Sci. Technol. 2019, 52, 110–121. [Google Scholar] [CrossRef]
- Arpa, M.D.; Kesmen, E.E.; Biltekin, S.N. Novel Sprayable Thermosensitive Benzydamine Hydrogels for Topical Application: Development, Characterization, and in Vitro Biological Activities. AAPS PharmSciTech 2023, 24, 214. [Google Scholar] [CrossRef]
- Al-Suwayeh, S.A.; Taha, E.I.; Al-Qahtani, F.M.; Ahmed, M.O.; Badran, M.M. Evaluation of Skin Permeation and Analgesic Activity Effects of Carbopol Lornoxicam Topical Gels Containing Penetration Enhancer. Sci. World J. 2014, 2014, 127495. [Google Scholar] [CrossRef]
- EN 13726-1:2002; Test Methods for Primary Wound Dressings—Part 1: Aspects of Absorbency. European Committee for Standardization: Brussels, Belgium, 2002.
- Grip, J.; Steene, E.; Engstad, R.E.; Hart, J.; Bell, A.; Skjæveland, I.; Basnet, P.; Škalko-Basnet, N.; Holsæter, A.M. Development of a Novel Beta-Glucan Supplemented Hydrogel Spray Formulation and Wound Healing Efficacy in a Db/Db Diabetic Mouse Model. Eur. J. Pharm. Biopharm. 2021, 169, 280–291. [Google Scholar] [CrossRef]
- Bashir, S.; Teo, Y.Y.; Ramesh, S.; Ramesh, K. Synthesis, Characterization, Properties of N-Succinyl Chitosan-g-Poly (Methacrylic Acid) Hydrogels and in Vitro Release of Theophylline. Polymer 2016, 92, 36–49. [Google Scholar] [CrossRef]
- Dananjaya, S.H.S.; Edirisinghe, S.L.; Thao, N.T.T.; Kumar, R.S.; Wijerathna, H.M.S.M.; Mudiyanselage, A.Y.; De Zoysa, M.; Choi, D. Succinyl Chitosan Gold Nanocomposite: Preparation, Characterization, in Vitro and in Vivo Anticandidal Activity. Int. J. Biol. Macromol. 2020, 165, 63–70. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, A.; Ye, Y.; Peng, S.; Deng, M.; Jiang, B. A Novel pH- and Salt-Responsive N-Succinyl-Chitosan Hydrogel via a One-Step Hydrothermal Process. Molecules 2019, 24, 4211. [Google Scholar] [CrossRef]
- Kushan, E.; Senses, E. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127. ACS Appl. Bio Mater. 2021, 4, 3507–3517. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone. Carbohydr. Polym. 2009, 76, 167–182. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Ohar, H.; Budkowski, A.; Lazzara, G. Molecular Design and Role of the Dynamic Hydrogen Bonds and Hydrophobic Interactions in Temperature-Switchable Polymers: From Understanding to Applications. Polymers 2025, 17, 1580. [Google Scholar] [CrossRef]
- Verekar, R.R.; Gurav, S.S.; Bolmal, U. Thermosensitive Mucoadhesive in Situ Gel for Intranasal Delivery of Almotriptan Malate: Formulation, Characterization, and Evaluation. J. Drug Deliv. Sci. Technol. 2020, 58, 101778. [Google Scholar] [CrossRef]
- Shymborska, Y.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Ohar, H.; Budkowski, A. Impact of the Various Buffer Solutions on the Temperature-Responsive Properties of POEGMA-Grafted Brush Coatings. Colloid Polym. Sci. 2022, 300, 487–495. [Google Scholar] [CrossRef]
- Lupu, A.; Rosca, I.; Gradinaru, V.R.; Bercea, M. Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers 2023, 15, 355. [Google Scholar] [CrossRef]
- Balan, G.-A.; Precupas, A.; Matei, I. Gelation Behaviour of Pluronic F127/Polysaccharide Systems Revealed via Thioflavin T Fluorescence. Gels 2023, 9, 939. [Google Scholar] [CrossRef]
- Bennison, L.R.; Miller, C.N.; Summers, R.J.; Minnis, A.M.B.; Sussman, G. McGuiness, W. The pH of Wounds during Healing and Infection: A Descriptive Literature Review. Wound Pract. Res. 2017, 25, 63–69. [Google Scholar]
- Arpa, M.D.; Sec¸en, I.M.; Erim, U.C.; Hos, A.; Okur, N.U. Azelaic Acid Loaded Chitosan and HPMC Based Hydrogels for Treatment of Acne: Formulation, Characterization, in vitro-ex vivo Evaluation. Pharm. Dev. Technol 2022, 27, 268–281. [Google Scholar] [CrossRef]
- Shinde, U.; Pokharkar, S.; Modani, S. Design and Evaluation of Microemulsion Gel System of Nadifloxacin. Indian J. Pharm. Sci. 2012, 74, 237–247. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Cannella, V.; Altomare, R.; Chiaramonte, G.; Di Bella, S.; Mira, F.; Russotto, L.; Pisano, P.; Guercio, A. Cytotoxicity Evaluation of Endodontic Pins on L929 Cell Line. Biomed Res. Int. 2019, 2019, 3469525. [Google Scholar] [CrossRef]
- Shafie, N.A.; Suhaili, N.A.; Taha, H.; Ahmad, N. Evaluation of Antioxidant, Antibacterial and Wound Healing Activities of Vitex Pinnata. F1000Research 2020, 9, 187. [Google Scholar] [CrossRef]
- Zulkefli, N.; Che Zahari, C.N.M.; Sayuti, N.H.; Kamarudin, A.A.; Saad, N.; Hamezah, H.S.; Bunawan, H.; Baharum, S.N.; Mediani, A.; Ahmed, Q.U.; et al. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int. J. Mol. Sci. 2023, 24, 4607. [Google Scholar] [CrossRef]
- Alzohairy, M.A. Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evid. Based. Complement. Altern. Med. 2016, 2016, 7382506. [Google Scholar] [CrossRef]
- Boukeloua, A.; Kouadria, M.; Bendif, H.; Plavan, G.; Alsalamah, S.A.; Alghonaim, M.I.; Boufahja, F.; Abd-Elkader, O.H. Physicochemical Analysis and Wound Healing Activity of Azadirachta indica (A. Juss) Fruits. Processes 2023, 11, 1692. [Google Scholar] [CrossRef]
- Nagesh, H.; Basavanna, P.; Kishore, M. Evaluation of Wound Healing Activity of Ethanolic Extract of Azadirachta indica Leaves on Incision and Excision Wound Models in Wister Albino Rats. Int. J. Basic Clin. Pharmacol. 2015, 4, 1178–1182. [Google Scholar] [CrossRef]
- Tănase, M.A.; Soare, A.C.; Diţu, L.M.; Nistor, C.L.; Mihaescu, C.I.; Gifu, I.C.; Petcu, C.; Cinteza, L.O. Influence of the Hydrophobicity of Pluronic Micelles Encapsulating Curcumin on the Membrane Permeability and Enhancement of Photoinduced Antibacterial Activity. Pharmaceutics 2022, 14, 2137. [Google Scholar] [CrossRef]
- Dios-Pérez, I.; González-Garcinuño, Á.; Tabernero, A.; Blanco-López, M.; García-Esteban, J.A.; Moreno-Rodilla, V.; Curto, B.; Pérez-Esteban, P.; Martín del Valle, E.M. Development of a Thermosensitive Hydrogel Based on Polaxamer 407 and Gellan Gum with Inclusion Complexes (Sulfobutylated-β-Cyclodextrin-Farnesol) as a Local Drug Delivery System. Eur. J. Pharm. Sci. 2023, 191, 106618. [Google Scholar] [CrossRef]
- Cheng, K.; Fang, Y.; Bai, L.; Gui, F.; Ma, J.; Gao, H.; Zhao, Y.; Xu, X. Quaternized Chitosan/Pluronic F127 Thermosensitive Hydrogel with High Antibacterial Properties for Wound Dressing. Prog. Nat. Sci. Mater. Int. 2023, 33, 581–592. [Google Scholar] [CrossRef]
- Nascimento, M.H.M.; Franco, M.K.K.D.; Yokaichyia, F.; de Paula, E.; Lombello, C.B.; de Araujo, D.R. Hyaluronic Acid in Pluronic F-127/F-108 Hydrogels for Postoperative Pain in Arthroplasties: Influence on Physicochemical Properties and Structural Requirements for Sustained Drug-Release. Int. J. Biol. Macromol. 2018, 111, 1245–1254. [Google Scholar] [CrossRef]
- García-Couce, J.; Tomás, M.; Fuentes, G.; Que, I.; Almirall, A.; Cruz, L.J. Chitosan/Pluronic F127 Thermosensitive Hydrogel as an Injectable Dexamethasone Delivery Carrier. Gels 2022, 8, 44. [Google Scholar] [CrossRef]
- Gutiérrez-Saucedo, R.A.; Gómez-López, J.C.; Villanueva-Briseño, A.A.; Topete, A.; Soltero-Martínez, J.F.A.; Mendizábal, E.; Jasso-Gastinel, C.F.; Taboada, P.; Figueroa-Ochoa, E.B. Pluronic F127 and P104 Polymeric Micelles as Efficient Nanocarriers for Loading and Release of Single and Dual Antineoplastic Drugs. Polymers 2023, 15, 2249. [Google Scholar] [CrossRef]
- Rungrod, A.; Kapanya, A.; Punyodom, W.; Molloy, R.; Mahomed, A.; Somsunan, R. Synthesis and Characterization of Semi-IPN Hydrogels Composed of Sodium 2-Acrylamido-2-Methylpropanesulfonate and Poly(ε-caprolactone) Diol for Controlled Drug Delivery. Eur. Polym. J. 2022, 164, 110978. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Devi, L. Investigation of Total Phenolic, Flavonoid Contents and Antioxidant Activity from Extracts of Azadirachta indica of Bundelkhand Region. Int. J. Life-Sci. Sci. Res. 2018, 4, 1925–1933. [Google Scholar] [CrossRef]
- Ghimeray, A.K.; Jin, C.W.; Ghimire, B.K.; Dong, H.C. Antioxidant Activity and Quantitative Estimation of Azadirachtin and Nimbin in Azadirachta indica A. Juss Grown in Foothills of Nepal. Afr. J. Biotechnol. 2009, 8, 3084–3091. [Google Scholar]
- Heyman, L.; Houri-Haddad, Y.; Heyman, S.N.; Ginsburg, I.; Gleitman, Y.; Feuerstein, O. Combined Antioxidant Effects of Neem Extract, Bacteria, Red Blood Cells and Lysozyme: Possible Relation to Periodontal Disease. BMC Complement. Altern. Med. 2017, 17, 399. [Google Scholar] [CrossRef]
Samples | Molar Ratios (SA:CS *) | DS (%) | Solubility | |||||
---|---|---|---|---|---|---|---|---|
pH 4 | pH 5 | pH 6 | pH 7 | pH 8 | pH 9 | |||
CS | 0 | - | +++ | -- | -- | -- | -- | -- |
NSC-1 | 1:1 | 11.3 | +++ | -- | -- | -- | -- | -- |
NSC-3 | 3:1 | 37.3 | +++ | +++ | -- | -- | ++ | -- |
NSC-5 | 5:1 | 57.2 | +++ | +++ | -- | -- | +++ | +++ |
Days | Samples | Clarity | Gelation Time * (s ± SD) | Gelling Capacity | Spreadability (cm ± SD) |
---|---|---|---|---|---|
0 | 19PF127:0NSC | +++ | 81.5 ± 8.6 | ++ | 4.36 ± 0.08 |
19PF127:0.25NSC | +++ | 362.5 ± 3.5 | ++ | 5.68 ± 0.14 | |
20PF127:0NSC | +++ | 44.4 ± 5.5 | ++ | 4.12 ± 0.07 | |
20PF127:0.25NSC | +++ | 55.3 ± 1.5 | ++ | 4.42 ± 0.02 | |
20PF127:0.50NSC | ++ | 79.5 ± 1.8 | ++ | 4.64 ± 0.06 | |
60 | 19PF127:0NSC | +++ | 81.6 ± 2.3 | + | 4.33 ± 0.06 |
19PF127:0.25NSC | +++ | NG | - | - | |
20PF127:0NSC | +++ | 46.9 ± 3.2 | ++ | 4.23 ± 0.06 | |
20PF127:0.25NSC | +++ | 61.5 ± 1.6 | ++ | 5.10 ± 0.10 | |
20PF127:0.50NSC | ++ | 125.3 ± 5.3 | + | 5.68 ± 0.03 | |
120 | 19PF127:0NSC | +++ | 83.6 ± 2.9 | + | 4.43 ± 0.05 |
19PF127:0.25NSC | +++ | NG | - | - | |
20PF127:0NSC | +++ | 48.6 ± 3.7 | ++ | 4.27 ± 0.14 | |
20PF127:0.25NSC | +++ | 64.5 ± 4.2 | ++ | 5.12 ± 0.16 | |
20PF127:0.50NSC | ++ | 123.9 ± 9.9 | + | 5.75 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rungrod, A.; Makarasen, A.; Patnin, S.; Techasakul, S.; Somsunan, R. Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications. Polymers 2025, 17, 2157. https://doi.org/10.3390/polym17152157
Rungrod A, Makarasen A, Patnin S, Techasakul S, Somsunan R. Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications. Polymers. 2025; 17(15):2157. https://doi.org/10.3390/polym17152157
Chicago/Turabian StyleRungrod, Amlika, Arthit Makarasen, Suwicha Patnin, Supanna Techasakul, and Runglawan Somsunan. 2025. "Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications" Polymers 17, no. 15: 2157. https://doi.org/10.3390/polym17152157
APA StyleRungrod, A., Makarasen, A., Patnin, S., Techasakul, S., & Somsunan, R. (2025). Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications. Polymers, 17(15), 2157. https://doi.org/10.3390/polym17152157