State-of-the-Art Biosensors in China (2nd Edition)

A special issue of Biosensors (ISSN 2079-6374).

Deadline for manuscript submissions: 31 January 2026 | Viewed by 14068

Special Issue Editors


E-Mail Website
Guest Editor
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
Interests: single-molecule detection; single-molecule imaging; biosensors; nanosensors; nucleic acids; enzymes; quantum dots
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Interests: inertial microfluidics; soft robotics; microfluidic cell separation; viscoelastic microfluidics; point-of-care testing devices; microflow cytometer; microfluidic valve; dielectrophoresis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biosensors are analytical devices that combine a biological/synthetic molecule (e.g., nucleic acids, enzymes, and antibodies) immobilized on a transducer. The biological/synthetic molecule (i.e., biorecognition receptor) interacts with the target analyte, converting the receptor's response into a measurable signal (e.g., optical, electrochemical, and piezoelectric signals). The advancement of biosensors has recently attracted much interest from researchers worldwide due to their potential applications across diverse areas in health, medicine, agriculture, industry, defense, food safety, and environmental monitoring. These biosensors must possess characteristics including specificity, sensitivity, rapidity, affordability, portability, user-friendliness, and ease of specimen collection. Biosensors are even more facile, useful, and easier to obtain when they are integrated with new communication techniques, which make these devices more applicable to custom healthcare and environmental monitoring systems.

This Special Issue entitled “State-of-the-Art Biosensors in China (Volume II)” focuses on the most recent progress and innovations in the development of biosensors in China. Researchers from scientific fields of biology, chemistry, medicine, environment, engineering, and material sciences are invited to submit original and review articles that cover the following aspects:

  • The monitoring and diagnosis of various diseases in biofluids, such as cancer biomarkers, infectious diseases, and heart-related conditions.
  • The identification of pollutants and contaminants in environmental/food samples, such as pesticides, antibiotic residues, and heavy metals.
  • The advancement of innovative biosensors, such as colorimetry, electrochemistry, fluorescence, luminescence, surface-enhanced resonance Raman scattering (SERS), nuclear magnetic resonance (NMR), nanomaterial-based, and aptamer/antibody-based sensors.
  • The development of rapid and sensitive biosensing techniques in the bioanalysis and medical fields, such as microfluidic chips, single-molecule imaging, smartphone sensing, wearable devices, point-of-care systems, and machine and deep learning.

Prof. Dr. Chunyang Zhang
Prof. Dr. Nan Xiang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biosensors
  • colorimetry
  • electrochemistry
  • fluorescence
  • luminescence
  • surface-enhanced Raman scattering (SERS)

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 5084 KiB  
Article
Electrochemical Glucose Sensor Based on Dual Redox Mediators
by Changyun Quan, Yue Zhang, Yuanyuan Liu, Liping Wen, Haixia Yang, Xueqin Huang, Minghui Yang and Binjie Xu
Biosensors 2025, 15(1), 9; https://doi.org/10.3390/bios15010009 - 27 Dec 2024
Cited by 1 | Viewed by 1405
Abstract
Electrochemical glucose sensor holds significant promise for the monitoring of blood glucose levels in diabetic patients. In this study, we proposed a novel electrochemical glucose sensor based on 1,10-Phenanthroline-5,6-dione (PD)/Ru(III) as a dual redox mediator. The synergistic effect of PD and Ru(III) was [...] Read more.
Electrochemical glucose sensor holds significant promise for the monitoring of blood glucose levels in diabetic patients. In this study, we proposed a novel electrochemical glucose sensor based on 1,10-Phenanthroline-5,6-dione (PD)/Ru(III) as a dual redox mediator. The synergistic effect of PD and Ru(III) was utilized to efficiently facilitate the electron transfer between the enzyme-active center and the electrode. Then, a commercial disposable electrochemical glucose sensor was constructed based on screen-printing electrodes. Experimental results indicated the synergy between PD and Ru(III) provided a promising electron transfer environment for a glucose dehydrogenase (GDH)-catalyzed glucose reaction. The sensor exhibits a linear glucose response range from 0.01 to 38.6 mmol/L, with a limit of detection (LOD) as low as 7.0 µmol/L and a sensitivity of 38 µA·L/(mmol·cm2). The accuracy of the sensor was further validated in spiked recovery tests of human venous blood samples. The glucose recovery rate was between 99.5% and 107%, with a relative standard deviation (RSD) of less than 3.2%. These results demonstrate that our sensor has high potential for commercialization and practical application in glucose monitoring. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

13 pages, 4995 KiB  
Article
BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues
by Qian Wu, Ziwei Hu, Guoyang Zhang, Yulong Jin and Zhuo Wang
Biosensors 2024, 14(12), 638; https://doi.org/10.3390/bios14120638 - 22 Dec 2024
Viewed by 1191
Abstract
Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.g., mitochondria) is still lacking and urgently needed. [...] Read more.
Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.g., mitochondria) is still lacking and urgently needed. Herein, we rationally designed a mitochondria-targeted ratiometric fluorescent probe, MOBDP-I, for imaging of ONOO in the mitochondria of inflammatory cells and model mice. This probe, MOBDP-I, was synthesized by conjugating a BODIPY fluorophore to a mitochondria-targeting moiety–indole-salt group by a carbon–carbon double bond (C=C). In the presence of ONOO, the C=C bond between the BODIPY backbone and the indole-salt group was oxidized and broken, leading to an 18-fold enhancement of fluorescence at 510 nm, along with a significant fluorescence decrease at 596 nm. The ratiometric response property bestowed the probe with advantages in the precise quantification of ONOO in cells, thus allowing estimation of the extent of inflammation in living cells and mouse models of rheumatoid arthritis, peritonitis, and brain inflammation. MOBDP-I could act as an effective molecular tool to study the relationship between ONOO and the occurrence and development of inflammatory diseases. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

14 pages, 11663 KiB  
Article
Integrated SERS-Microfluidic Sensor Based on Nano-Micro Hierarchical Cactus-like Array Substrates for the Early Diagnosis of Prostate Cancer
by Huakun Jia, Weiyang Meng, Rongke Gao, Yeru Wang, Changbiao Zhan, Yiyue Yu, Haojie Cong and Liandong Yu
Biosensors 2024, 14(12), 579; https://doi.org/10.3390/bios14120579 - 28 Nov 2024
Viewed by 1252
Abstract
The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy [...] Read more.
The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis. By combining EpCAM aptamer-labeled SERS nanoprobes and a CD63 aptamer-labeled CAS, a ‘sandwich’ structure was formed and applied to the microfluidic chips, further enhancing the Raman scattering signal of Raman reporter molecules. The results indicate that the integrated microfluidic sensor exhibits a good linear response within the detection concentration range of 105 particles μL−1 to 1 particle μL−1. The detection limit of exosomes in cancer cells can reach 1 particle μL−1. Therefore, we believed that the CAS integrated microfluidic sensor offers a superior solution for the early diagnosis and therapeutic intervention of prostate cancer. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

16 pages, 2525 KiB  
Article
SDBS-AEO Mixture for Triton X-100 Replacement: Surface Activity and Application in Biosensors
by Zhenzhen Li, Lei Wang, Mengjie Tang, Yulong Sun, Li Zhang and Zhongxiu Chen
Biosensors 2024, 14(10), 505; https://doi.org/10.3390/bios14100505 - 16 Oct 2024
Viewed by 1379
Abstract
Triton X-100 (TX-100) is a commonly used surfactant in the manufacture of biosensors. The factors limiting the use of TX-100 in biosensors are environmental concerns. In this study, the binary system of sodium dodecyl benzene sulfonate (SDBS) and fatty alcohol-polyoxyethlene ether (AEO) was [...] Read more.
Triton X-100 (TX-100) is a commonly used surfactant in the manufacture of biosensors. The factors limiting the use of TX-100 in biosensors are environmental concerns. In this study, the binary system of sodium dodecyl benzene sulfonate (SDBS) and fatty alcohol-polyoxyethlene ether (AEO) was investigated from the physicochemical principle of surfactant interaction and its application in biosensors. The results demonstrated that a mixture of SDBS and AEO at an appropriate molar ratio had a comparable activity to TX-100 in terms of surface activity, micelle formation, dynamic adsorption, foaming, emulsifying, and cell permeability. Theory and experimentation support the idea that SDBS-AEO might take the place of TX-100 in the manufacturing of biosensors. This study contributes to the development of alternatives to TX-100 and provides a new perspective for an in-depth study of the interaction mechanism of additives in biosensor design. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

14 pages, 28439 KiB  
Article
A Multi-Channel Urine Sensing Detection System Based on Creatinine, Uric Acid, and pH
by Qiya Gao, Jie Fu, Fangying Xiong, Jiawang Wang, Ziyue Qin and Shuang Li
Biosensors 2024, 14(10), 473; https://doi.org/10.3390/bios14100473 - 2 Oct 2024
Viewed by 1550
Abstract
Urine analysis represents a crucial diagnostic technique employed in clinical laboratories. Creatinine and uric acid in urine are essential biomarkers in the human body and are widely utilized in clinical analysis. Research has demonstrated a correlation between the normal physiological concentrations of creatinine [...] Read more.
Urine analysis represents a crucial diagnostic technique employed in clinical laboratories. Creatinine and uric acid in urine are essential biomarkers in the human body and are widely utilized in clinical analysis. Research has demonstrated a correlation between the normal physiological concentrations of creatinine and uric acid in urine and an increased risk of hypertension, cardiovascular diseases, and kidney disease. Furthermore, the pH of urine indicates the body’s metabolic processes and homeostatic balance. In this study, an integrated multi-channel electrochemical sensing system was developed, combining electrochemical analysis techniques, microelectronic design, and nanomaterials. The architecture of an intelligent medical detection system and the production of an interactive interface for smartphones were accomplished. Initially, multi-channel selective electrodes were designed for creatinine, uric acid, and pH detection. The detection range was 10 nM to 100 μM for creatinine, 100 μM to 500 μM for uric acid, and 4 to 9 for pH. Furthermore, interference experiments were also conducted to verify the specificity of the sensors. Subsequently, multi-channel double-sided sensing electrodes and function-integrated hardware were designed, with the standard equations of target analytes stored in the system’s read-only memory. Moreover, a WeChat mini-program platform was developed for smartphone interaction, enabling off-body detection and real-time display of target analytes through smartphones. Finally, the aforementioned electrochemical detection electrodes were integrated with the smart sensing system and wirelessly interfaced with smartphones, allowing for intelligent real-time detection in primary healthcare and individual household settings. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

11 pages, 3081 KiB  
Article
Ratiometric Electrochemical Detection of Interleukin-6 Using Electropolymerized Methylene Blue and a Multi-Walled Carbon-Nanotube-Modified Screen-Printed Carbon Electrode
by Zhuo Liu, Fengyu Liu, Chaofan Wang, Hongjuan Li, Yongqian Xu and Shiguo Sun
Biosensors 2024, 14(10), 457; https://doi.org/10.3390/bios14100457 - 25 Sep 2024
Viewed by 1318
Abstract
Herein, we report a ratio-based electrochemical biosensor for the detection of interleukin-6 (IL-6). We electropolymerized methylene blue (MB) on the surface of screen-printed carbon electrodes; introduced an internal reference signal probe; modified the carboxylate multi-walled carbon nanotubes on the electrode surface to increase [...] Read more.
Herein, we report a ratio-based electrochemical biosensor for the detection of interleukin-6 (IL-6). We electropolymerized methylene blue (MB) on the surface of screen-printed carbon electrodes; introduced an internal reference signal probe; modified the carboxylate multi-walled carbon nanotubes on the electrode surface to increase the electrochemically active area; and finally linked the amino-modified IL-6 aptamer to the electrode surface through the Schiff base reaction, with bovine serum albumin (BSA) added to mask non-specific adsorption. After adding IL-6 to the samples, the signal of IMB remained almost unchanged, while the signal of I[Fe(CN)6]3−/4− decreased with increasing IL-6 concentration. Thus, a novel ratiometric electrochemical sensor with a linear range of 0.001~1000.0 ng/mL and a low detection limit of 0.54 pg/mL was successfully developed. The sensor had high repeatability, stability, sensitivity, and practicability. It provides a new method for constructing proportional electrochemical sensors and detecting IL-6. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 16146 KiB  
Review
Research Progress of Electrochemical Biosensors for Diseases Detection in China: A Review
by Haoran Cui, Xianglin Xin, Jing Su and Shiping Song
Biosensors 2025, 15(4), 231; https://doi.org/10.3390/bios15040231 - 5 Apr 2025
Viewed by 535
Abstract
Disease diagnosis is not only related to individual health but is also a crucial part of public health prevention. Electrochemical biosensors combine the high sensitivity of electrochemical methods with the inherent high selectivity of biological components, offering advantages such as excellent sensitivity, fast [...] Read more.
Disease diagnosis is not only related to individual health but is also a crucial part of public health prevention. Electrochemical biosensors combine the high sensitivity of electrochemical methods with the inherent high selectivity of biological components, offering advantages such as excellent sensitivity, fast response time, and low cost. The generated electrical signals have a linear relationship with the target analyte, allowing for identification and concentration detection. This has become a very attractive technology. This review offers a summary of recent advancements in electrochemical biosensor research for disease diagnosis in China. It systematically categorizes and summarizes biosensors developed in China for detecting cancer, infectious diseases, inflammation, and neurodegenerative disorders. Additionally, the review delves into the fundamental working principles, classifications, materials, preparation techniques, and other critical aspects of electrochemical biosensors. Finally, it addresses the key challenges impeding the advancement of electrochemical biosensors in China and examines promising future directions for their development. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

16 pages, 5660 KiB  
Review
Recent Developments (After 2020) in Flow Cytometry Worldwide and Within China
by Xinyue Du, Xiao Chen, Chiyuan Gao, Junbo Wang, Xiaoye Huo and Jian Chen
Biosensors 2025, 15(3), 156; https://doi.org/10.3390/bios15030156 - 2 Mar 2025
Viewed by 1237
Abstract
This article reviews recent developments in flow cytometry that have a significant impact on both scientific research and clinical applications in the field of single-cell analysis, from the perspective of instrumentation and technical advances. As a starting point, this article investigates the latest [...] Read more.
This article reviews recent developments in flow cytometry that have a significant impact on both scientific research and clinical applications in the field of single-cell analysis, from the perspective of instrumentation and technical advances. As a starting point, this article investigates the latest state-of-the-art instruments of flow cytometry including different types in spectral, mass, imaging, nano, and label-free flow cytometry. A comparative analysis of the parameters and features of instruments from different companies elucidates the development trends in flow cytometry instrumentation. Following this, this article delves into cutting-edge technical advancements in flow cytometry. It summarizes the current research status of flow cytometry not only globally but also within China, highlighting emerging trends and innovations in the field. Finally, this article outlines future directions for the development of flow cytometry, indicating that each type of flow cytometry will follow its own trajectory toward achieving enhanced performance and broader applications in diverse fields. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

25 pages, 5995 KiB  
Review
Novel Lead Halide Perovskite and Copper Iodide Materials for Fluorescence Sensing of Oxygen
by Jingwen Jin, Yaning Huang, Chen Zhang, Li Zhang, Shaoxing Jiang and Xi Chen
Biosensors 2025, 15(3), 132; https://doi.org/10.3390/bios15030132 - 21 Feb 2025
Viewed by 861
Abstract
The most commonly used optical oxygen sensing materials are phosphorescent molecules and functionalized nanocrystals. Many exploration studies on oxygen sensing have been carried out using the fluorescence or phosphorescence of semiconductor nanomaterials. Lead halide perovskite nanocrystals, a new type of ionic semiconductor, have [...] Read more.
The most commonly used optical oxygen sensing materials are phosphorescent molecules and functionalized nanocrystals. Many exploration studies on oxygen sensing have been carried out using the fluorescence or phosphorescence of semiconductor nanomaterials. Lead halide perovskite nanocrystals, a new type of ionic semiconductor, have excellent optical properties, making them suitable for use in optoelectronic devices. They also show promising applications in analytical sensing and biological imaging, especially manganese-doped perovskite nanocrystals for optical oxygen sensing. As a class of materials with diverse sources, copper iodide cluster semiconductors have rich structural and excellent luminescent properties, and have attracted attention in recent years. These materials have adjustable optical properties and sensitive stimulus response properties, showing great potential for optical sensing applications. This review paper provides a brief introduction to traditional oxygen sensing using organic molecules and introduces research on oxygen sensing using novel luminescent semiconductor materials, perovskite metal halides and copper iodide hybrid materials in recent years. It focuses on the mechanism and application of these materials for oxygen sensing and evaluates the future development direction of these materials for oxygen sensing. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

26 pages, 9767 KiB  
Review
Research Progress in Small-Molecule Detection Using Aptamer-Based SERS Techniques
by Li Zheng, Qingdan Ye, Mengmeng Wang, Fan Sun, Qiang Chen, Xiaoping Yu, Yufeng Wang and Pei Liang
Biosensors 2025, 15(1), 29; https://doi.org/10.3390/bios15010029 - 8 Jan 2025
Cited by 1 | Viewed by 1335
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical [...] Read more.
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the “fingerprint information” of the measured molecules. It has been widely applied in qualitative and trace analysis across various fields, including food safety, environmental monitoring, and biomedical applications. Small molecules, such as toxins, antibiotics, and pesticides, have significant biological effects and are harmful to both human health and the environment. In this paper, we mainly introduced the application and the research progress of SERS detection with aptamers (aptamer-based SERS techniques) in the field of small-molecule detection, particularly in the analysis of pesticide (animal) residues, antibiotics, and toxins. And the progress and prospect of combining the two methods in detection were reviewed. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

26 pages, 4155 KiB  
Review
Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis
by Yin Shen, Shichao Zhao, Fei Chen, Yanfei Lv and Li Fu
Biosensors 2024, 14(10), 496; https://doi.org/10.3390/bios14100496 - 12 Oct 2024
Cited by 4 | Viewed by 1631
Abstract
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental [...] Read more.
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental principles of electrochemical immunosensors and explore innovative approaches to improve their performance. These include the utilization of nanomaterials such as metal nanoparticles, carbon nanotubes, and graphene for signal amplification; enzyme-based amplification strategies; and the design of three-dimensional electrode architectures. The integration of these sensors into microfluidic and lab-on-a-chip devices has enabled miniaturization and automation, while screen-printed and disposable electrodes have facilitated on-site testing. We analyze the challenges faced in real sample analysis, including matrix effects and the stability of biological recognition elements. Emerging trends such as the application of artificial intelligence for data interpretation and the development of aptamer-based sensors are highlighted. The review also considers the potential for commercialization and the hurdles that must be overcome for widespread adoption. Future research directions are identified, including the development of multi-analyte detection platforms and the integration of sensors with emerging technologies like the Internet of Things. This comprehensive overview provides insights into the current state of the field and outlines promising avenues for future development in organophosphate pesticide detection. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

Back to TopTop