polymers-logo

Journal Browser

Journal Browser

(Bio)Polymer-Based Composite Materials: Advancements and New Trends in Biomedical Engineering and Research

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 385

Special Issue Editor


E-Mail Website
Guest Editor
1. Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain
2. Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
3. Institute of Environmental Engineering, Chemistry and Applied Biotechnology (INGEBIO-UCA), Faculty of Chemistry and Engineering, Pontifical Catholic University of Argentina (UCA—Campus Rosario), Montevideo 3371, Rosario S2002, Santa Fe, Argentina
Interests: development of technologies for sustainable management of organic waste; biotechnological and ecotechnological approaches for agro-industrial wastewater treatment; sustainable water resources management
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The fields of polymer science and engineering have evolved significantly over the last few decades. With the continuous improvement in modern polymerization techniques and advanced characterization methods, access to a wide range of polymeric materials with unique properties for specific applications has become more realistic. The field of multifunctional polymeric biomaterials is evolving as an emerging research area that aims to control complex and tunable chemical, mechanical, and biological functions in vitro and in vivo. Natural and synthetic polymers and hydrogels, as well as composite biomaterials, are being developed and processed to the desired form to carry and release bioactive molecules and drugs, to elicit specific biological responses, to regenerate tissues, or to develop 3D-printed organs. Recent efforts have focused on developing advanced materials endowed with electrical, magnetic, mechanical, or electronic features to stimulate specific biological functions in human organs. Considering the emerging research in the field, contributions addressing topics related to the design, synthesis, characterization, modification, and processing of multifunctional polymeric and composite biomaterials for use in different biomedical applications, including but not limited to drug delivery, tissue engineering, medical implants, and devices and biosensors, are very welcome.

Dr. Leonardo Martín Pérez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers for biomedical applications (synthesis, characterization)
  • multifunctional polymeric or composite biomaterials
  • modification strategies to develop multifunctional biomaterials
  • polymeric biomaterials for tissue engineering applications
  • polymers in nanomedicine
  • multifunctional polymers for controlled and/or targeted drug delivery
  • nano-scale polymer assemblies for biomedical applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4896 KiB  
Article
Urea–Formaldehyde Strengthened by Polyvinyl Alcohol: Impact on Mulch Film Properties and Cucumber Cultivation
by Tingting Shen, Yongjie Ma and Xueyan Zhang
Polymers 2025, 17(9), 1277; https://doi.org/10.3390/polym17091277 - 7 May 2025
Viewed by 139
Abstract
To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea–formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a [...] Read more.
To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea–formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a modifier to induce beneficial physicochemical structural changes in PVA-modified urea–formaldehyde (PUF) resins. Characterization of these resins was conducted using Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Preparation of the biodegradable mulch was conducted using Xuan paper waste residue (XP) as an enhancer, with PUF as the auxiliary agent. The resulting film (PUF-XP) was examined for differences in thickness, morphological characterization, and rate of weight loss, and the effects of different covering films on cucumber growth, root development, soil temperature, and weed control were evaluated. Characterization reveals that when the PVA content was 4% (W4UF), the film had the lowest free formaldehyde content (0.26%) and highest elongation at break (5.70%). In addition, W4UF could easily undergo thermal degradation at 278.4 °C and possessed a close-knit, three-dimensional structural network. W4UF was then mixed with paper powder and water in various proportions to produce three mulch films (BioT1, BioT2, and BioT3) that demonstrated excellent water retention and heat preservation and inhibited weed growth by 68.8–96.8%. Compared to no mulching (NM), BioT1 increased both the specific root length and root density, as well as improved the plant height, stem diameter, and total biomass of the cucumbers by 43.5%, 34.1%, and 33.9%, respectively. Therefore, a mass ratio of paper powder, water, and W4UF of 1:30:2 produced a biodegradable mulch film that could be used as an alternative to LDPE, mitigating the environmental pollution rendered by synthetic plastic mulch films and offering the potential for a sustainable agricultural application. Full article
Show Figures

Graphical abstract

Back to TopTop