Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = desorbent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 4663 KiB  
Article
Hetero-Disubstituted Sugarcane Bagasse as an Efficient Bioadsorbent for Cationic Dyes
by Megg Madonyk Cota Elias Carvalho, Liliane Catone Soares, Oscar Fernando Herrera Adarme, Gabriel Max Dias Ferreira, Ranylson Marcello Leal Savedra, Melissa Fabíola Siqueira, Eduardo Ribeiro de Azevedo and Leandro Vinícius Alves Gurgel
Molecules 2025, 30(15), 3163; https://doi.org/10.3390/molecules30153163 - 29 Jul 2025
Viewed by 243
Abstract
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption [...] Read more.
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption of the dyes in mono- and bicomponent systems was investigated as a function of HDSB dosage, pH, contact time, and initial dye concentration. Maximum adsorption capacities for AO and ST on HDSB, at pH 7.0, were 1.37 mmol g−1 (367.7 mg g−1) and 0.93 mmol g−1 (293.3 mg g−1), respectively. In the bicomponent system, ST was preferentially adsorbed on HDSB, revealing an antagonistic effect of ST on AO adsorption. Changes in the enthalpy of the adsorption as a function of HDSB surface coverage were determined by isothermal titration calorimetry, with ΔadsH° values for AO and ST equal to −22.1 ± 0.3 kJ mol−1 and −23.44 ± 0.01 kJ mol−1, respectively. Under standard conditions, the adsorption of the dyes on HDSB was exergonic and enthalpically driven. Desorption removed ~50% of the adsorbed dyes, and subsequent re-adsorption showed that HDSB could be reused, with non-desorbed dye molecules acting as new binding sites. The interaction between AO and ST with HDSB was elucidated by molecular dynamics simulations with atomistic modeling. Full article
Show Figures

Graphical abstract

13 pages, 4712 KiB  
Article
Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
by Lifeng Chen, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei and Di Wu
Toxics 2025, 13(8), 624; https://doi.org/10.3390/toxics13080624 - 25 Jul 2025
Viewed by 278
Abstract
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when [...] Read more.
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when it is used to combine with radionuclides. In this paper, we characterized a coconut shell activated carbon (CSAC) and a coal-based activated carbon (CBAC) for the adsorption of P204 and then evaluated their adsorption performance through batch and column experiments. The results found that, except for the main carbon matrix, CSAC and CBAC carried rich oxygen-containing functional groups and a small amount of inorganic substances. Both adsorbents had porous structures with pore diameters less than 4 nm. CSAC and CBAC showed good removal performance for P204 under low pH conditions, with removal efficiencies significantly higher than those of commonly used adsorption resins (XAD-4 and IRA900). The adsorption kinetics of P204 conformed to the pseudo-second-order kinetic model, and the adsorption isotherms conformed to the Langmuir model, indicating a monolayer chemical reaction mechanism. Both adsorbents exhibited strong anti-interference capabilities; their adsorption performance for P204 did not change greatly with the ambient temperature or the concentrations of common interfering ions. Column experiments demonstrated that CSAC could effectively fix dissolved P204 with a removal efficiency exceeding 90%. The fixed P204 could be desorbed with acetone. The findings provide an effective method for the recovery of P204 and the regeneration of spent activated carbon, which shows promise for practical applications in the future. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

16 pages, 4597 KiB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Viewed by 201
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

15 pages, 1966 KiB  
Article
Lithium Adsorption Using Graphene Oxide: Modeling, Regeneration, and Mechanistic Insights
by Abdulrahman Abu-Nada, Ahmed Abdala, Gordon McKay and Shifa Zuhara
Materials 2025, 18(14), 3211; https://doi.org/10.3390/ma18143211 - 8 Jul 2025
Viewed by 299
Abstract
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional [...] Read more.
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional groups (C–O–C, C=O), which act as active adsorption sites. BET analysis revealed a surface area of 232 m2/g and a pore volume of 0.4 cm3/g, indicating its high porosity. Lithium adsorption was tested using synthetic Li-doped solutions under controlled conditions. Kinetics and equilibrium studies demonstrated that the process followed the pseudo-second-order model and the Redlich–Peterson isotherm, achieving an optimum lithium adsorption capacity of 179 mg/g. The adsorption efficiency was influenced by factors such as pH and salinity. Regeneration experiments showed that HNO3 was the most effective desorbing agent, enabling GO to be reused multiple times with a moderate loss of adsorption capacity. These findings highlight GO’s exceptional efficiency in lithium removal and its suitability for wastewater treatment applications. Its recyclability and reusability further support a circular economy, making GO a highly promising material for sustainable lithium recovery and broader environmental remediation efforts. Full article
(This article belongs to the Special Issue Development and Application of Novel Membranes (2nd Edition))
Show Figures

Graphical abstract

22 pages, 1506 KiB  
Article
Potential of Sugarcane Biomass-Derived Biochars for the Controlled Release of Sulfentrazone in Soil Solutions
by Marcos R. F. da Silva, Maria Eliana L. R. Queiroz, Antônio A. Neves, Antônio A. da Silva, André F. de Oliveira, Liany D. L. Miranda, Ricardo A. R. Souza, Alessandra A. Z. Rodrigues and Janilson G. da Rocha
Processes 2025, 13(7), 1965; https://doi.org/10.3390/pr13071965 - 21 Jun 2025
Viewed by 1019
Abstract
Sugarcane bagasse-derived biochars, produced at 350 °C (B350) and 600 °C (B600), were evaluated for their capacity to modify the sorption behavior of the herbicide sulfentrazone (SFZ) in Red–Yellow Latosol (RYL) and to serve as carriers for its controlled release. Batch sorption experiments [...] Read more.
Sugarcane bagasse-derived biochars, produced at 350 °C (B350) and 600 °C (B600), were evaluated for their capacity to modify the sorption behavior of the herbicide sulfentrazone (SFZ) in Red–Yellow Latosol (RYL) and to serve as carriers for its controlled release. Batch sorption experiments indicated that SFZ exhibits low affinity for soil and undergoes sorption–desorption hysteresis. Adding B350 biochar (up to 0.30%) did not significantly affect the herbicide sorption, whereas B600 enhanced its retention. Sequential desorption assays were conducted by incorporating SFZ either directly into the soil or into the biochars, which were subsequently blended into the soil (at 0.15% w/w). The SFZ desorbed more rapidly from the soil than from the biochars, suggesting that the pyrogenic material has potential for modulating herbicide release. Phytotoxicity assessments using Sorghum bicolor confirmed that only SFZ incorporated into B350 (at 0.15% w/w) retained herbicidal efficacy comparable to its direct application in soil. These findings underscore the potential of B350 biochar as a controlled-release carrier for SFZ without compromising its weed control effectiveness. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Graphical abstract

16 pages, 4129 KiB  
Article
Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems
by Zhan Yang, Qi Zhang, Changyi Liu, Haodong Zhang and Zhe Qin
Sustainability 2025, 17(12), 5301; https://doi.org/10.3390/su17125301 - 8 Jun 2025
Viewed by 500
Abstract
The scarcity of phosphorus resources and the excessive accumulation of phosphates in aquatic environments pose significant threats to ecological systems and human health, while traditional treatment methods often fail to achieve effective resource recovery and reuse. This study aims to develop an efficient [...] Read more.
The scarcity of phosphorus resources and the excessive accumulation of phosphates in aquatic environments pose significant threats to ecological systems and human health, while traditional treatment methods often fail to achieve effective resource recovery and reuse. This study aims to develop an efficient method for phosphate removal and resource recycling through the modification of reed straw (MRS) by introducing amine groups. Key operational parameters such as packed bed height, flow velocity, and initial solute concentration were systematically investigated to optimize MRS’s adsorption efficiency. Experimental results demonstrated that under optimized conditions, MRS achieved a maximum phosphate adsorption capacity of 8.337 mg/g and maintained over 80% efficiency after nine adsorption–desorption cycles. Utilizing the desorbed solution as a nutrient solution significantly enhanced maize seedling growth, increasing stem height by 23.8%, fresh weight by 51.3%, and phosphorus content by 80.7%. These findings highlight MRS’s potential, not only as an effective phosphate adsorbent, but also as a means of successful phosphorus resource recovery and recycling, indicating promising applications in environmental remediation and resource management. Full article
Show Figures

Graphical abstract

19 pages, 1751 KiB  
Article
Purification of Flavonoids from an Aqueous Cocoa (Theobroma cocoa L.) Extract Using Macroporous Adsorption Resins
by Nicole Beeler, Tilo Hühn, Sascha Rohn and Renato Colombi
Molecules 2025, 30(11), 2336; https://doi.org/10.3390/molecules30112336 - 27 May 2025
Viewed by 459
Abstract
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) [...] Read more.
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) were evaluated for their adsorption and desorption properties for the enrichment of flavonoids from an aqueous cocoa (Theobroma cacao L.) extract. The influence of adsorption and desorption temperatures and the concentration of the desorption solvent (a hydroalcoholic solution) were investigated by static adsorption and desorption methods. The results of the resin comparison showed that the adsorbent XAD-7HP had the best adsorption characteristics, with an adsorption capacity of 39.8 mg ECE/g. XAD-7HP was found to be the most suitable adsorbent, and 70% ethanol was the best desorbing solvent, based on static experiments. In addition, the optimal conditions for the adsorption of flavonoids were obtained at a temperature of 30 °C, where equilibrium was reached after 80 min. The static adsorption process was well-described by a pseudo-second-order kinetics model, while the adsorption isotherm data were fitted well by the Freundlich isotherm model. Further dynamic adsorption and desorption characteristics were evaluated on a packed glass column, and it was shown that XAD-7HP could enrich the flavanol content by 5.03-fold, with a dry matter content of 456.05 mg/mL (as estimated by the degree of DP1–DP7 procyanidin polymers using ultra-pressure liquid chromatography). Full article
Show Figures

Graphical abstract

18 pages, 8652 KiB  
Article
Removal of Azo Dyes from Water on a Large Scale Using a Low-Cost and Eco-Friendly Adsorbent
by Ma. Guadalupe Aranda-Figueroa, Rosenberg J. Romero, Mario Rodríguez, Adriana Rodríguez-Torres, Alexis Rodríguez, Gloria Ivette Bolio-López, Dulce María Arias-Ataide, Álvaro Torres-Islas and Maria Guadalupe Valladares-Cisneros
Sustainability 2025, 17(11), 4816; https://doi.org/10.3390/su17114816 - 23 May 2025
Viewed by 825
Abstract
The use of natural materials as adsorbents and the environmentally friendly removal of pollutants and azo dyes from water are important topics today. The goal of this research work was to assess the utility of Luffa cylindrica (L. cylindrica) as a [...] Read more.
The use of natural materials as adsorbents and the environmentally friendly removal of pollutants and azo dyes from water are important topics today. The goal of this research work was to assess the utility of Luffa cylindrica (L. cylindrica) as a natural and non-conventional adsorbent for azo dyes in water on a large scale (2 L). An azo dye (AD) at a concentration of 0.250 g/L was removed from the solution at a rate of 63.07% using 10.0 g/L doses of L. cylindrica, and the maximum adsorption capacity of L. cylindrica was 25.25 mg/g. L. cylindrica desorbed 95.8% of the AD in 0.1 M NaOH. Thermodynamically, the adsorption occurs through pseudo-second-order kinetics and the behaviors adjust better to the Langmuir isotherm. The analysis of variance (p-value < 0.05) shows that the contact time and the concentration of AD significantly influence the adsorption capacity and removal of AD. Few studies have examined the environmentally friendly removal of azo dyes from water using a natural non-conventional adsorbent. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Figure 1

22 pages, 1299 KiB  
Article
Combined Effects of Biochar and Rhamnolipid on Phenanthrene Biodegradation in Agricultural Soil: Bioavailability and Microbial Community Dynamics
by Meng Zhang, Yuke Kang, Jie Ran, Jichao Song, Zhongyi Wang, Jiawang Li and Liyuan Chen
Agriculture 2025, 15(11), 1116; https://doi.org/10.3390/agriculture15111116 - 22 May 2025
Viewed by 488
Abstract
The present study investigated the combined effects of wheat straw biochar (BC) and biosurfactant rhamnolipid (RL) on the biodegradation kinetics of phenanthrene by indigenous microorganisms in agricultural soil, focusing on dynamic responses of both bioavailability and community structure. The combined treatment (BC + [...] Read more.
The present study investigated the combined effects of wheat straw biochar (BC) and biosurfactant rhamnolipid (RL) on the biodegradation kinetics of phenanthrene by indigenous microorganisms in agricultural soil, focusing on dynamic responses of both bioavailability and community structure. The combined treatment (BC + RL, 60.63%) significantly enhanced phenanthrene biodegradation compared to RL alone (54.74%) and the control (45.98%), while BC amendment alone (42.55%) notably inhibited biodegradation by reducing phenanthrene bioavailability despite increasing bacterial abundance, enzyme activity, and community diversity. Both RL and BC + RL treatments promoted bioavailability by transforming phenanthrene from tightly bound (very slowly desorbing fraction, Fvslow) to readily bioavailable fractions (rapidly and slowly desorbing fractions, Frapid and Fslow), as revealed by sequential Tenax extraction. The RL-mediated increase in phenanthrene bioavailability to microbes by 11.93–17.90% via solubilization greatly enriched PAH-degrading bacterial genera and the nidA gene, contributing to enhanced biodegradation. The BC + RL combination outperformed the single application of RL in improving phenanthrene biodegradation due to their synergy in stimulating microbial population and activity (e.g., Bacillus, Massilia, Sphingomonas, and polyphenol oxidase) as a growth stimulus. These findings demonstrate that BC and RL co-application enhances PAH removal through improved bioavailability and optimized microbial communities, offering a promising strategy for soil bioremediation to ensure agricultural product safety. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

18 pages, 3283 KiB  
Article
Ru-Doped Induced Phase Engineering of MoS2 for Boosting Electrocatalytic Hydrogen Evolution
by Renjie Li, Meng Yu, Junjie Li, Ning Wang, Xiaolong Yang and Yanhua Peng
Nanomaterials 2025, 15(10), 777; https://doi.org/10.3390/nano15100777 - 21 May 2025
Viewed by 480
Abstract
Electrochemical hydrogen evolution reaction (HER) holds great potential as a sustainable strategy for green hydrogen production. However, it still faces significant challenges due to the lack of highly efficient electrocatalysts. Herein, a synergistic approach by incorporating Ru atoms into MoS2 nanosheets to [...] Read more.
Electrochemical hydrogen evolution reaction (HER) holds great potential as a sustainable strategy for green hydrogen production. However, it still faces significant challenges due to the lack of highly efficient electrocatalysts. Herein, a synergistic approach by incorporating Ru atoms into MoS2 nanosheets to optimize the structure and conductivity has been proposed, which could improve the HER performance of MoS2 under alkaline conditions. Combining theoretical calculations and structural characterizations, it is demonstrated that the Ru atom introduction leads to the localized distortions of MoS2, generating additional active sites for H* adsorption, and reduces the free energy to adsorb and desorb hydrogen. Furthermore, the Ru introduction makes partial transformation from the 2H phase to the 1T phase in MoS2, which results in the change of the electronic structure and further enhances the electrical conductivity. As a result, the Ru-doped MoS2 electrocatalysts exhibit the high HER activities with the low overpotentials of 61 mV and 79 mV at 10 mA cm−2 in 1.0 M KOH and alkaline seawater, respectively. This work provides a novel design strategy for enhancing HER activity through the synergistic modulation of structural and electronic properties, offering valuable insights for the development of efficient electrocatalysts for hydrogen evolution. Full article
(This article belongs to the Special Issue Nanoelectrocatalysts for Energy and Environmental Applications)
Show Figures

Figure 1

16 pages, 1982 KiB  
Article
Selective Catalytic Reduction of NO with H2 over Pt/Pd-Containing Catalysts on Silica-Based Supports
by Magdalena Jabłońska, Adrián Osorio Hernández, Jürgen Dornseiffer, Jacek Grams, Anqi Guo, Ulrich Simon and Roger Gläser
Catalysts 2025, 15(5), 483; https://doi.org/10.3390/catal15050483 - 15 May 2025
Viewed by 627
Abstract
Platinum- and/or palladium-containing silica-based supports were applied for the selective catalytic reduction of NOx with hydrogen (H2-SCR-DeNOx). To obtain enhanced activity and N2 selectivity below 150 °C, we varied the type and loading of noble metals (Pt [...] Read more.
Platinum- and/or palladium-containing silica-based supports were applied for the selective catalytic reduction of NOx with hydrogen (H2-SCR-DeNOx). To obtain enhanced activity and N2 selectivity below 150 °C, we varied the type and loading of noble metals (Pt and Pd both individually and paired, 0.1–1.0 wt.-%), silica-containing supports (ZrO2/SiO2, ZrO2/SiO2/Al2O3, Al2O3/SiO2/TiO2), as well as the H2 concentration in the feed (2000–4000 ppm). All of these contributed to enhancing N2 selectivity during H2-SCR-DeNOx over the (0.5 wt.-%)Pt/Pd/ZrO2/SiO2 catalyst in the presence of 10 vol.-% of O2. H2 was completely consumed at 150 °C. A comparison of the catalytic results obtained during H2-SCR-DeNOx,(H2-)NH3-SCR-DeNOx, as well as stop-flow H2-SCR-DeNOx and temperature-programmed studies, revealed that in the temperature range between 150 and 250 °C, the continuously coupled or overlaying mechanism of NO reduction by hydrogen and ammonia based on NH3 formation at lower temperatures, which is temporarily stored at the acid sites of the support and desorbed in this temperature range, could be postulated. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

21 pages, 5143 KiB  
Article
The Ammonia Adsorption and Desorption Behavior of Nafion
by Dominik Sachse, Andreas Glüsen, Klaus Wippermann, Martin Müller, Uwe Rau and Ralf Peters
Membranes 2025, 15(5), 149; https://doi.org/10.3390/membranes15050149 - 14 May 2025
Viewed by 704
Abstract
The electrochemical nitrogen reduction reaction (eNRR) for electrochemical ammonia (NH3) synthesis is considered a promising alternative to the energy-intensive and highly CO2-emitting Haber-Bosch process. In numerous experiments, the Nafion membrane has been used as an electrolyte or separator. However, [...] Read more.
The electrochemical nitrogen reduction reaction (eNRR) for electrochemical ammonia (NH3) synthesis is considered a promising alternative to the energy-intensive and highly CO2-emitting Haber-Bosch process. In numerous experiments, the Nafion membrane has been used as an electrolyte or separator. However, Nafion adsorbs and desorbs NH3, leading to erroneous measurements and making reproducibility extremely difficult. This study systematically investigates the interaction between NH3 and Nafion, underscoring the strength of the interaction between ammonium-ions (NH4+) and protons (H+). We found that minute quantities of synthesized NH3 are prone to persist within the membrane, albeit without affecting the ion conductivity and resistivity of Nafion. Consequently, the removal of NH3 from the membrane can occur under conditions where synthesis is not viable. The objective of this work is to heighten awareness regarding the interaction between NH3 and Nafion and contribute to the attainment of reliable and reproducible outcomes in eNRRs. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

15 pages, 1552 KiB  
Article
Recovery of Effective Acid from Waste Generated in the Anodic Oxidation Polishing Process
by Haiyang Li, Kangping Cui and Wenming Wu
Water 2025, 17(9), 1322; https://doi.org/10.3390/w17091322 - 28 Apr 2025
Viewed by 437
Abstract
The high treatment costs associated with wastewater and waste solutions produced by the anodic oxidation polishing section significantly limit industry development. To address this challenge, the present study investigates the characteristics of polishing wastewater and waste solutions, employing extraction and ion exchange combined [...] Read more.
The high treatment costs associated with wastewater and waste solutions produced by the anodic oxidation polishing section significantly limit industry development. To address this challenge, the present study investigates the characteristics of polishing wastewater and waste solutions, employing extraction and ion exchange combined with diffusion dialysis to recover effective acids. For waste tank solutions, single and dual solvent extraction experiments were conducted to determine the optimal extraction system. Electrostatic potential and interaction region indicator (IRI) analyses were performed to provide theoretical justification. Regarding cleaning wastewater, resin adsorption was applied to selectively remove aluminium ions from waste acid solutions, facilitating effective acid recovery. Static and dynamic adsorption–desorption experiments were initially performed to identify suitable resins. Subsequently, optimised parameters—including adsorption and desorption concentrations, volumes, and flow rates—were systematically established through conditional experiments, and diffusion dialysis was applied to recover acids from the desorbed solutions. The experimental results indicate that tributyl phosphate (TBP) emerged as the optimal single extractant, achieving an effective acid extraction rate of 88.67% under a solvent ratio of 4:1 at a room temperature of 28 °C. A binary solvent system, composed of TBP with 20% sulfonated kerosene, demonstrated superior engineering feasibility due to its reduced viscosity and satisfactory extraction rate of 82.19%. Moreover, adsorption–desorption tests confirmed that the resin-based method effectively recovered acids from cleaning wastewater. Specifically, under optimal operational conditions—downstream adsorption at 0.3–0.5 bed volumes (BV) and 1.0 BV/h, coupled with counter-current desorption at 2 BV and 2.4 BV/h—the acid recovery rate reached ≥95% while removing ≥90% of aluminium ions. Additionally, employing 20% sulfuric acid solution for desorption in diffusion dialysis enabled cyclic desorption. Consequently, this study successfully achieved acid reuse and substantially lowered wastewater treatment costs, representing a promising advancement for anodic oxidation polishing processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

24 pages, 2707 KiB  
Article
Recoverable Detection of Dichloromethane by MEMS Gas Sensor Based on Mo and Ni Co-Doped SnO2 Nanostructure
by Mengxue Xu, Yihong Zhong, Hongpeng Zhang, Yi Tao, Qingqing Shen, Shumin Zhang, Pingping Zhang, Xiaochun Hu, Xingqi Liu, Xuhui Sun and Zhenxing Cheng
Sensors 2025, 25(9), 2634; https://doi.org/10.3390/s25092634 - 22 Apr 2025
Cited by 2 | Viewed by 2341
Abstract
The challenging problem of chlorine “poisoning” SnO2 for poorly recoverable detection of dichloromethane has been solved in this work. The materials synthesized by Ni or/and Mo doping SnO2 were spread onto the micro-hotplates (<1 mm3) to fabricate the MEMS [...] Read more.
The challenging problem of chlorine “poisoning” SnO2 for poorly recoverable detection of dichloromethane has been solved in this work. The materials synthesized by Ni or/and Mo doping SnO2 were spread onto the micro-hotplates (<1 mm3) to fabricate the MEMS sensors with a low power consumption (<45 mW). The sensor based on Mo·Ni co-doped SnO2 is evidenced to have the best sensing performance of significant response and recoverability to dichloromethane between 0.07 and 100 ppm at the optimized temperature of 310 °C, in comparison with other sensors in this work and the literature. It can be attributed to a synergetic effect of Mo·Ni co-doping into SnO2 as being supported by characterization of geometrical and electronic structures. The sensing mechanism of dichloromethane on the material is investigated. In situ infrared spectroscopy (IR) peaks identify that the corresponding adsorbed species are too strong to desorb, although it has demonstrated a good recoverability of the material. A probable reason is the formation rates of the strongly adsorbed species are much slower than those of the weakly adsorbed species, which are difficult to form significant IR peaks but easy to desorb, thus enabling the material to recover. Theoretical analysis suggests that the response process is kinetically determined by molecular transport onto the surface due to the free convection from the concentration gradient during the redox reaction, and the output steady voltage thermodynamically follows the equation only formally identical to the Langmuir–Freundlich equation for physisorption but is newly derived from statistical mechanics. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

20 pages, 4018 KiB  
Article
Assessment of Beaded, Powdered and Coated Desiccants for Atmospheric Water Harvesting in Arid Environments
by Mona Rafat, Gokul Chandrasekaran, Shubham Shrivastava, Alireza Farsad, Jirapat Ananpattarachai, Abigail Qiu, Shahnawaz Sinha, Paul Westerhoff and Patrick Phelan
Environments 2025, 12(4), 110; https://doi.org/10.3390/environments12040110 - 5 Apr 2025
Viewed by 746
Abstract
Atmospheric water harvesting (AWH) is a promising alternative to address immediate water needs. Desiccant-based AWH could compete effectively with other commercially available AWH technologies. One of the primary challenges facing desiccant-based AWH is the energy required to desorb the captured water vapor from [...] Read more.
Atmospheric water harvesting (AWH) is a promising alternative to address immediate water needs. Desiccant-based AWH could compete effectively with other commercially available AWH technologies. One of the primary challenges facing desiccant-based AWH is the energy required to desorb the captured water vapor from the desiccant. This work presents a multi-faceted approach targeted explicitly at low-humidity and arid regions, aiming to overcome the limitations of the refrigerant-based AWH system. It includes assessing common desiccants (zeolite, activated alumina, and silica gel) and their forms (beads, powdered, or coated on a substrate). A bench-scale test rig was designed to evaluate different types and forms of desiccants for adsorption and desorption cycles and overall adsorption capacity (g/g), kinetic profiles, and rates. Experimental results indicate that beaded desiccants possess the highest adsorption capacity compared to powdered or coated forms. Furthermore, coated desiccants double the water uptake (1.12 vs. 0.56 g water/g desiccant) and improve adsorption/desorption cycling by 52% compared to beaded forms under the same conditions. Additionally, Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and dynamic vapor sorption (DVS) analysis show the pore geometry, morphology, and sorption capacity. The goal is to integrate these performance improvements and propose a more effective, energy-efficient desiccant-based AWH system. Full article
Show Figures

Figure 1

Back to TopTop