Ru-Doped Induced Phase Engineering of MoS2 for Boosting Electrocatalytic Hydrogen Evolution
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Synthesis of Electrocatalysts
2.4. Electrochemical Measurements
2.5. DFT Calculation
3. Results and Discussion
3.1. Theoretical Calculation of Phase Transition in Ru-Doped MoS2
3.2. Synthesis and Characterization
3.3. Electrocatalytic H2 Evolution and Electrochemical Performances
3.4. Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Zheng, Y.; Hu, Z.; Zheng, C.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S.Z.; Ling, T. Implication of intercontinental renewable electricity trade for energy system and emissions. Nat. Energy 2022, 7, 1144–1156. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Li, S.; Wang, Z.; Chen, H.; Yi, L.; Chen, X.; Yang, Q.; Xu, W.; Wang, A.; et al. Concerning the stability of seawater electrolysis: A corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 2023, 14, 4822. [Google Scholar] [CrossRef]
- Xie, S.; Tian, S.; Yang, J.; Wang, N.; Wan, Q.; Wang, M.; Liu, J.; Zhou, J.; Qi, P.; Sui, K.; et al. Synergizing Mg single atoms and Ru nanoclusters for boosting the ammonia borane hydrolysis to produce hydrogen. Angew. Chem. Int. Ed. Engl. 2025, 64, e202424316. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, M.; Wei, G.; Li, R.; Wang, N.; Yang, X.; Li, Z.; Zhang, Y.; Peng, Y. High visible light responsive ZnIn2S4/TiO2-x induced by oxygen defects to boost photocatalytic hydrogen evolution. Appl. Surf. Sci. 2023, 622, 156839. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, Y.; Du, X.; Qian, D.; Ding, S.; Xiao, C.; Wang, J.; Song, Z.; Jang, H.W. Modulating trinary-heterostructure of MoS2 via controllably carbon doping for enhanced electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 2023, 33, 2214085. [Google Scholar] [CrossRef]
- Park, S.; Kim, C.; Park, S.O.; Oh, N.K.; Kim, U.; Lee, J.; Seo, J.; Yang, Y.; Lim, H.Y.; Kwak, S.K.; et al. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 2020, 32, e2001889. [Google Scholar] [CrossRef]
- Lin, C.; Tang, H.; Xu, J.; Zhang, Q.; Chen, D.; Zuo, X.; Yang, Q.; Li, G. Enhancing electrocatalytic activity and stability of hydrogen evolution reaction via Mo2C-Ru dual active site catalyst with graphene interface engineering. Appl. Surf. Sci. 2025, 690, 162575. [Google Scholar] [CrossRef]
- Ke, Q.; Zhang, X.; Zang, W.; Eleshahawy, A.M.; Hu, Y.; He, Q.; Pennycook, S.J.; Cai, Y.; Wang, J. Strong charge transfer at 2H-1T phase boundary of MoS2 for superb high-performance energy storage. Small 2019, 15, e1900131. [Google Scholar] [CrossRef]
- Xu, X.; Tian, X.; Sun, B.; Liang, Z.; Cui, H.; Tian, J.; Shao, M. 1 T-phase molybdenum sulfide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Appl. Catal. B Environ. 2020, 272, 118984. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef]
- Zhang, L.; Han, L.; Liu, H.; Liu, X.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. Engl. 2017, 56, 13694–13698. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Pan, Y.; Zhu, J. Enhanced catalytic activity of noble metal@borophene/WS2 heterojunction for hydrogen evolution reaction. Appl. Surf. Sci. 2025, 680, 161321. [Google Scholar] [CrossRef]
- Li, J.; Cai, T.; Feng, Y.; Liu, X.; Wang, N.; Sun, Q. Subnanometric bimetallic Pt-Pd clusters in zeolites for efficient hydrogen production and selective tandem hydrogenation of nitroarenes. Sci. China Chem. 2024, 67, 2911–2917. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Metal sulfide photocatalysts for hydrogen generation: A review of recent advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Y.; Xu, H.; Li, J.; Gao, M.; Yang, X. Recent advances in doping strategies to improve electrocatalytic hydrogen evolution performance of molybdenum disulfide. ACS Catal. 2024, 14, 4601–4637. [Google Scholar] [CrossRef]
- Liu, G.; Robertson, A.W.; Li, M.M.-J.; Kuo, W.C.H.; Darby, M.T.; Muhieddine, M.H.; Lin, Y.-C.; Suenaga, K.; Stamatakis, M.; Warner, J.H.; et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816. [Google Scholar] [CrossRef]
- Chen, K.; Deng, J.; Ding, X.; Sun, J.; Yang, S.; Liu, J.Z. Ferromagnetism of 1T’-MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width. J. Am. Chem. Soc. 2018, 140, 16206–16212. [Google Scholar] [CrossRef]
- Shao, Y.; Fu, J.-H.; Cao, Z.; Song, K.; Sun, R.; Wan, Y.; Shamim, A.; Cavallo, L.; Han, Y.; Kaner, R.B.; et al. 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-ion asymmetric micro-supercapacitors. ACS Nano 2020, 14, 7308–7318. [Google Scholar] [CrossRef]
- Zhang, W.C.; Liao, X.B.; Pan, X.L.; Yan, M.Y.; Li, Y.X.; Tian, X.C.; Zhao, Y.; Xu, L.; Mai, L.Q. Superior hydrogen evolution reaction performance in 2H-MoS2 to that of 1T phase. Small 2019, 15, e1900964. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, D.-E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016, 6, 4953–4961. [Google Scholar] [CrossRef]
- Pattengale, B.; Huang, Y.; Yan, X.; Yang, S.; Younan, S.; Hu, W.; Li, Z.; Lee, S.; Pan, X.; Gu, J.; et al. Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nat. Commun. 2020, 11, 4114. [Google Scholar] [CrossRef] [PubMed]
- Shang, B.; Cui, X.; Jiao, L.; Qi, K.; Wang, Y.; Fan, J.; Yue, Y.; Wang, H.; Bao, Q.; Fan, X.; et al. Lattice-mismatch-induced ultrastable 1T-phase MoS2-Pd/Au for plasmon-enhanced hydrogen evolution. Nano Lett. 2019, 19, 2758–2764. [Google Scholar] [CrossRef]
- Luo, Z.; Li, J.; Li, Y.; Wu, D.; Zhang, L.; Ren, X.; He, C.; Zhang, Q.; Gu, M.; Sun, X. Band engineering induced conducting 2H-phase MoS2 by Pd-S-Re-sites modification for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103823. [Google Scholar] [CrossRef]
- He, H.; Li, X.; Huang, D.; Luan, J.; Liu, S.; Pang, W.K.; Sun, D.; Tang, Y.; Zhou, W.; He, L.; et al. Electron-injection-engineering induced phase transition toward stabilized 1T-MoS2 with extraordinary sodium storage performance. ACS Nano 2021, 15, 8896–8906. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, Y.; Du, X.; Li, D.; Ding, S.; Li, Y.; Xiao, C.; Song, Z. Electron injection induced phase transition of 2H to 1T MoS2 by cobalt and nickel substitutional doping. Chem. Eng. J. 2021, 411, 128567. [Google Scholar] [CrossRef]
- Santiago, A.R.P.; He, T.; Eraso, O.; Ahsan, M.A.; Nair, A.N.; Chava, V.S.N.; Zheng, T.; Pilla, S.; Fernandez-Delgado, O.; Du, A.; et al. Tailoring the interfacial interactions of van der Waals 1T-MoS2/C60 heterostructures for high-performance hydrogen evolution reaction electrocatalysis. J. Am. Chem. Soc. 2020, 142, 17923–17927. [Google Scholar] [CrossRef]
- Cai, L.; He, J.F.; Liu, Q.H.; Yao, T.; Chen, L.; Yan, W.S.; Hu, F.C.; Jiang, Y.; Zhao, Y.D.; Hu, T.D.; et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627. [Google Scholar] [CrossRef]
- Peng, Y.; Geng, M.; Yu, J.; Zhang, Y.; Tian, F.; Guo, Y.; Zhang, D.; Yang, X.; Li, Z.; Li, Z.; et al. Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 298, 120570. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, X.; Shao, G.; Xiang, H.; Si, S.; Li, X.; Hu, T.S.; Hong, G.; Dong, S.; Li, H.; et al. Interface effect of Ru-MoS2 nanoflowers on lignin substrate for enhanced hydrogen evolution activity. Energy Environ. Mater. 2021, 4, 117–125. [Google Scholar] [CrossRef]
- Xu, J.; Liu, T.; Li, J.; Li, B.; Liu, Y.; Zhang, B.; Xiong, D.; Amorim, I.; Li, W.; Liu, L. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827. [Google Scholar] [CrossRef]
- Zang, Y.; Niu, S.; Wu, Y.; Zheng, X.; Cai, J.; Ye, J.; Xie, Y.; Liu, Y.; Zhou, J.; Zhu, J.; et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Y.; Wu, M.; Feng, X.; Redfern, S.A.T.; Shang, Y.; Yong, X.; Feng, T.; Wu, K.; Liu, Z.; et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, e1800676. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, L.; Liu, H.; Cao, D. Polyaniline-coated Ru/Ni(OH)2 nanosheets for hydrogen evolution reaction over a wide pH range. J. Catal. 2019, 375, 249–256. [Google Scholar] [CrossRef]
- Mahmood, J.; Li, F.; Jung, S.-M.; Okyay, M.S.; Ahmad, I.; Kim, S.-J.; Park, N.; Jeong, H.Y.; Baek, J.-B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Wang, G.; Zhang, P.P.; Zhuang, X.D.; Chen, M.W.; Weidinger, I.M.; Feng, X.L. Ruthenium/nitrogen-doped carbon as an eletrocatalyst for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2017, 5, 25314. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Yang, L.; Cheng, D.; Cao, D. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653. [Google Scholar] [CrossRef]
- Wang, J.; Fang, W.; Hu, Y.; Zhang, Y.; Dang, J.; Wu, Y.; Chen, B.; Zhao, H.; Li, Z. Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B Environ. 2021, 298, 120490. [Google Scholar] [CrossRef]
- Dong, J.; Wu, Q.; Huang, C.; Yao, W.; Xu, Q. Cost effective Mo rich Mo2C electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 10028–10035. [Google Scholar] [CrossRef]
- Sarwar, S.; Nautiyal, A.; Cook, J.; Yuan, Y.; Li, J.; Uprety, S.; Shahbazian-Yassar, R.; Wang, R.; Park, M.; Bozack, M.J.; et al. Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction. Sci. China Mater. 2020, 63, 62–74. [Google Scholar] [CrossRef]
- Deller, B. Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 1996, 100, 6107–6110. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Du, X.; Zhao, Y.; Cheon, W.S.; Ding, S.; Xiao, C.; Song, Z.; Jang, H.W. Electron strain-driven phase transformation in transition-metal-co doped MoTe2 for electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 433, 133768. [Google Scholar] [CrossRef]
- Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C.; et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 2016, 55, 6702. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Pu, Z.; Liu, X.; Owusu, K.A.; Monestel, H.G.R.; Boakye, F.O.; Zhang, H.; Mu, S. Multifunctional Mo-N/C@MoS2 electrochatalysts for HER, OER, ORR, and Zn-Air batteries. Adv. Funct. Mater. 2017, 27, 1702300. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, S.; Li, C.; Deng, K.; Xue, H.; Li, X.; Wang, H.; Wang, L. Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 1376–1381. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, Y.; Gao, G.; Yan, X.; Chen, N.; Chen, J.; Soo, M.T.; Wood, B.; Yang, D.; Du, A.; et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4, 285–297. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, D.; Xu, H.; Zeng, X.; Wan, X.; Shui, J.; Xiang, Z.; Cao, D. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631. [Google Scholar] [CrossRef]
- Li, J.; Feng, Y.; Li, X.; Zhang, T.; Liu, X.; Wang, N.; Sun, Q. Sub-2 nm ternary metallic alloy encapsulated within montmorillonite interlayers for efficient hydrogen generation from ammonia borane hydrolysis. ACS Catal. 2024, 14, 14665–14677. [Google Scholar] [CrossRef]
- Yang, L.; Lv, Y.; Cao, D. Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 3926–3932. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.; Qiao, K.; Zheng, L.; Cao, X.; Cao, D. Amorphous cobalt iron borate grown on carbon paper as a precatalyst for water oxidation. ChemSusChem 2019, 12, 3524–3531. [Google Scholar] [CrossRef]
- Deng, J.; Li, H.; Xiao, J.; Tu, Y.; Deng, D.; Yang, H.; Tian, H.; Li, J.; Ren, P.; Bao, X. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601. [Google Scholar] [CrossRef]
- Geng, S.; Tian, F.; Li, M.; Liu, Y.; Sheng, J.; Yang, W.; Yu, Y.; Hou, Y. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816. [Google Scholar] [CrossRef]
- Liu, H.-J.; Zhang, S.; Chai, Y.-M.; Dong, B. Ligand modulation of active sites to promote cobalt-doped 1T-MoS2 electrocatalytic hydrogen evolution in alkaline media. Angew. Chem. Int. Ed. 2023, 62, e202313845. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, Z.; Liu, L.; Che, X.; Wang, J.; Zhu, Y.; Attfield, J.P.; Yang, M. Efficient and durable seawater electrolysis with a V2O3-protected catalyst. Sci. Adv. 2024, 10, 7012. [Google Scholar] [CrossRef]
- Xu, W.; Fan, G.; Zhu, S.; Liang, Y.; Cui, Z.; Li, Z.; Jiang, H.; Wu, S.; Cheng, F. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2107333. [Google Scholar] [CrossRef]
- Chang, P.; Wang, T.; Liu, Z.; Wang, X.; Zhang, J.; Xiao, H.; Guan, L.; Tao, J. Interface-assisted phase transition in MOF-Derived MoS2/CoS2 heterostructures for highly efficient Dual-pH hydrogen evolution and overall water splitting. J. Mater. Chem. A 2022, 10, 16115–16126. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, G.; Yang, T.; Chen, C.; Chang, Z.; Kong, F.; Tian, H.; Cui, X.; Hou, X.; Shi, J. Interfacial engineering of Co-Doped 1T-MoS2 coupled with V2C MXene for efficient electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138157. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, G.; Ke, X.; Chen, X.; Wang, Y.; Huang, G.; Dong, J.; Chu, S.; Sui, M. Direct synthesis of stable 1T-MoS2 doped with Ni single atoms for water splitting in alkaline media. Small 2022, 18, e2107238. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Z.; Zhang, Z.; Meng, X. Fe/p dual-doping NiMoO4 With hollow structure for efficient hydrazine oxidation-assisted hydrogen generation in alkaline seawater. Appl. Catal. B Environ. 2024, 347, 123805. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, Z.; Zhang, Y.; Thomas, T.; Du, H.; Huang, K.; Attfield, J.P.; Yang, M. An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy Environ. Sci. 2023, 16, 4584–4592. [Google Scholar] [CrossRef]
- Zhang, H.; Diao, J.; Ouyang, M.; Yadegari, H.; Mao, M.; Wang, M.; Henkelman, G.; Xie, F. Heterostructured core-shell Ni-Co@Fe-Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater. ACS Catal. 2023, 13, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Sun, M.; Zhang, S.; Zhang, X.; Yi, P.; Liu, J.; Huang, B.; Huang, M.; Zhang, L. Alleviating the work function of Vein-Like CoxP by Cr doping for enhanced seawater electrolysis. Adv. Funct. Mater. 2023, 33, 2214081. [Google Scholar] [CrossRef]
- Lu, J.; Chen, S.; Zhuo, Y.; Mao, X.; Liu, D.; Wang, Z. Greatly boosting seawater hydrogen evolution by surface amorphization and morphology engineering on MoO2/Ni3(PO4)2. Adv. Funct. Mater. 2023, 33, 2308191. [Google Scholar] [CrossRef]
- Gupta, J.; Das, D.; Borse, P.H.; Bulusu, S.V. In-situ Pd doped MoS2 nanosheets as HER electrocatalyst for enhanced electrocatalytic water splitting. Sustain. Energy Fuels 2024, 8, 1526–1539. [Google Scholar] [CrossRef]
- Wu, K.; Sun, K.; Liu, S.; Cheong, W.; Chen, Z.; Zhang, C.; Pan, Y.; Pan, Y.; Cheng, Y.; Zhuang, Z.; et al. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Yu, M.; Li, J.; Wang, N.; Yang, X.; Peng, Y. Ru-Doped Induced Phase Engineering of MoS2 for Boosting Electrocatalytic Hydrogen Evolution. Nanomaterials 2025, 15, 777. https://doi.org/10.3390/nano15100777
Li R, Yu M, Li J, Wang N, Yang X, Peng Y. Ru-Doped Induced Phase Engineering of MoS2 for Boosting Electrocatalytic Hydrogen Evolution. Nanomaterials. 2025; 15(10):777. https://doi.org/10.3390/nano15100777
Chicago/Turabian StyleLi, Renjie, Meng Yu, Junjie Li, Ning Wang, Xiaolong Yang, and Yanhua Peng. 2025. "Ru-Doped Induced Phase Engineering of MoS2 for Boosting Electrocatalytic Hydrogen Evolution" Nanomaterials 15, no. 10: 777. https://doi.org/10.3390/nano15100777
APA StyleLi, R., Yu, M., Li, J., Wang, N., Yang, X., & Peng, Y. (2025). Ru-Doped Induced Phase Engineering of MoS2 for Boosting Electrocatalytic Hydrogen Evolution. Nanomaterials, 15(10), 777. https://doi.org/10.3390/nano15100777