Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MRS Synthesis Method
2.3. Batch Adsorption Test Experimental Program
2.3.1. Static Adsorption and Desorption
2.3.2. Dynamic Adsorption and Desorption Experimental Program
2.4. Dynamic Adsorption Modeling
2.5. Capitalize on Resources Experimental Program
3. Results
3.1. Characterization of Modified Reed Straw
3.2. Batch Adsorption Test
3.3. Cyclic Regeneration
3.4. Dynamic Adsorption and Desorption
3.4.1. Dynamic Adsorption
3.4.2. Dynamic Desorption
3.5. Capitalize on Resources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suanon, F.; Sun, Q.; Li, M.; Cai, X.; Zhang, Y.; Yan, Y.; Yu, C.-P. Application of Nanoscale Zero Valent Iron and Iron Powder during Sludge Anaerobic Digestion: Impact on Methane Yield and Pharmaceutical and Personal Care Products Degradation. J. Hazard. Mater. 2017, 321, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ashley, K.; Cordell, D.; Mavinic, D. A Brief History of Phosphorus: From the Philosopher’s Stone to Nutrient Recovery and Reuse. Chemosphere 2011, 84, 737–746. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, X.; Wang, R.; Zhang, J. Phosphorus Recovery from Domestic Wastewater via Candida Tropicalis: Performance and Mechanism. J. Water Process Eng. 2024, 68, 106404. [Google Scholar] [CrossRef]
- Lamghari, K.; Taha, Y.; Ait-Khouia, Y.; Elghali, A.; Hakkou, R.; Benzaazoua, M. Sustainable Phosphate Mining: Enhancing Efficiency in Mining and Pre-Beneficiation Processes. J. Environ. Manag. 2024, 358, 120833. [Google Scholar] [CrossRef] [PubMed]
- Sheikholeslami, R.; Golkar, M.K.; Hall, J.W. Large Uncertainty in Global Estimates of Manure Phosphorus Runoff. Environ. Model. Softw. 2024, 177, 106067. [Google Scholar] [CrossRef]
- Ascott, M.; Gooddy, D.; Lapworth, D.; Stuart, M. Estimating the Leakage Contribution of Phosphate Dosed Drinking Water to Environmental Phosphorus Pollution at the National-Scale. Sci. Total Environ. 2016, 572, 1534–1542. [Google Scholar] [CrossRef] [PubMed]
- Brownlie, W.J.; Alexander, P.; Cordell, D.; Maslin, M.; Metson, G.S.; A Sutton, M.; Spears, B.M. National Phosphorus Planning for Food and Environmental Security. Curr. Opin. Biotechnol. 2024, 90, 103226. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Z.; Lu, Y.; Shan, S.; Zhuang, H.; Gong, C.; Cui, X.; Zhang, F.; Li, P. Facilitating Mitigation of Agricultural Non-Point Source Pollution and Improving Soil Nutrient Conditions: The Role of Low Temperature Co-Pyrolysis Biochar in Nitrogen and Phosphorus Distribution. Bioresour. Technol. 2024, 394, 130179. [Google Scholar] [CrossRef]
- GB 11893-1989; Water Quality-Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. China National Environmental Monitoring Centre: Beijing, China, 1989.
- Thomas, H.C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Nelson, J.H. Application of Gas Adsorption Kinetics, I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J. 1984, 45, 509–516. [Google Scholar] [CrossRef]
- Zhang, C.-Z.; Yuan, Y.; Li, T. Adsorption and Desorption of Heavy Metals from Water Using Aminoethyl Reduced Graphene Oxide. Environ. Eng. Sci. 2018, 35, 978–987. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, H.; Xue, F.; He, H.; Wang, S. Cellulose-Based Amphoteric Adsorbent for the Complete Removal of Low-Level Heavy Metal Ions via a Specialization and Cooperation Mechanism. Chem. Eng. J. 2020, 385, 123879. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, X.; Wang, X.; Gao, B.; Yue, Q.; Song, W.; Zhang, L.; Wang, H. FTIR, Raman, and XPS Analysis during Phosphate, Nitrate and Cr(VI) Removal by Amine Cross-Linking Biosorbent. J. Colloid Interface Sci. 2016, 468, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Gao, B.; Xu, X.; Wang, F.; Xue, N.; Sun, S.; Song, W.; Jia, R. Adsorption of Nitrate from Aqueous Solution by Magnetic Amine-Crosslinked Biopolymer Based Corn Stalk and Its Chemical Regeneration Property. J. Hazard. Mater. 2016, 304, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Mei, L.; Chen, G.; Liu, H.; Peng, C.; Ke, F.; Hou, R.; Wan, X.; Cai, H. Adsorption of Nitrate and Phosphate from Aqueous Solution Using Amine Cross-Linked Tea Wastes. Appl. Surf. Sci. 2019, 483, 114–122. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, W. Polyethylenimine-Functionalized Polyacrylonitrile Anion Exchange Fiber as a Novel Adsorbent for Rapid Removal of Nitrate from Wastewater. Chemosphere 2020, 258, 127373. [Google Scholar] [CrossRef]
- Katal, R.; Baei, M.S.; Rahmati, H.T.; Esfandian, H. Kinetic, Isotherm and Thermodynamic Study of Nitrate Adsorption from Aqueous Solution Using Modified Rice Husk. J. Ind. Eng. Chem. 2012, 18, 295–302. [Google Scholar] [CrossRef]
- Lagergreen, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Z. Chem. Ind. Kolloide 1907, 2, 15. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Q.; Gao, B.; Xu, X. Equilibrium and Kinetic Adsorption Study of the Adsorptive Removal of Cr(VI) Using Modified Wheat Residue. J. Colloid Interface Sci. 2010, 349, 256–264. [Google Scholar] [CrossRef]
- Hou, J.; Huang, L.; Yang, Z.; Zhao, Y.; Deng, C.; Chen, Y.; Li, X. Adsorption of Ammonium on Biochar Prepared from Giant Reed. Environ. Sci. Pollut. Res. 2016, 23, 19107–19115. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Liu, Y.; Duan, Y.; Zhang, W. Equilibrium and Kinetics Studies of Fluoride Ions Adsorption on CeO2/Al2O3 Composites Pretreated with Non-Thermal Plasma. Chem. Eng. J. 2011, 168, 665–671. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part II.—Liquids. J. Frankl. Inst. 1917, 184, 721. [Google Scholar] [CrossRef]
- Freundlich, H.; Neumann, W. Ober Die Adsorption von Farbstoffen. Z. Phys. Chem. 1909, 67U, 538–550. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Elanchezhiyan, S.; Preethi, J.; Meenakshi, S.; Park, C.M. Mechanistic Performance of Polyaniline-Substituted Hexagonal Boron Nitride Composite as a Highly Efficient Adsorbent for the Removal of Phosphate, Nitrate, and Hexavalent Chromium Ions from an Aqueous Environment. Appl. Surf. Sci. 2020, 511, 145543. [Google Scholar] [CrossRef]
- Chung, H.-K.; Kim, W.-H.; Park, J.; Cho, J.; Jeong, T.-Y.; Park, P.-K. Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. [Google Scholar] [CrossRef]
- Kono, H. Cationic Flocculants Derived from Native Cellulose: Preparation, Biodegradability, and Removal of Dyes in Aqueous Solution. Resource-Effic. Technol. 2017, 3, 55–63. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Hameed, B.H. Fixed-Bed Adsorption of Reactive Azo Dye onto Granular Activated Carbon Prepared from Waste. J. Hazard. Mater. 2010, 175, 298–303. [Google Scholar] [CrossRef]
- Xing, X.; Gao, B.-Y.; Zhong, Q.-Q.; Yue, Q.-Y.; Li, Q. Sorption of Nitrate onto Amine-Crosslinked Wheat Straw: Characteristics, Column Sorption and Desorption Properties. J. Hazard. Mater. 2011, 186, 206–211. [Google Scholar] [CrossRef]
- Maji, S.; Pal, A.; Pal, T.; Adak, A. Modeling and Fixed Bed Column Adsorption of As(III) on Laterite Soil. Sep. Purif. Technol. 2007, 56, 284–290. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A.K. Analysis and Modeling of Fixed Bed Column Operations on As(V) Removal by Adsorption onto Iron Oxide-Coated Cement (IOCC). J. Colloid Interface Sci. 2005, 290, 52–60. [Google Scholar] [CrossRef]
- Baral, S.S.; Das, N.; Ramulu, T.S.; Sahoo, S.K.; Das, S.N.; Chaudhury, G.R. Removal of Cr(VI) by Thermally Activated Weed Salvinia Cucullata in a Fixed-Bed Column. J. Hazard. Mater. 2009, 161, 1427–1435. [Google Scholar] [CrossRef]
- Calero, M.; Hernáinz, F.; Blázquez, G.; Tenorio, G.; Martín-Lara, M.A. Study of Cr(III) Biosorption in a Fixed-Bed Column. J. Hazard. Mater. 2009, 171, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, Z.; Tian, J.; Liu, C.; Qin, Z. Enhanced Nitrate Nitrogen Removal from Wastewater Using Modified Reed Straw: Adsorption Performance and Resource Utilization. Sustainability 2024, 16, 4001. [Google Scholar] [CrossRef]
- Sarkar, S.; Lupi, F.; Price, L.; Basso, B. Corn Yield Response to Phosphorus Fertilizer in Michigan: A Metamodeling Approach for Phosphorus Management Policies. J. Agric. Food Res. 2024, 18, 101410. [Google Scholar] [CrossRef]
- Kokulan, V.; Schneider, K.; Macrae, M.L.; Wilson, H. Struvite Application to Field Corn Decreases the Risk of Environmental Phosphorus Loss While Maintaining Crop Yield. Agric. Ecosyst. Environ. 2024, 366, 108936. [Google Scholar] [CrossRef]
- Metson, G.S.; MacDonald, G.K.; Haberman, D.; Nesme, T.; Bennett, E.M. Feeding the Corn Belt: Opportunities for Phosphorus Recycling in U.S. Agriculture. Sci. Total Environ. 2016, 542, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yan, B.; Xing, C.; Guo, W. Integrating Enhanced Biological Phosphorus Removal in Adsorption-Stage to Treat Real Domestic Sewage. Bioresource Technol. 2024, 411, 131334. [Google Scholar] [CrossRef]
Material | Chemical Element | Percentage of Quality | Atomic Percentage |
---|---|---|---|
RS | C | 54.18 | 61.29 |
N | 0 | 0 | |
O | 45.31 | 38.49 | |
P | 0.45 | 0.2 | |
Cl | 0.06 | 0.02 | |
MRS | C | 54.29 | 62.3 |
N | 2.27 | 2.23 | |
O | 39.26 | 33.82 | |
P | 0.39 | 0.17 | |
Cl | 3.79 | 1.47 | |
MRS-P | C | 51.93 | 59.74 |
N | 2.37 | 2.34 | |
O | 42.31 | 36.54 | |
P | 1.17 | 0.52 | |
Cl | 2.22 | 0.86 |
Physical Equilibrium Adsorption | Proposed Primary Dynamics | Proposed Secondary Dynamics | ||||
---|---|---|---|---|---|---|
qe (mg·g−1) | qe (mg·g−1) | K1 min−1 | R2 | qe (mg·g−1) | K2 (g·(mg·min)−1) | R2 |
6.14 | 5.89 | 2.24 | 0.972 | 6.06 | 0.71 | 0.995 |
Model | Parametric | Temperature (K) | ||
---|---|---|---|---|
288.15 | 298.15 | 308.15 | ||
Langmuir | Qmax (mg/g) | 6.812 | 7.474 | 8.337 |
KL | 1.991 | 3.972 | 3.647 | |
R2 | 0.886 | 0.899 | 0.954 | |
Freundlich | KF | 3.744 | 4.612 | 5.153 |
n | 4.695 | 4.987 | 4.671 | |
R2 | 0.989 | 0.988 | 0.967 |
Column Height (cm) | Inlet Flow Rate (mL·min−1) | Influent Concentration (mg/L) | Thomas Model | Yoon–Nelson Model | ||||
---|---|---|---|---|---|---|---|---|
KTh (mL·min−1·mg−1) | qe (mg·g−1) | R2 | KYN (min−1) | τ (min) | R2 | |||
1.3 | 5 | 50 | 1.26 | 19.40 | 0.9726 | 0.0628 | 77.62 | 0.9726 |
2.6 | 5 | 50 | 0.708 | 18.79 | 0.9106 | 0.0354 | 150.36 | 0.9106 |
3.9 | 5 | 50 | 0.356 | 17.55 | 0.9309 | 0.0178 | 210.57 | 0.9309 |
2.6 | 3 | 50 | 0.454 | 19.35 | 0.9031 | 0.0227 | 258.03 | 0.9031 |
2.6 | 7 | 50 | 0.824 | 19.28 | 0.9369 | 0.0412 | 110.17 | 0.9369 |
2.6 | 5 | 20 | 0.820 | 14.99 | 0.9902 | 0.0164 | 299.74 | 0.9902 |
2.6 | 5 | 80 | 0.595 | 17.82 | 0.9332 | 0.0476 | 89.10 | 0.9332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zhang, Q.; Liu, C.; Zhang, H.; Qin, Z. Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems. Sustainability 2025, 17, 5301. https://doi.org/10.3390/su17125301
Yang Z, Zhang Q, Liu C, Zhang H, Qin Z. Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems. Sustainability. 2025; 17(12):5301. https://doi.org/10.3390/su17125301
Chicago/Turabian StyleYang, Zhan, Qi Zhang, Changyi Liu, Haodong Zhang, and Zhe Qin. 2025. "Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems" Sustainability 17, no. 12: 5301. https://doi.org/10.3390/su17125301
APA StyleYang, Z., Zhang, Q., Liu, C., Zhang, H., & Qin, Z. (2025). Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems. Sustainability, 17(12), 5301. https://doi.org/10.3390/su17125301