Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (406)

Search Parameters:
Keywords = dental alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1192 KiB  
Review
The Use of Non-Degradable Polymer (Polyetheretherketone) in Personalized Orthopedics—Review Article
by Gabriela Wielgus, Wojciech Kajzer and Anita Kajzer
Polymers 2025, 17(15), 2158; https://doi.org/10.3390/polym17152158 - 7 Aug 2025
Abstract
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused [...] Read more.
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused Filament Fabrication (FFF) method, this material is the most widely used plastic to produce skull reconstruction implants, parts of dental implants and orthopedic implants, including spinal, knee and hip implants. PEEK enables the creation of personalized implants, which not only have greater elasticity compared to implants made of metal alloys but also resemble the physical properties of the cortical layer of human bone in terms of their mechanical properties. Therefore, the aim of this article is to characterize polyether ether ketone as an alternative material used in the manufacturing of implants in orthopedics and dentistry. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 2189 KiB  
Article
Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process
by Bárbara A. B. dos Santos, Elaine C. S. Corrêa, Wellington Lopes, Liszt Y. C. Madruga, Ketul C. Popat, Roberta M. Sabino and Hermes de Souza Costa
Appl. Sci. 2025, 15(15), 8443; https://doi.org/10.3390/app15158443 - 30 Jul 2025
Viewed by 352
Abstract
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. [...] Read more.
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. Samples were subjected to different dielectric fluids and polarities during EDM. Subsequently, optical microscopy, roughness measurements, Vickers microhardness, contact angle tests, and in vitro cytotoxicity assays were performed. The results demonstrated that EDM processing led to the formation of distinct layers on the sample surfaces, with surface roughness increasing under negative polarity by up to ~304% in Ra and 305% in Rz. Additionally, wettability measurements indicated that the modified surfaces presented a lower water contact angle, which suggests enhanced hydrophilicity. Moreover, the modified samples showed a significant increase in Vickers microhardness, with the highest value reaching 1520 HV in the recast layer, indicating improvements in the mechanical properties. According to ISO 10993-5, all treated samples were classified as non-cytotoxic, presenting RGR values above 75%, similar to the untreated Ti-6Al-4V alloy. Therefore, it is concluded that surface modification through the EDM process has the potential to enhance the properties and safety of biomedical implants made with this alloy. Full article
(This article belongs to the Special Issue Titanium and Its Compounds: Properties and Innovative Applications)
Show Figures

Figure 1

6 pages, 1231 KiB  
Interesting Images
A Personalized 3D-Printed CAD/CAM Functional Space Maintainer Following the Premature Loss of a Primary First Molar in a Five-Year-Old Child
by Rasa Mladenovic, Andrija Nedeljkovic, Ljiljana Vujacic, Marko Stevanovic, Vladan Djordjevic, Srbislav Pajic and Kristina Mladenovic
Reports 2025, 8(3), 125; https://doi.org/10.3390/reports8030125 - 29 Jul 2025
Viewed by 286
Abstract
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of [...] Read more.
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of permanent teeth. To preserve space, the fabrication of a space maintainer is necessary. Since conventional space maintainers do not restore masticatory function, this study presents an innovative solution for space preservation following the extraction of the first primary molar through the design of the functional space maintainer KOS&MET (Key Orthodontic System and Materials Enhanced Therapy). The space maintainer was designed using the 3Shape Dental Designer 2023 version software tool and manufactured via additive 3D printing, utilizing a metal alloy with high resistance to masticatory forces. The crown is supported by the primary canine, while an intraoral window is created to monitor the eruption of the successor tooth. This design does not interfere with occlusion and enables bilateral chewing. Masticatory performance was assessed using two-color chewing gum, and the results showed improvement after cementing the space maintainer. This innovative approach not only preserves space for permanent teeth but also enhances masticatory function, contributing to the proper growth and development of the jaws and teeth. Full article
(This article belongs to the Special Issue Oral Disorders in the Pediatric Population)
Show Figures

Figure 1

15 pages, 4368 KiB  
Article
Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface
by Mariusz Winiecki, Magdalena Stepczyńska, Maciej Walczak, Ewelina Soszczyńska, Magdalena Twarużek, Dorota Bociaga, Marek Trzcinski, Marta Michalska-Sionkowska and Krzysztof Moraczewski
Int. J. Mol. Sci. 2025, 26(15), 7051; https://doi.org/10.3390/ijms26157051 - 22 Jul 2025
Viewed by 448
Abstract
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing [...] Read more.
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing antimicrobial coatings on Ti implants is therefore a promising strategy. In this study, tannic acid (TA) coatings were deposited by immersing Ti alloy surfaces—beforehand activated by low-temperature oxygen plasma—in TA solutions at 2, 5, and 8 wt%. Coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and Folin–Ciocalteu release assays, and their cytocompatibility and antimicrobial performance were assessed in vitro. Surface characterization confirmed the formation of uniform TA layers, and WCA measurements indicated enhanced hydrophilicity relative to unmodified Ti (82.0° ± 3.6°), with values decreasing as TA concentration increased (from 35.2° ± 3.2° for 2% TA to 26.6° ± 2.8° for 8% TA). TA release profiles exhibited an initial burst followed by sustained diffusion, with 5% and 8% coatings releasing significantly more TA than 2% coatings. Coatings containing ≥ 5% TA demonstrated bactericidal activity—achieving > 2-log10 reductions—against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and also showed inhibitory effects against Candida albicans. Importantly, all coatings remained cytocompatible with NIH/3T3 fibroblasts, and the released tannic acid hydrolysis products (particularly gallic acid) enhanced their proliferation. These findings indicate that plasma-activated titanium surfaces coated with ≥5 wt% tannic acid impart broad-spectrum antimicrobial efficacy and hold potential to reduce implant-associated infections and improve long-term outcomes in orthopedic and dental applications. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

20 pages, 6191 KiB  
Article
Functional Assessment of Microplasma-Sprayed Hydroxyapatite-Zirconium Bilayer Coatings: Mechanical and Biological Perspectives
by Sergii Voinarovych, Serhiy Maksimov, Sergii Kaliuzhnyi, Oleksandr Kyslytsia, Yuliya Safarova (Yantsen) and Darya Alontseva
Materials 2025, 18(14), 3405; https://doi.org/10.3390/ma18143405 - 21 Jul 2025
Viewed by 242
Abstract
Hydroxyapatite (HA) has become a widely used material for bone grafting and surface modification of titanium-based orthopedic implants due to its excellent biocompatibility. Among various coating techniques, microplasma spraying (MPS) has gained significant industrial relevance. However, the clinical success of HA coatings also [...] Read more.
Hydroxyapatite (HA) has become a widely used material for bone grafting and surface modification of titanium-based orthopedic implants due to its excellent biocompatibility. Among various coating techniques, microplasma spraying (MPS) has gained significant industrial relevance. However, the clinical success of HA coatings also depends on their adhesion to the implant substrate. Achieving durable fixation and reliable biological integration of orthopedic implants remains a major challenge due to insufficient coating adhesion and limited osseointegration. This study addresses challenges in dental and orthopedic implantology by evaluating the microstructure, mechanical properties, and biological behavior of bilayer coatings composed of a zirconium (Zr) sublayer and an HA top layer, applied via MPS onto titanium alloy. Surface roughness, porosity, and adhesion were characterized, and pull-off and shear tests were used to assess mechanical performance. In vitro biocompatibility was tested using rat mesenchymal stem cells (MSCs) to model osteointegration. The results showed that the MPS-fabricated Zr–HA bilayer coatings achieved a pull-off strength of 28.0 ± 4.2 MPa and a shear strength of 32.3 ± 3.2 MPa, exceeding standard requirements. Biologically, the HA top layer promoted a 45% increase in MSC proliferation over three days compared to the uncoated titanium substrate. Antibacterial testing also revealed suppression of E. coli growth after 14 h. These findings support the potential of MPS-applied Zr-HA coatings to enhance both the mechanical integrity and biological performance of titanium-based orthopedic implants. Full article
Show Figures

Figure 1

20 pages, 24228 KiB  
Article
Surface Treatments on Cobalt–Chromium Alloys for Layering Ceramic Paint Coatings in Dental Prosthetics
by Willi-Andrei Uriciuc, Maria Suciu, Lucian Barbu-Tudoran, Adrian-Ioan Botean, Horea Florin Chicinaș, Miruna-Andreea Anghel, Cătălin Ovidiu Popa and Aranka Ilea
Coatings 2025, 15(7), 833; https://doi.org/10.3390/coatings15070833 - 17 Jul 2025
Viewed by 652
Abstract
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed [...] Read more.
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed using mechanical methods, like sandblasting (SB), and thermal methods, such as oxidation (O). The ceramic coating is applied to the metal component following the conditioning process, which can be conducted using either a single method or a combination of methods. Each conditioned sample undergoes characterization through various techniques, including drop shape analysis (DSA), scanning electron microscopy (SEM), X-ray diffraction (EDX), and atomic force microscopy (AFM). After the ceramic coating is applied and subjected to thermal sintering, the metal–ceramic samples are mechanically tested to assess the adhesion of the ceramic layer. The research findings, illustrated by scanning electron microscopy (SEM) images of the metal structures’ surfaces, indicate that alloy powder particles ranging from 10 to 50 µm were either adhered to the surfaces or present as discrete dots. Particles that exceed the initial design specifications of the structure can be smoothed out using sandblasting or mechanical finishing techniques. The energy-dispersive spectroscopy (EDS) results show that, after sandblasting, fragments of aluminum oxide remain trapped on the surface of the metal structures. These remnants are considered impurities, which can negatively impact the adhesion of the ceramic to the metal substrate. The analysis focuses on the exfoliation of the ceramic material from the deformed metal surfaces. The results emphasize the significant role of the sandblasting method and the micro-topography it creates, as well as the importance of the oxidation temperature in the treatment process. Drawing on 25 years of experience in dental prosthetics and the findings from this study, this publication aims to serve as a guide for applying the ceramic bonding layer to metal surfaces and for conditioning methods. These practices are essential for enhancing the adhesion of ceramic materials to metal substrates. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Prevention in Extreme Environments)
Show Figures

Figure 1

12 pages, 872 KiB  
Article
Assessment of Radiation Attenuation Properties in Dental Implants Using Monte Carlo Method
by Ali Rasat, Selmi Tunc, Yigit Ali Uncu and Hasan Ozdogan
Bioengineering 2025, 12(7), 762; https://doi.org/10.3390/bioengineering12070762 - 14 Jul 2025
Viewed by 296
Abstract
This study investigated the radiation attenuation characteristics of commonly used dental implant materials across an energy spectrum relevant to dental radiology. Two titanium implants were examined, with densities of 4.428 g/cm3 and 4.51 g/cm3, respectively. The first consisted of 90.39% [...] Read more.
This study investigated the radiation attenuation characteristics of commonly used dental implant materials across an energy spectrum relevant to dental radiology. Two titanium implants were examined, with densities of 4.428 g/cm3 and 4.51 g/cm3, respectively. The first consisted of 90.39% titanium, 5.40% aluminum, and 4.21% vanadium, while the second comprised 58% titanium, 33% oxygen, 7% iron, 1% carbon, and 1% nitrogen. The third material was a zirconia implant (5Y form) composed of 94.75% zirconium dioxide, 5.00% yttrium oxide, and 0.25% aluminum oxide, exhibiting a higher density of 6.05 g/cm3. Monte Carlo simulations (MCNP6) and XCOM data were utilized to estimate photon source parameters, geometric configuration, and interactions with biological materials to calculate the half-value layer, mean free path, and tenth-value layer at varying photon energies. The results indicated that titanium alloys are well suited for low-energy imaging modalities such as CBCT and panoramic radiography due to their reduced artifact production. While zirconia implants demonstrated superior attenuation at higher energies (e.g., CT), their higher density may induce beam-hardening artifacts in low-energy systems. Future research should validate these simulation results through in vitro and clinical imaging and further explore the correlation between material-specific attenuation and CBCT image artifacts. Full article
Show Figures

Figure 1

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 234
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

13 pages, 4323 KiB  
Article
The Impact of Additive and Subtractive Manufacturing on the Adhesion and Durability of Titanium–Zirconia Restorative Materials
by Omar Alageel, Najm Alfrisany, Abdullah Alshamrani and Omar Alsadon
J. Funct. Biomater. 2025, 16(7), 257; https://doi.org/10.3390/jfb16070257 - 11 Jul 2025
Viewed by 638
Abstract
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM [...] Read more.
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM milling from prefabricated discs (Ti-ML and Zr-ML), and 3D printing via SLM (Ti-3D) and DLP/LCM systems (Zr-3D). The specimens were bonded with dental cement to form four test groups: Zr-ML/Ti-ML, Zr-ML/Ti-3D, Zr-3D/Ti-ML, and Zr-3D/Ti-3D. Half of the specimens in each group underwent thermocycling to assess the effect of aging on bond strength. The density, microhardness, and surface morphology were evaluated, along with the shear bond strength and failure modes of the resin composites. Statistical differences were analyzed using one-way ANOVA and Tukey’s HSD test across all groups. The 3D-printed specimens of both materials exhibited higher microhardness and lower surface roughness than the milled specimens. The shear bond strength (SBS) was the highest in the Ti-ML/Zr-ML combination group before and after thermocycling, which had more cohesive failures, whereas the lowest bond strength was observed in the Ti-3D/Zr-ML group. The adhesion between titanium and zirconia-based materials was the strongest when both were fabricated using subtractive methods, followed by additive and mixed-method combinations. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

4 pages, 160 KiB  
Editorial
Ceramic Dental Restorations—From Materials Sciences to Applications
by Han Chao Chang and Satoshi Yamaguchi
Materials 2025, 18(13), 3116; https://doi.org/10.3390/ma18133116 - 1 Jul 2025
Viewed by 284
Abstract
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives [...] Read more.
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives to traditional alloys and pure metals [...] Full article
(This article belongs to the Special Issue Ceramic Dental Restorations: From Materials Sciences to Applications)
25 pages, 4204 KiB  
Article
Electrochemical Evaluation of New Ti-Based High-Entropy Alloys in Artificial Saliva with Fluoride: Implications for Dental Implant Applications
by Hanine Slama, Qanita Tayyaba, Mariya Kadiri and Hendra Hermawan
Materials 2025, 18(13), 2973; https://doi.org/10.3390/ma18132973 - 23 Jun 2025
Viewed by 481
Abstract
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be [...] Read more.
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be confirmed. In this work, the corrosion behavior of two Ti-based HEAs, TiZrHfNb, and TiZrHfNbTa was evaluated in comparison to CP-Ti and Ti-6Al-4V in artificial saliva (AS) solution and in AS with fluoride ion content (ASF). A set of electrochemical tests (electrochemical impedance spectroscopy, cyclic polarization, and Mott–Schottky) was employed and complemented with surface characterization analyses (scanning electron microscopy and atomic force microscopy) to determine dissolution and passivation mechanisms of the alloys. In general, the HEAs exhibited a far superior corrosion resistance compared to CP-Ti and Ti-6Al-4V alloys in both solutions. In the AS solution, the TiZrHfNb exhibited the highest polarization resistance and pitting potential, indicating a high corrosion resistance due to the formation of a robust passive layer. Whilst in the ASF solution, the TiZrHfNbTa showed a greater corrosion resistance due to the synergistic effect of Nb and Ta oxides that enhanced passive film stability. This finding emphasizes the role of Ta in elevating the corrosion resistance of Ti-based HEAs in the presence of fluoride ions and confirms the importance of chemical composition optimization in the development of next-generation dental alloys. Based on its electrochemical corrosion behavior, TiZrHfNbTa HEAs are promising new materials for high-performance reduced-diameter dental implants. Full article
(This article belongs to the Special Issue Novel Dental Materials Design and Application)
Show Figures

Figure 1

11 pages, 1142 KiB  
Article
Changes in Implant Surface Characteristics and Wettability Induced by Smoking In Vitro: A Preliminary Investigation
by Danielle Ohana, Nina K. Anderson, Rafael Delgado-Ruiz and Georgios E. Romanos
Materials 2025, 18(12), 2844; https://doi.org/10.3390/ma18122844 - 17 Jun 2025
Viewed by 401
Abstract
The biologic response following the insertion of dental implants is a widely studied process. Recent research has highlighted the importance of implant surface topography and chemistry as highly influential factors in consolidating the dental implant with the surrounding biological environment. The hydrophilicity, or [...] Read more.
The biologic response following the insertion of dental implants is a widely studied process. Recent research has highlighted the importance of implant surface topography and chemistry as highly influential factors in consolidating the dental implant with the surrounding biological environment. The hydrophilicity, or wettability, of dental implants plays a pivotal role in these interactions and successful osseointegration. A more well-established factor that can also influence the development of the tissue–implant interface is exposure to tobacco smoke. While the negative impact of smoking on the biological response of the tissue is clear, there has been no research evaluating the impact that tobacco smoke can have directly on the surface chemistry of dental implants. The present study aimed to explore the effect of smoking on implant surface chemistry and wettability in vitro. Five different implant disks (Ti-Mach, Ti-SLA, Ti-Alloy, Zirc-1 and Zirc-2) were subjected to contamination with tobacco smoke using a portable smoke infuser with dome enclosure. Occasional smoking (5×/day 10 min each for 3 days) and heavy smoking (20×/day for 10 min each for 10 days) were simulated. The wettability of the implant disks was evaluated via the contact angle technique using artificial blood and albumin, as well as saline as a control. It was determined that the contamination of implant surfaces due to smoking produces changes in the surface chemistry and wettability. Changes in the surface hydrophilicity differed based on the implant material. Within the constraints of this investigation, tobacco smoke improved the hydrophilicity of titanium surfaces but worsened that of ceramic surfaces when utilizing the testing solutions. Different implant surfaces exhibit different wetting behavior following contamination with nicotine smoke. This might have an impact on the treatment of peri-implantitis in smokers due to changes in implant surface hydrophilicity, which can affect the re-osseointegration process. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

12 pages, 2705 KiB  
Article
Electrochemical Behavior of Cobalt–Chromium Alloy Exposed to Effervescent Denture Cleansers
by Glenda Lara Lopes Vasconcelos, Carolina Alves Freiria de Oliveira, Ana Paula Macedo, Viviane de Cássia Oliveira, Patrícia Almeida Curylofo, Carlos Alberto Della Rovere, Rodrigo Galo, Bruna S. H. Tonin and Valéria Oliveira Pagnano
Corros. Mater. Degrad. 2025, 6(2), 23; https://doi.org/10.3390/cmd6020023 - 12 Jun 2025
Viewed by 430
Abstract
This study demonstrates that effervescent denture cleansers can influence the electrochemical behavior of cobalt–chromium (Co-Cr) alloys, with a particular focus on their corrosion resistance. The findings underscore the importance for dental professionals of selecting cleansers compatible with Co-Cr prostheses to minimize material degradation [...] Read more.
This study demonstrates that effervescent denture cleansers can influence the electrochemical behavior of cobalt–chromium (Co-Cr) alloys, with a particular focus on their corrosion resistance. The findings underscore the importance for dental professionals of selecting cleansers compatible with Co-Cr prostheses to minimize material degradation and enhance clinical durability. Corrosion resistance was evaluated using open-circuit potential (OCP), corrosion current density (icorr), and passivation current density (ipass). Surface morphology and elemental composition were analyzed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Forty specimens (n = 5 per group) were individually immersed in one of ten test solutions: distilled water (DW), artificial saliva (AS), and eight commercial denture cleansers—Polident 3 minutes™ (P3M), Steradent™ (St), Polident for Partials™ (PP), Efferdent™ (Ef), Corega Tabs™ (CT), NitrAdine™ (Ni), Fixodent™ (Fi), and Kukident™ (Ku). Each specimen was exposed a single solution to avoid cross-contamination. Results showed St, Ef, and Ku had higher OCP values than DW and Ni (p < 0.05), indicating better corrosion resistance. AS exhibited lower OCP values compared to St (p = 0.034), Ku (p = 0.023), and P3M (p = 0.050). DW had higher icorr than PP (p = 0.030), CT (p = 0.005), and P3M (p = 0.003). For ipass, DW had lower values than Ef (p = 0.025) and Ku (p = 0.016). SEM and EDS revealed no significant surface alterations. Understanding the underlying corrosion mechanisms in different solutions provides valuable insights into optimizing material performance and ensuring durability in clinical applications. The corrosion resistance of Co-Cr depends on the stability of the passive oxide layer, which can be degraded by chloride ions, reinforced by sulfate ions, and influenced by active ingredients in denture cleansers. Overall, the Co-Cr alloy demonstrated acceptable corrosion resistance, underscoring the importance of selecting suitable cleansers for prosthesis longevity. Full article
(This article belongs to the Special Issue Advances in Material Surface Corrosion and Protection)
Show Figures

Graphical abstract

20 pages, 18200 KiB  
Article
A Finite Element Analysis of a New Dental Implant Design: The Influence of the Diameter, Length, and Material of an Implant on Its Biomechanical Behavior
by Pedro González-Mederos, Jennifer Rodríguez-Guerra, Jesús E. González, Alberto Picardo and Yadir Torres
Materials 2025, 18(12), 2692; https://doi.org/10.3390/ma18122692 - 7 Jun 2025
Cited by 1 | Viewed by 771
Abstract
It is widely recognized that excessive stress and/or strain can lead to peri-implant bone atrophy; therefore, the clinical success of dental implants is intrinsically related to their biomechanical behavior. This study evaluates the influence of the diameter, length, and material [Ti6Al4V (α+β Ti) [...] Read more.
It is widely recognized that excessive stress and/or strain can lead to peri-implant bone atrophy; therefore, the clinical success of dental implants is intrinsically related to their biomechanical behavior. This study evaluates the influence of the diameter, length, and material [Ti6Al4V (α+β Ti) and Ti35Nb7Zr5Ta (β-Ti)] of a novel cylindrical dental implant on stress and strain levels within maxillary bone of type II quality. The implant design aims to ensure an appropriate distribution of stresses and strains within the peri-implant bone structures (cortical and trabecular bones) while also facilitating surgical machining by requiring a simple, linear, and less expensive bone incision. This approach minimizes the risk of thermal necrosis, a common complication in osteotomies for conical implants that can lead to peri-implant bone loss. Using finite element analysis, stress and strain patterns were evaluated in the maxillary second premolar region under static delayed loading. The results reveal that the cortical bone strains remained below the critical threshold (0.003) to prevent resorption. In the trabecular bone, only larger diameter/length configurations satisfied the previous strain criterion. In all simulations, trabecular bone stress remained below 3 MPa, whereas cortical bone stress peaked at 78 MPa. Notably, the implant model with the largest diameter/length minimized stress and strain concentrations in type II bone when compared to smaller designs, thereby demonstrating its biomechanical advantage. Full article
Show Figures

Graphical abstract

12 pages, 799 KiB  
Review
The Effect of Fluoride Mouthwashes on Orthodontic Appliances’ Corrosion and Mechanical Properties: A Scoping Review
by Miltiadis A. Makrygiannakis, Angeliki Anna Gkinosati, Sotirios Kalfas and Eleftherios G. Kaklamanos
Hygiene 2025, 5(2), 23; https://doi.org/10.3390/hygiene5020023 - 5 Jun 2025
Viewed by 710
Abstract
Fluoride mouthwashes are often recommended by dental professionals due to their proven benefits for oral hygiene. However, it is vital to acknowledge that these products may have undesirable effects on orthodontic treatment outcomes, particularly by altering the biomechanical properties of orthodontic devices and [...] Read more.
Fluoride mouthwashes are often recommended by dental professionals due to their proven benefits for oral hygiene. However, it is vital to acknowledge that these products may have undesirable effects on orthodontic treatment outcomes, particularly by altering the biomechanical properties of orthodontic devices and their components. To gain a comprehensive understanding of this potential issue, an extensive and systematic search was conducted across seven distinct databases. PRISMA extension for scoping reviews (PRISMA ScR) guidelines were followed. Following a detailed evaluation and careful scrutiny of the available evidence, a total of seven relevant studies met the inclusion criteria and were incorporated into the current scoping review. Findings indicated that regular intraoral use of fluoride-containing mouthwashes could lead to heightened corrosion and greater release of metal ions from stainless-steel brackets and nickel–titanium (NiTi) archwires. Additionally, the mechanical properties and structural integrity of titanium–molybdenum alloy (TMA) wires were negatively influenced by exposure to fluoride mouthwashes. Although existing evidence highlights these potential drawbacks, there remains a clear necessity for additional comprehensive research. Given the possibility that fluoride mouthwashes could adversely influence orthodontic treatment effectiveness, orthodontists and dental clinicians must exercise cautious judgment and deliberate consideration when prescribing fluoride-based mouthwashes for patients undergoing orthodontic therapy. Full article
Show Figures

Figure 1

Back to TopTop