Electrochemical Behavior of Cobalt–Chromium Alloy Exposed to Effervescent Denture Cleansers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrochemical Behavior of Co-Cr Alloy
3.2. Corrosion Resistance and Longevity
3.3. Surface and Microstructural Analyses
4. Conclusions
- NitrAdine™ and distilled water demonstrated significantly lower open-circuit potentials calues compared to EfferdentTM, Kukident™, and Steradent™, indicating a greater susceptibility of the Co-Cr alloy to corrosion.
- Artificial saliva promoted the higher corrosive behavior of the Co-Cr alloy, showing higher current density than the other solutions.
- Polident 3 minutes™, Polident for PartialsTM, and Corega TabsTM exhibited lower values of current density and indicated a lower tendency for Co-Cr alloy corrosion over time.
- SEM and EDS analyses showed no adverse effects on the Co-Cr alloy with the denture tablets.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al Jabbari, Y.S.; Dimitriadis, K.; Sufyan, A.; Zinelis, S. Microstructural and Mechanical Characterization of Six Co-Cr Alloys Made by Conventional Casting and Selective Laser Melting. J. Prosthet. Dent. 2024, 132, 646.e1–646.e10. [Google Scholar] [CrossRef] [PubMed]
- Asri, R.I.M.; Harun, W.S.W.; Samykano, M.; Lah, N.A.C.; Ghani, S.A.C.; Tarlochan, F.; Raza, M.R. Corrosion and Surface Modification on Biocompatible Metals: A Review. Mater. Sci. Eng. C 2017, 77, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Moslehifard, E.; Ghaffari, T.; Mohammadian-Navid, S.; Ghafari-Nia, M.; Farmani, A.; Nasirpouri, F. Effect of chemical passivation on corrosion behavior and ion release of a commercial chromium-cobalt alloy. J. Dent. Res. Dent. Clin. Dent. Prospect. 2020, 14, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Wu, X.; Zhang, F.; Yu, W. Electrochemical impedance investigation of Ni-free Co-Cr-Mo and Co-Cr-Mo-Ni dental casting alloy for partial removable dental prosthesis frameworks. J. Prosthet. Dent. 2016, 116, 112–118. [Google Scholar] [CrossRef]
- Bettini, E.; Leygraf, C.; Pan, J. Nature of Current Increase for a CoCrMo Alloy: “transpassive” Dissolution vs. Water Oxidation. Int. J. Electrochem. Sci. 2013, 8, 11791–11804. [Google Scholar] [CrossRef]
- Mareci, D.; Nemtoi, G.; Aelenei, N.; Bocanu, C. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva. Eur. Cell Mater. 2005, 10, 1–7. [Google Scholar]
- Zhang, S.; Qiu, J.; Ren, Y.; Yu, W.; Zhang, F.; Liu, X. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression. J. Mater. Sci. Mater. Med. 2016, 27, 78. [Google Scholar] [CrossRef]
- Gopalakrishnan, U.; Felicita, A.S.; Mahendra, L.; Kanji, M.A.; Varadarajan, S.; Raj, A.T.; Feroz, S.M.A.; Mehta, D.; Baeshen, H.A.; Patil, S. Assessing the Potential Association Between Microbes and Corrosion of Intra-Oral Metallic Alloy-Based Dental Appliances Through a Systematic Review of the Literature. Front. Bioeng. Biotechnol. 2021, 9, 631103. [Google Scholar] [CrossRef]
- Lu, Y.; Ren, L.; Xu, X.; Yang, Y.; Wu, S.; Luo, J.; Yang, M.; Liu, L.; Zhuang, D.; Yang, K.; et al. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. J. Mech. Behav. Biomed. Mater. 2018, 81, 130–141. [Google Scholar] [CrossRef]
- Mystkowska, J.; Niemirowicz-Laskowska, K.; Łysik, D.; Tokajuk, G.; Dąbrowski, J.R.; Bucki, R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects. Int. J. Mol. Sci. 2018, 19, 743. [Google Scholar] [CrossRef]
- Tuna, S.H.; Özçiçek Pekmez, N.; Kürkçüoğlu, I. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods. J. Prosthet. Dent. 2015, 114, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Z.; Luo, H.; Zhou, T.; Zhao, Y.; Ling, Z. Corrosion resistances of metallic materials in environments containing chloride ions: A review. Trans. Nonferrous Met. Soc. China 2022, 32, 377–410. [Google Scholar] [CrossRef]
- Tuna, S.H.; Pekmez, N.O.; Keyf, F.; Canli, F. The influence of the pure metal components of four different casting alloys on the electrochemical properties of the alloys. Dent. Mater. 2009, 25, 1096–1103. [Google Scholar] [CrossRef]
- Wataha, J.C.; Lockwood, P.E.; Noda, M.; Nelson, S.K.; Mettenburg, D.J. Effect of toothbrushing on the toxicity of casting alloys. J. Prosthet. Dent. 2002, 87, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Galo, R.; Ribeiro, R.F.; Rodrigues, R.C.; Rocha, L.A.; de Mattos, M.G. Effects of chemical composition on the corrosion of dental alloys. Braz. Dent. J. 2012, 23, 141–148. [Google Scholar] [CrossRef]
- Galo, R.; Rocha, L.A.; Faria, A.C.; Silveira, R.R.; Ribeiro, R.; de Mattos, M.G. Influence of the casting processing route on the corrosion behavior of dental alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 45, 519–523. [Google Scholar] [CrossRef]
- Keyf, F.; Güngör, T. Comparison of effects of bleach and cleansing tablet on reflectance and surface changes of a dental alloy used for removable partial dentures. J. Biomater. Appl. 2003, 18, 5–14. [Google Scholar] [CrossRef]
- Raimundo, L.B.; Orsi, I.A.; Kuri, S.E.; Rovere, C.A.; Busquim, T.P.; Borie, E. Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4). Braz. Dent. J. 2015, 26, 660–666. [Google Scholar] [CrossRef]
- Baba, Y.; Sato, Y.; Owada, G.; Minakuchi, S. Effectiveness of a combination denture-cleaning method versus a mechanical method: Comparison of denture cleanliness, patient satisfaction, and oral health-related quality of life. J. Prosthodont. Res. 2018, 62, 353–358. [Google Scholar] [CrossRef]
- Bueno, F.L.; Badaró, M.M.; Pagnano, V.O.; Curylofo, P.A.; Oliveira, V.C.; Macedo, A.P.; Watanabe, E.; Paranhos, H.F.O.; Silva-Lovato, C.H. Effect of disinfectants on multispecies biofilm, the physical and mechanical properties of polymethyl methacrylate, and the corrosion of cobalt chromium alloy. J. Prosthet. Dent. 2024, 132, 603.e1–603.e8. [Google Scholar] [CrossRef]
- Felipucci, D.N.; Davi, L.R.; Paranhos, H.F.; Bezzon, O.L.; Silva, R.F.; Pagnano, V.O. Effect of different cleansers on the surface of removable partial denture. Braz Dent J. 2011, 22, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Felipucci, D.N.; Davi, L.R.; Paranhos, H.F.; Bezzon, O.L.; Silva, R.F.; Barbosa Junior, F.; Pagnano, V.O. Effect of different cleansers on the weight and ion release of removable partial denture: An in vitro study. J. Appl. Oral Sci. 2011, 19, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Paranhos, H.D.; Coimbra, F.C.; Salles, M.M.; Oliveira, V.C.; Macedo, A.P.; Pagnano, V.O.; Silva-Lovato, C.H. In vitro evaluation of the effectiveness of alkaline peroxide solutions in reducing the viability of specific biofilms. Am. J. Dent. 2019, 32, 201–207. [Google Scholar]
- Coimbra, F.C.T.; Rocha, M.M.; Oliveira, V.C.; Macedo, A.P.; Pagnano, V.O.; Silva-Lovato, C.H.; Paranhos, H.F.O. Antimicrobial activity of effervescent denture tablets on multispecies biofilms. Gerodontology 2021, 38, 87–94. [Google Scholar] [CrossRef]
- Kiesow, A.; Sarembe, S.; Pizzey, R.L.; Axe, A.S.; Bradshaw, D.J. Material compatibility and antimicrobial activity of consumer products commonly used to clean dentures. J. Prosthet. Dent. 2016, 115, 189–198.e8. [Google Scholar] [CrossRef]
- Vasconcelos, G.L.; Curylofo, P.A.; Targa Coimbra, F.C.; de Cássia Oliveira, V.; Macedo, A.P.; de Freitas Oliveira Paranhos, H.; Pagnano, V.O. In Vitro Antimicrobial Activity of Effervescent Denture Tablets on the Components of Removable Partial Dentures. Int. J. Prosthodont. 2020, 33, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Lucena-Ferreira, S.C.; Cavalcanti, I.M.; Cury, A.A. Efficacy of denture cleansers in reducing microbial counts from removable partial dentures: A short-term clinical evaluation. Braz. Dent. J. 2013, 24, 353–356. [Google Scholar] [CrossRef]
- Curylofo, P.C.; Raile, P.N.; Oliveira, V.C.; Macedo, A.P.; Guedes, D.F.C.; Paranhos, H.F.O.; Pagnano, V.O. Antimicrobial Activity of Experimental Chitosan Solutions on Acrylic Resin and Cobalt-Chromium Surfaces. Int. J. Prosthodont. 2023, 36, 650. [Google Scholar]
- Mercieca, S.; Conti, M.C.; Buhagiar, J.; Camilleri, J. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments. J. Appl. Biomater. Funct. Mater. 2018, 16, 47–54. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, N.; Wei, B. Effect of fluoride content on ion release from cast and selective laser melting-processed Co-Cr-Mo alloys. J. Prosthet. Dent. 2014, 112, 1212–1216. [Google Scholar] [CrossRef]
- Davi, L.R.; Felipucci, D.N.; de Souza, R.; Bezzon, O.L.; Lovato-Silva, C.H.; Pagnano, V.O.; Paranhos, H.F. Effect of denture cleansers on metal ion release and surface roughness of denture base materials. Braz. Dent. J. 2012, 23, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Rose, T.C. Nonprecious alloys for use in fixed prosthodontics: A literature review. J. Prosthet. Dent. 1983, 49, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Clear, K.C. Measuring rate of corrosion of steel in field concrete structures. Transp. Res. Rec. 1989, 1211, 28–37. [Google Scholar]
- Rosković, R.; Oslaković, I.S.; Radić, J.; Serdar, M. Effects of chromium(VI) reducing agents in cement on corrosion of reinforcing steel. Cem. Concr. Compos. 2011, 33, 1020–1025. [Google Scholar] [CrossRef]
- Serdar, M.; Stipanovic, I.; Bjegović, D.; Valek, L. Corrosion testing of low alloy steel reinforcement. In Concrete Repair, Rehabilitation and Retrofitting II; CRC Press: Boca Raton, FL, USA, 2008; pp. 133–134. [Google Scholar]
- Silva-Lovato, C.H.; Wever, B.; Adriaens, E.; Paranhos, H.F.; Watanabe, E.; Pisani, M.X.; Souza, R.F.; Ito, I.Y. Clinical and antimicrobial efficacy of NitrAdine ™-based disinfecting cleaning tablets in complete denture wearers. J. Appl. Oral Sci. 2010, 18, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Pupim, D.; Peixoto, R.F.; Macedo, A.P.; Mattos, M.G.C.; Galo, R. Electrochemical behavior of Co-Cr alloy in hygienic tablets solution. Mater. Res. 2022, 25, e20210346. [Google Scholar] [CrossRef]
- Vaicelyte, A.; Janssen, C.; Le Borgne, M.; Grosgogeat, B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Coenye, T.; De Prijck, K.; De Wever, B.; Nelis, H.J. Use of the modified Robbins device to study the in vitro biofilm removal efficacy of NitrAdine, a novel disinfecting formula for the maintenance of oral medical devices. J. Appl. Microbiol. 2008, 105, 733–740. [Google Scholar] [CrossRef]
- Landolt, D.; Mischler, S.; Stemp, M. Electrochemical methods in tribocorrosion: A critical appraisal. Electrochi. Acta 2001, 46, 3913–3929. [Google Scholar] [CrossRef]
- Goldberg, J.R.; Gilbert, J.L. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys. Biomaterials 2004, 25, 851–864. [Google Scholar] [CrossRef]
Trade Mark | Composition | Manufacturer |
---|---|---|
Distilled Water | H2O | N/A |
Artificial Saliva | NaCl (400 mg/L), KCl (400 mg/L), CaCl2.H2O (795 mg/L), NaH2PO4.H2O (690 mg/L), NaS.9H2O (5 mg/L), and urea (1000 mg/L) (Sigma Chemical Company, St. Louis, MO, USA) | Modified Fusayama’s artificial saliva (AS) [15] |
Degudent™ | Cobalt (Co) (64.8%), Chromium (Cr) (28.5%), Silicon (Si) (0.5%), Molybdenum (Mo) (5.3%), Manganese (Mn) (0.5%), and Carbon (C) (0.4%) | Dentsply Ind.e Com. Ltd.a, São Paulo, Brazil |
Polident 3 Minutes™ | Sodium bicarbonate, citric acid, sodium carbonate, potassium monopersulfate, sodium perborate, sodium benzoate, PEG-180, EDTA, sodium lauryl sulfoacetate | GlaxoSmithKline, Philadelphia, PA, USA |
Polident for Partials™ | Sodium bicarbonate, citric acid, potassium monopersulfate, sodium carbonate, sodium percarbonate, EDTA, sodium benzoate, sodium lauryl sulfoacetate | |
Corega Tabs™ | Sodium bicarbonate, citric acid, sodium perborate monohydrate, potassium peroxymonosulfate, sodium benzoate, sodium lauryl sulfoacetate | Reckitt Benckiser Healthcare, United Kingdom |
Steradent™ | Sodium bicarbonate, potassium caroate, citric acid, sodium carbonate peroxide, sodium sulfate, sodium carbonate, PEG-15, malic acid, sodium, dodecylbenzenesulfonate, EDTA | |
Kukident™ | Sodium sulfate, sodium bicarbonate, citric acid, sodium carbonate, sodium perborate, sulfamic acid, potassium monopersulfate, sodium carbonate peroxide, EDTA, sodium lauryl sulfoacetate, sorbitol | Prestige Brands, Inc. North Broadway Irvington, NY, USA |
Efferdent™ | Ingredients not published by the company | |
Fixodent™ | Potassium monopersulfate, sodium bicarbonate, EDTA, citric acid, sodium lauryl sulfate, lactose monohydrate, sodium bicarbonate, sodium perborate, sorbitol | Procter & Gamble, Cincinnati, OH, USA |
NitrAdine™ | Citric acid, sodium lauryl sulfate, lactose monohydrate, sodium bicarbonate, sodium chloride, hydrogen potassium monopersulfate, sodium carbonate, peppermint flavoring, PVP | BonifAG, Vaduz, Liechtenstein |
Solutions | OCP * (mV/SCE *) | icorr * (µA/cm2) | ipass * (µA/cm2) |
---|---|---|---|
Distilled Water | −82 (−149; −15) a | 20.6 (8.2; 33.0) ab | −8.0 (−9.4; −6.7) a |
Artificial Saliva | −25 (−136; 86) ab | 38.6 (−2; 79.4) a | −6.9 (−7.6; −6.1) ab |
Polident 3 Minutes™ | −11 (−187; 166) ab | 0.2 (0.1; 0.3) c | −5.7 (−6.6; −4.8) ab |
Polident for Partials™ | −5 (−111; 101) ab | 0.3 (0.1; 0.5) bc | −5.7 (−6.3; −5.0) ab |
Corega Tabs™ | 40 (26; 106) ab | 0.2 (0.2; 0.3) c | −7.6 (−9.2; −6.0) ab |
Steradent™ | 172 (141; 203) b | 3.8 (0.6; 6.9) abc | −5.7 (−6.3; −5.0) ab |
Kukident™ | 179 (114; 245) b | 1.9 (0.9; 2.8) abc | −5,5 (−6.0; −5.0) b |
Efferdent™ | 139 (107; 171) b | 3.9 (1.7; 6.1) abc | −5.5 (−6.2; −4.9) b |
Fixodent™ | 8 (−162; 178) ab | 2.1 (0.3; 4.0) abc | −5.8 (−6.3; −5.3) ab |
NitrAdine™ | −105 (−223, 13) a | 0.6 (0.1; 1.0) abc | −6.5 (−7.6; −5.3) ab |
Solution | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WC | DW | AS | P3M | PP | CT | ST | KU | EF | Fi | Ni | ||
Phase of Co-Cr alloy | C | 3.33 | 3.45 | 4.71 | 5.99 | 6.87 | 4.66 | 6.31 | 9.73 | 5.41 | 5.66 | 9.04 |
O | 5.86 | 8.63 | 9.75 | 11.15 | 8.38 | 8.63 | 10.16 | 4.71 | 7.40 | |||
Na | 0.04 | 0.07 | ||||||||||
Mg | 0.07 | 0.03 | ||||||||||
P | 0.23 | 0.42 | ||||||||||
Cl | 0.01 | 0.11 | ||||||||||
Si | 1.44 | 1.83 | 1.58 | 1.71 | 1.67 | 1.53 | 1.72 | 1.47 | 2.26 | |||
Mo | 16.37 | 16.73 | 15.51 | 16.03 | 16.00 | 14.09 | 15.91 | 14.10 | 14.34 | |||
Ca | 0.05 | 0.18 | ||||||||||
Cr | 39.91 | 30.19 | 29.58 | 42.73 | 41.00 | 41.14 | 40.79 | 38.52 | 42.94 | 36.08 | 35.82 | |
Co | 38.95 | 66.01 | 59.06 | 24.09 | 25.29 | 25.31 | 26.84 | 27.50 | 23.87 | 37.98 | 31.15 | |
Matrix of Co-Cr alloy | C | 2.12 | 2.93 | 5.36 | 4.64 | 4.36 | 4.99 | 4.06 | 3.96 | 5.14 | 12.83 | |
O | 3.47 | 0.00 | 14.80 | 8.71 | 19.54 | 9.91 | 8.95 | 9.60 | 5.42 | 9.62 | ||
Na | 0.04 | 1.55 | 0.76 | |||||||||
Mg | 0.05 | 0.02 | ||||||||||
P | 0.25 | 0.30 | ||||||||||
Cl | 0.04 | 0.07 | ||||||||||
Si | 0.97 | 1.19 | 1.27 | 1.44 | 1.21 | 1.21 | 1.18 | 0.95 | 1.25 | |||
Mo | 4.04 | 3.12 | 5.09 | 2.85 | 3.65 | 4.80 | 4.04 | 3.61 | 4.68 | |||
Ca | 0.05 | 1.51 | ||||||||||
K | 0.40 | |||||||||||
Cr | 26.67 | 31.14 | 30.07 | 25.10 | 27.00 | 26.12 | 25.29 | 26.81 | 25.50 | 25.11 | 23.64 | |
Co | 63.15 | 68.47 | 66.57 | 50.43 | 53.28 | 43.74 | 54.95 | 53.42 | 55.73 | 59.78 | 47.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, G.L.L.; Freiria de Oliveira, C.A.; Macedo, A.P.; Oliveira, V.d.C.; Curylofo, P.A.; Rovere, C.A.D.; Galo, R.; Tonin, B.S.H.; Pagnano, V.O. Electrochemical Behavior of Cobalt–Chromium Alloy Exposed to Effervescent Denture Cleansers. Corros. Mater. Degrad. 2025, 6, 23. https://doi.org/10.3390/cmd6020023
Vasconcelos GLL, Freiria de Oliveira CA, Macedo AP, Oliveira VdC, Curylofo PA, Rovere CAD, Galo R, Tonin BSH, Pagnano VO. Electrochemical Behavior of Cobalt–Chromium Alloy Exposed to Effervescent Denture Cleansers. Corrosion and Materials Degradation. 2025; 6(2):23. https://doi.org/10.3390/cmd6020023
Chicago/Turabian StyleVasconcelos, Glenda Lara Lopes, Carolina Alves Freiria de Oliveira, Ana Paula Macedo, Viviane de Cássia Oliveira, Patrícia Almeida Curylofo, Carlos Alberto Della Rovere, Rodrigo Galo, Bruna S. H. Tonin, and Valéria Oliveira Pagnano. 2025. "Electrochemical Behavior of Cobalt–Chromium Alloy Exposed to Effervescent Denture Cleansers" Corrosion and Materials Degradation 6, no. 2: 23. https://doi.org/10.3390/cmd6020023
APA StyleVasconcelos, G. L. L., Freiria de Oliveira, C. A., Macedo, A. P., Oliveira, V. d. C., Curylofo, P. A., Rovere, C. A. D., Galo, R., Tonin, B. S. H., & Pagnano, V. O. (2025). Electrochemical Behavior of Cobalt–Chromium Alloy Exposed to Effervescent Denture Cleansers. Corrosion and Materials Degradation, 6(2), 23. https://doi.org/10.3390/cmd6020023