Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface
Abstract
1. Introduction
2. Results and Discussion
2.1. Surface Characterization
2.2. Tannic Acid Release
2.3. Cytocompatibility Studies
2.4. Antibacterial Activity
2.5. Antifungal Activity
3. Materials and Methods
3.1. Sample Modification
3.2. Sample Characterization
3.3. In Vitro Studies of the Tannic Acid Release
3.4. Cytocompatibility Evaluation
3.5. Antibacterial Activity
3.5.1. Pre-Culture of Microorganisms and Preparation of Cell Suspensions
3.5.2. Antibacterial Activity Using the Culture Method
3.5.3. LIVE/DEAD Staining Method
3.6. Antifungal Activity
3.6.1. Pre-Culture of Microorganisms and Preparation of Cell Suspensions
3.6.2. Antifungal Activity Using the Culture Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Mater. Des. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Spriano, S.; Yamaguchi, S.; Baino, F.; Ferraris, S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018, 79, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef] [PubMed]
- Roch, M.; Sierra, R.; Andrey, D.O. Antibiotic heteroresistance in ESKAPE pathogens, from bench to bedside. Clin. Microbiol. Infect. 2023, 29, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Rahman, B.; Acharya, A.B.; Siddiqui, R.; Verron, E.; Badran, Z. Photodynamic Therapy for Peri-Implant Diseases. Antibiot. 2022, 11, 918. [Google Scholar] [CrossRef] [PubMed]
- Botero, J.E.; González, A.M.; Mercado, R.A.; Olave, G.; Contreras, A. Subgingival microbiota in peri-implant mucosa lesions and adjacent teeth in partially edentulous patients. J. Periodontol. 2005, 76, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Krom, B.P.; Kidwai, S.; Ten Cate, J.M. Candida and other fungal species: Forgotten players of healthy oral microbiota. J. Dent. Res. 2014, 93, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Dornelas-Figueira, L.M.; Hafiane, N.; Zaytseva-Zotova, D.; Barrantes, A.; Petersen, F.C.; Tiainen, H. Can polyphenolic surface modifications prevent fungal colonization of titanium dental implants? Colloids Surf. B Biointerfaces 2022, 219, 112813. [Google Scholar] [CrossRef] [PubMed]
- Tamai, R.; Sugamata, M.; Kiyoura, Y. Candida albicans enhances invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microb. Pathog. 2011, 51, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Ahmadabadi, H.Y.; Yu, K.; Kizhakkedathu, J.N. Surface modification approaches for prevention of implant associated infections. Colloids Surf. B Biointerfaces 2020, 193, 111116. [Google Scholar] [CrossRef] [PubMed]
- Akay, S.; Yaghmur, A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024, 29, 1172. [Google Scholar] [CrossRef] [PubMed]
- Akshaya, S.; Rowlo, P.K.; Dukle, A.; Nathanael, A.J. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics 2022, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- Winiecki, M.; Uklejewski, R.; Patalas, A. Contemporary Nanoscale Antibacterial Functionalization Strategies for Titanium Implant Materials for Bone and Joint Surgery. In Functionalized Materials Applications in Biomedicine, 1st ed.; Vizureanu, P., Yamaguchi, S., Baltatu, M.S., Göller, G., Sandu, A.V., Zamora-Ledezma, C., Antoniac, I.-V., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2025; pp. 20–41. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, J.; Muhammad, A.; Tian, L.; Liu, Y.; Chen, L.; Yang, P. Biopolymer coating for particle surface engineering and their biomedical applications. Mater. Today Bio 2022, 16, 100407. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.; Booth, B.W. Biomedical applications of tannic acid. J. Biomater. Appl. 2022, 36, 1503–1523. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, A.; Stepczyńska, M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. J. Polym. Environ. 2022, 30, 1683–1708. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek-Szczepańska, B.; Zasada, L.; Michalska-Sionkowska, M.; Vishnu, J.; Manivasagam, G. The Modification of Titanium Surface by Decomposition of Tannic Acid Coating. Appl. Sci. 2023, 13, 5204. [Google Scholar] [CrossRef]
- Guo, L.; Cheng, Y.; Ren, X.; Gopinath, K.; Lu, Z.; Li, C.; Xu, L. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface. Colloids Surf. B Biointerfaces 2021, 200, 111592. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Xu, C.; Wang, Z.; Li, W.; Liu, X.; Lu, D. Preparation of chitosan-tannic acid coating and its anti-osteoclast and antibacterial activities in titanium implants. J. Bone Miner. Metab. 2022, 40, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yan, K.; He, B.; Wang, Y.; Xue, S.; Liu, S.; Ye, Q.; Zhou, F. Preparation of tannic acid based zwitterionic polymer functionalized coating on glass surface for antibacterial and antifouling applications. Prog. Org. Coat. 2024, 194, 108578. [Google Scholar] [CrossRef]
- Sathishkumar, G.; Gopinath, K.; Zhang, K.; Kang, E.-T.; Xu, L.; Yu, Y. Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies. J. Mater. Chem. B 2022, 10, 2296–2315. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, S.; Guo, S.; Yu, G.; Xu, P.; Ling, W.; Ding, Y.; Feng, D. Preparation of Cu2+/TA/HAP composite coating with anti-bacterial and osteogenic potential on 3D-printed porous Ti alloy scaffolds for orthopedic applications. Open Life Sci. 2024, 19, 20220826. [Google Scholar] [CrossRef]
- He, M.; Gao, X.; Fan, Y.; Xie, L.; Yang, M.; Tian, W. Tannic acid/Mg2+-based versatile coating to manipulate the osteoimmunomodulation of implants. J. Mater. Chem. B 2021, 9, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shi, Y.; Zhao, Y.; Liu, Y.; Yang, X.; Li, K.; Zhao, W.; Han, J.; Li, J.; Ge, S. A Multifunctional Metal–Phenolic Nanocoating on Bone Implants for Enhanced Osseointegration via Early Immunomodulation. Adv. Sci. 2024, 11, 2307269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shen, X.; Fei, Z.; Fan, X.; Ma, L.; Wang, H.; Tian, C.; Zhang, B.; Luo, R.; Wang, Y.; et al. Ag-Incorporated Polydopamine/Tannic Acid Coating on Titanium With Enhanced Cytocompatible and Antibacterial Properties. Front. Bioeng. Biotechnol. 2022, 10, 877738. [Google Scholar] [CrossRef] [PubMed]
- Diefenbeck, M.; Schrader, C.; Gras, F.; Mückley, T.; Schmidt, J.; Zankovych, S.; Bossert, J.; Jandt, K.D.; Völpel, A.; Sigusch, B.W.; et al. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials 2016, 101, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Steffi, C.; Shi, Z.; Kong, C.H.; Chong, S.W.; Wang, D.; Wang, W. Use of Polyphenol Tannic Acid to Functionalize Titanium with Strontium for Enhancement of Osteoblast Differentiation and Reduction of Osteoclast Activity. Polymers 2019, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhou, Y.; Yin, M.; Cheng, Y.; Wei, Y.; Hu, Y.; Lian, X.; Chen, W.; Huang, D. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes. Colloids Surf. B Biointerfaces 2020, 196, 111304. [Google Scholar] [CrossRef]
- Sun, Y.; Qu, Y.; Zhao, J. The Application of Tannic Acid in Orthopedics. Front. Bioeng. Biotechnol. 2022, 8, 801369. [Google Scholar] [CrossRef]
- Yüce, E.; Sharifikolouei, E.; Micusik, M.; Ferraris, S.; Rashidi, R.; Najmi, Z.; Gümrükçü, S.; Scalia, A.; Cochis, A.; Rimondini, L.; et al. Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutment. ACS Appl. Bio Mater. 2024, 7, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Ball, V.; Meyer, F. Deposition kinetics and electrochemical properties of tannic acid on gold and silica. Colloids Surf. A Physicochem. Eng. Asp. 2016, 491, 12–17. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Wu, X.; Sheng, S.; Wang, T.; Zan, X. Multifunctional Tannic Acid (TA) and Lysozyme (Lys) Films Built Layer by Layer for Potential Application on Implant Coating. ACS Biomater. Sci. Eng. 2019, 5, 3582–3594. [Google Scholar] [CrossRef] [PubMed]
- Winiecki, M.; Stepczyńska, M.; Moraczewski, K.; Skowronski, L.; Trzcinski, M.; Rerek, T.; Malinowski, R. Effect of Low-Temperature Oxygen Plasma Treatment of Titanium Alloy Surface on Tannic Acid Coating Deposition. Materials 2024, 17, 1065. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Avena-Bustillos, R.J.; Chiou, B.-S.; Li, Y.; Ma, Y.; Williams, T.G.; Wood, D.F.; McHugh, T.H.; Zhong, F. Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocoll. 2017, 62, 212–221. [Google Scholar] [CrossRef]
- Sahiner, N.; Sengel, S.B. Tannic acid decorated poly(methacrylic acid) micro and nanoparticles with controllable tannic acid release and antioxidant properties. Colloids Surf. A Physicochem. Eng. Asp. 2016, 508, 30–38. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation Of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Sileika, T.S.; Barrett, D.G.; Zhang, R.; Lau, K.H.; Messersmith, P.B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem. 2013, 52, 10766–10770. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, M.; Hu, Z.; Wang, Y.; Tong, J.; Zhao, X.; Yue, W.; Nie, G. Tracking the enzyme-response mechanism of tannic acid-embedded chitosan/γ-polyglutamic acid hydrogel. Commun. Mater. 2024, 5, 137. [Google Scholar] [CrossRef]
- ISO 22196; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. ISO: Geneva, Switzerland, 2011.
- Al Bagieh, N.H.; Al Bageah, H.N. Effect of tannic acid on growth and acid production of Candida albicans. Pak. Oral Dent. J. 2014, 34, 405–408. [Google Scholar]
- Moreira, L.E.A.; de Farias Cabral, V.P.; Rodrigues, D.S.; Barbosa, A.D.; Silveira, M.J.C.B.; Coutinho, T.D.N.P.; Barbosa, S.A.; Sá, L.G.D.A.V.; de Andrade Neto, J.B.; da Rocha, S.N.C.; et al. Antifungal activity of tannic acid against Candida spp. and its mechanism of action. Braz. J. Microbiol. 2024, 55, 3679–3690. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.T.; Furhatun-Noor, A.; Matin, A.; Tabassum, F.; Ar Rashid, H. A review study on the pharmacological effects and mechanism of action of tannins. Eur. J. Pharm. Med. Res. 2021, 8, 5–10. [Google Scholar]
- Farha, A.K.; Yang, Q.-Q.; Kim, G.; Li, H.-B.; Zhu, F.; Liu, H.; Gan, R.-Y.; Corke, H. Tannins as an alternative to antibiotics. Food Biosci. 2020, 38, 100751. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Chen, Y.; Qin, F.; Yang, H. Pharmacological effects and mechanisms of tannic acid. Biomed. Pharmacother. 2022, 154, 113561. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, B.; Miłek, O.; Michalska-Sionkowska, M.; Zasada, L.; Twardowska, M.; Warżyńska, O.; Kleszczyński, K.; Osyczka, A.M. Novel Eco-Friendly Tannic Acid-Enriched Hydrogels-Preparation and Characterization for Biomedical Application. Materials 2020, 13, 4572. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Sionkowska, M.; Warżyńska, O.; Kaczmarek-Szczepańska, B.; Łukowicz, K.; Osyczka, A.M.; Walczak, M. Characterization of Collagen/Beta Glucan Hydrogels Crosslinked with Tannic Acid. Polymers 2021, 13, 3412. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, J.; Stachowiak, N.; Prus, W. Stability studies of collagen-based microspheres with Calendula officinalis flower extract. Polym. Degrad. Stab. 2019, 163, 214–219. [Google Scholar] [CrossRef]
- ISO 10993-12; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. ISO: Geneva, Switzerland, 2021.
- Lacroix, C.; Gicquel, A.; Sendid, B.; Meyer, J.; Accoceberry, I.; François, N.; Morio, F.; Desoubeaux, G.; Chandenier, J.; Kauffmann-Lacroix, C.; et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin. Microbiol. Infect. 2014, 20, 153–158. [Google Scholar] [CrossRef] [PubMed]
Spectrum | eV | Assignment of Peak | Ti-TA2 at. % | Total Content | Ti-TA5 at. % | Total Content | Ti-TA8 at. % | Total Content |
---|---|---|---|---|---|---|---|---|
C 1s | 284.7 | C–C, C–H | 31.17 | 67.99 | 30.83 | 67.06 | 42.38 | 74.09 |
286.3 | C–O | 29.65 | 28.80 | 24.89 | ||||
288.7 | O–C=O | 7.17 | 7.43 | 6.82 | ||||
O 1s | 531.8 | O=C | 3.30 | 32.01 | 4.10 | 32.94 | 4.69 | 25.91 |
533.3 | C–O–C, C–OH | 28.71 | 28.84 | 21.22 | ||||
Total | 100.00 | 100.00 | 100.00 |
Sample | Ti_0 | Ti-TA2 | Ti-TA5 | Ti-TA8 | |
---|---|---|---|---|---|
Tested Bacteria | |||||
E. coli | 1.7 × 108 | 5.0 × 107 | 9.0 × 105 | <1.0 × 104 | |
S. aureus | 1.8 × 108 | 4.0 × 107 | 8.0 × 105 | 1.0 × 104 | |
P. aeruginosa | 1.9 × 108 | 3.8 × 107 | 4.0 × 105 | 1.0 × 105 |
Incubation Time | C. albicans | Ti_0 | Ti-TA2 | Ti-TA5 | Ti-TA8 |
---|---|---|---|---|---|
6 h | A | 5.2 × 104 | 5.1 × 104 | 1.1 × 104 | 2.3 × 104 |
B | 6.0 × 104 | 2.7 × 104 | 6.5 × 103 | 6.5 × 103 | |
C | 5.6 × 104 | 1.4 × 104 | 1.2 × 104 | 1.2 × 104 | |
Mean (A–C) | 5.6 × 104 | 3.1 × 104 | 1.0 × 104 | 1.3 × 104 | |
24 h | A | 5.1 × 105 | 1.4 × 106 | 2.1 × 103 | 6.7 × 103 |
B | 5.5 × 105 | 1.6 × 106 | 3.9 × 103 | 9.4 × 103 | |
C | 5.2 × 105 | 2.1 × 106 | 2.9 × 103 | 8.8 × 103 | |
Mean (A–C) | 5.3 × 105 | 1.7 × 106 | 3.0 × 103 | 8.3 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiecki, M.; Stepczyńska, M.; Walczak, M.; Soszczyńska, E.; Twarużek, M.; Bociaga, D.; Trzcinski, M.; Michalska-Sionkowska, M.; Moraczewski, K. Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface. Int. J. Mol. Sci. 2025, 26, 7051. https://doi.org/10.3390/ijms26157051
Winiecki M, Stepczyńska M, Walczak M, Soszczyńska E, Twarużek M, Bociaga D, Trzcinski M, Michalska-Sionkowska M, Moraczewski K. Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface. International Journal of Molecular Sciences. 2025; 26(15):7051. https://doi.org/10.3390/ijms26157051
Chicago/Turabian StyleWiniecki, Mariusz, Magdalena Stepczyńska, Maciej Walczak, Ewelina Soszczyńska, Magdalena Twarużek, Dorota Bociaga, Marek Trzcinski, Marta Michalska-Sionkowska, and Krzysztof Moraczewski. 2025. "Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface" International Journal of Molecular Sciences 26, no. 15: 7051. https://doi.org/10.3390/ijms26157051
APA StyleWiniecki, M., Stepczyńska, M., Walczak, M., Soszczyńska, E., Twarużek, M., Bociaga, D., Trzcinski, M., Michalska-Sionkowska, M., & Moraczewski, K. (2025). Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface. International Journal of Molecular Sciences, 26(15), 7051. https://doi.org/10.3390/ijms26157051