Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = decorative value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7489 KB  
Article
Characteristics of the Gold-Decorated Wooden Sculptures of Qing Dynasty Collected in Qianjiang Cultural Administration Institute, Chongqing, China
by Yani An, Keyou Fang, Menghua Pang and Xiaopan Fan
Coatings 2025, 15(10), 1163; https://doi.org/10.3390/coatings15101163 - 5 Oct 2025
Viewed by 370
Abstract
Two gold-decorated wooden sculptures of Qing Dynasty collected in Qianjiang Cultural Administration Institute, Chongqing, China, holds significant cultural value. Although in appearance they were preserved completely, the wooden bodies exhibited a certain degree of decay with severe peeling of the surface painted layer [...] Read more.
Two gold-decorated wooden sculptures of Qing Dynasty collected in Qianjiang Cultural Administration Institute, Chongqing, China, holds significant cultural value. Although in appearance they were preserved completely, the wooden bodies exhibited a certain degree of decay with severe peeling of the surface painted layer and gold lacquer layer. In this study, the samples from the sculptures were characterized by microscopy, SED–EDS (Scanning Electron Microscopy and Energy Dispersive Spectrometer) analysis, and Raman spectroscopy, while the preservation state of wooden core was assessed through the fluorescence microscopy and NREL (National Renewable Energy Laboratory) chemical analysis methods. Findings reveal that the raw material for wooden sculpture is cypress, and holocellulose content of wooden core is as low as 32%. The raw materials for red pigment include cinnabar (HgS) and hematite (Fe2O3). There are multiple layers of lacquer and gold can be observed. There is a layer made of clay, gypsum, or brick ash beneath the lacquer layer and colored layer. The gold layer on the surface adopted traditional Chinese gilding technique which is called sticking gold. This study provides insights into the material properties and technological features of these wooden sculptures, offering a reference for future protection of similar sculptures. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

47 pages, 14696 KB  
Article
Wrapping Matters: Unpacking the Materiality of Votive Animal Mummies
by Maria Diletta Pubblico
Heritage 2025, 8(10), 415; https://doi.org/10.3390/heritage8100415 - 3 Oct 2025
Viewed by 274
Abstract
This study presents the first systematic investigation of ancient Egyptian votive animal mummy wrappings, based on the analysis of an extensive dataset encompassing specimens from various museum collections and archaeological contexts. The research addresses the long-standing neglect and fragmented understanding of the wrapping [...] Read more.
This study presents the first systematic investigation of ancient Egyptian votive animal mummy wrappings, based on the analysis of an extensive dataset encompassing specimens from various museum collections and archaeological contexts. The research addresses the long-standing neglect and fragmented understanding of the wrapping chaîne opératoire and aims to establish a consistent terminology, as the different stages of the wrapping sequence, bundle shapes, and decorative patterns have often been described vaguely. Through an interdisciplinary methodology that integrates photogrammetry, colorant identification, textile analysis, and experimental archaeology, the study explores the complexity of wrapping practices across their different stages. This approach offers new insights into the structural logic, raw material selection, and design conventions behind this production. The analysis reveals that the bundles exhibit standardized shapes and decorative patterns grounded in well-established visual criteria and manufacturing sequences. These findings demonstrate that the wrappings reflect a codified visual language and a high level of technical knowledge, deeply rooted in Egyptian tradition. The study also emphasizes its economic implications: the wrapping significantly enhanced the perceived value of the offering, becoming the primary element influencing both its material and symbolic worth. Ultimately, this work provides an interpretative framework for understanding wrapping as an essential medium of ritual sacralization for votive animal mummies, allowing the individual prayer to be effectively conveyed to the intended deity. Consequently, this research marks a significant step forward in advancing the technical, aesthetic, and ritual insight of wrapping practices, which preserve a wealth of still-overlooked information. Full article
Show Figures

Figure 1

23 pages, 8561 KB  
Article
Microbial Diversity in the Rhizosphere Soils of Three Different Populations of Paphiopedilum helenae, a Critically Endangered Wild Orchid
by Kanghua Xian, Jinhan Sang, Jiang Su, Ningzhen Huang, Wenlong Wu, Jinxiang He, Baojun Liu and Chuanming Fu
Microorganisms 2025, 13(10), 2282; https://doi.org/10.3390/microorganisms13102282 - 30 Sep 2025
Viewed by 345
Abstract
In the Red List of Threatened Species, released by International Union for Conservation of Nature (IUCN), Paphiopedilum helenae has been classified as an endangered species. It exhibits exceptional decorative value and germplasm resource potential. To elucidate the ecological adaptation of this species and [...] Read more.
In the Red List of Threatened Species, released by International Union for Conservation of Nature (IUCN), Paphiopedilum helenae has been classified as an endangered species. It exhibits exceptional decorative value and germplasm resource potential. To elucidate the ecological adaptation of this species and the characteristics of its rhizosphere microbiome, bacterial 16S rRNA and fungal ITS sequences of three wild populations of P. helenae were investigated using Illumina high-throughput sequencing technology and the microbial community structures and diversities were systematically compared. These three populations were spanned across distinct geographical locations in Longzhou County, Guangxi. The results showed that the bacterial community in the rhizosphere soil of P. helenae comprised 31 phyla, primarily including Actinobacteriota, Proteobacteria, Chloroflexi and Acidobacteriota. On the other hand, the fungal community consisted of 10 phyla, dominated by Ascomycota and Basidiomycota. There were significant differences in the diversity of rhizosphere microbes across different populations of P. helenae. The LG population had the highest bacterial richness (Chao index: 2912.71 ± 131.73; p < 0.05) and diversity (Shannon index: 6.40 ± 0.06; p < 0.01), while the MQ population had the lowest diversity (Shannon index: 3.47 ± 0.24; p < 0.01) of fungi. The degree of variation in fungal β-diversity was significantly higher than that of bacteria. Soil organic matter (SOM) and available nitrogen (AN) contents were the core factors shaping the microbial communities in the rhizosphere soil of P. helenae, which jointly explained 49.87% and 16.39% of variations in the bacterial and fungal communities. Furthermore, population-specific enrichment of functionally significant microorganisms was evident. Population MQ was enriched with plant growth-promoting and stress-resistant fungi, such as Geminibasidium, Trichoderma, etc. Population LG was enriched with oligotrophic bacteria (e.g., Patescibacteria), while population SL exhibited an overwhelming dominance of Ascomycota (93.25%) and enrichment of pathogenic fungal genus Nigrospora. This research revealed the variations in the functional adaptation strategy of P. helenae and the microbial communities in the rhizosphere soils across different geographical locations. This suggests that microbial community imbalance in rhizosphere soil may be one of the factors leading to the endangerment of this plant species. The study proposed a differentiated protection strategy for endangered plant species based on microbial resources. The results provide a theoretical basis for development of a “microorganism-assisted protection” strategy for ecological restoration and sustainable utilization of endangered orchid plants. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

29 pages, 47976 KB  
Article
An Occurrence of Pyroxmangite in the NYF Granitic Pegmatite of the Gabal El-Bakriya Intrusion, Arabian–Nubian Shield
by Danial M. Fathy, Faris A. Abanumay, Shehata Ali, Esam S. Farahat, Andrey Bekker and Mokhles K. Azer
Minerals 2025, 15(10), 1027; https://doi.org/10.3390/min15101027 - 28 Sep 2025
Viewed by 241
Abstract
We report here, for the first time on the Nubian Shield, the western half of the Arabian–Nubian Shield (ANS), pegmatite-hosted pockets with a unique mineralogy, including pyroxmangite. It represents the second discovery on the ANS, where the first one was at Jabal Aja [...] Read more.
We report here, for the first time on the Nubian Shield, the western half of the Arabian–Nubian Shield (ANS), pegmatite-hosted pockets with a unique mineralogy, including pyroxmangite. It represents the second discovery on the ANS, where the first one was at Jabal Aja on the Arabian Shield, the eastern half of the ANS. One of the most remarkable aspects of pyroxmangite is its rarity and the potential economic value of its use in jewelry and decorative applications. Pegmatites are associated with A-type granites of the Gabal El-Bakriya intrusion (GEBI), Eastern Desert, Egypt. Mineralized pegmatites occur at the margin of the alkali-feldspar granite and exhibit gradational contacts with the host rocks. The pegmatites were emplaced as plugs and dikes within the intrusion and along its periphery. Pyroxmangite appears as coarse-grained, massive black aggregates or as disseminated crystals. The pegmatites are composed of K-feldspars and quartz, with subordinate amounts of albite, micas, and mafic minerals. Accessory phases include monazite-(Ce), zircon, fergusonite, xenotime, fluorite, pyrochlore, allanite, thorite, bastnäsite, samarskite, cassiterite, beryl, and pyrochlore. Pyroxmangite-bearing assemblages consist essentially of pyroxmangite and garnet, with accessory pyrochroite, quartz, zircon, magnetite, and fluorite. Geochemically, the pegmatites are highly evolved, with elevated SiO2 content (76.51–80.69 wt.%) and variable concentrations of trace elements. They show significant enrichment in Nb (Nb > Ta), Y, REE, Zr, Th, U, and F, consistent with NYF-type pegmatites. REE contents range from 173.94 to 518.21 ppm, reflecting diverse accessory mineral assemblages. Tectonically, the pegmatites crystallized in a post-collisional setting, representing a late-stage differentiate of the A-type GEBI magma. Mineralization is concentrated in the apical and marginal zones of the granitic cupola and is dominated by barite, fluorite, Nb-Ta oxides, REE minerals, and uranium-bearing phases. The highly evolved granites, greisens, pegmatites, and quartz-fluorite veins of the GEBI have a high economic potential, deserving further exploration. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

35 pages, 10124 KB  
Review
Production, Thermal, Durability, and Mechanical Properties of Translucent Concrete and Its Applications in Sustainable Construction: A Review
by Khaled A. Alawi Al-Sodani
Buildings 2025, 15(18), 3314; https://doi.org/10.3390/buildings15183314 - 12 Sep 2025
Viewed by 663
Abstract
This study examines transparent concrete (TC) utilizing bibliometric analysis of articles from the Scopus database to identify its performance, knowledge gaps, limitations, and applications. TC is a new type of sustainable building material that combines optical fibers with concrete and is lighter in [...] Read more.
This study examines transparent concrete (TC) utilizing bibliometric analysis of articles from the Scopus database to identify its performance, knowledge gaps, limitations, and applications. TC is a new type of sustainable building material that combines optical fibers with concrete and is lighter in weight than traditional concrete. Incorporating optical fibers in concrete enables light transmission, thereby reducing the need for artificial lighting in TC structures. TC is also referred to as light-transmitting concrete due to its unique properties. By utilizing natural light resources instead of electric lighting, buildings can better harness sunlight, providing both architectural beauty and energy savings. This approach decreases reliance on non-renewable resources and ultimately conserves energy. Scholars have focused a lot of attention on the superb light transmission and decorative appeal of TC. However, its applications in the construction sector have yet to gain traction due to the time-consuming production process, high labor costs, and limited studies on its durability and mechanical properties. This article reviews the applications, production processes, types of TC, bibliometric analysis, cost analysis, and the research findings related to mechanical, thermal, energy-saving, light-transmitting, and durability properties. TC showed a substantial decrease in the building’s total energy use and maintained strength comparable to conventional concrete. It also displayed minimal water resistance, porosity, and density, making it suitable for constructing buildings and lightweight road surfaces. Additionally, it offers notable aesthetic value. The study identifies gaps in durability and standardization while highlighting significant developments in TC’s mechanical behavior, thermal and energy performance, and applications. Furthermore, it summarizes the future research paths for TC, which are likely to enhance its implementation as a promising sustainable construction material. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 3673 KB  
Article
Backpropagation Neural Network-Based Prediction Model of Marble Surface Quality Cut by Diamond Wire Saw
by Hui Dong, Fan Cui, Zhipu Huo and Yufei Gao
Micromachines 2025, 16(9), 971; https://doi.org/10.3390/mi16090971 - 23 Aug 2025
Viewed by 700
Abstract
Marble is widely used in the field of construction and home decoration because of its high strength, high hardness and good wear resistance. Diamond wire sawing has been applied in marble cutting in industry due to its features such as low material loss, [...] Read more.
Marble is widely used in the field of construction and home decoration because of its high strength, high hardness and good wear resistance. Diamond wire sawing has been applied in marble cutting in industry due to its features such as low material loss, high cutting accuracy and low noise. The sawing surface quality directly affects the subsequent processing efficiency and economic benefit of marble products. The surface quality is affected by multiple parameters such as process parameters and workpiece sizes, making it difficult to accurately predict through traditional empirical equations or linear models. To improve prediction accuracy, this paper proposes a prediction model based on backpropagation (BP) neural network. Firstly, through the experiments of sawing marbles with the diamond wire saw, the datasets of surface roughness and waviness under different process parameters were obtained. Secondly, a BP neural network model was established, and the mixed-strategy-improved whale optimization algorithm (IWOA) was used to optimize the initial weight and threshold of the network, and established the IWOA-BP neural network model. Finally, the performance of the model was verified by comparison with the traditional models. The results showed that the IWOA-BP neural network model demonstrated the optimal prediction performance in both the surface roughness Ra and waviness Wa. The minimum predicted values of the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) were 0.0342%, 0.0284% and 1.5614%, respectively, which proved that the model had higher prediction accuracy. This study provides experimental basis and technical support for the prediction of the surface quality of marble material cut by diamond wire saw. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

18 pages, 4250 KB  
Article
Highly Efficient Electrocatalyst of 2D–2D gC3N4–MoS2 Composites for Enhanced Overall Water Electrolysis
by Sankar Sekar, Atsaya Shanmugam, Youngmin Lee and Sejoon Lee
Materials 2025, 18(16), 3775; https://doi.org/10.3390/ma18163775 - 12 Aug 2025
Cited by 1 | Viewed by 724
Abstract
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, [...] Read more.
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, we employ 2D molybdenum disulfide (MoS2) nanosheets and pyrolytically fabricated 2D graphitic carbon nitride (gC3N4) nanosheets to create 2D gC3N4-decorated 2D MoS2 (2D–2D gC3N4–MoS2) nanocomposites using a facile sonochemical method. The 2D–2D gC3N4–MoS2 nanocomposites show an interconnected and agglomerated structure of 2D gC3N4 nanosheets decorated on 2D MoS2 nanosheets. For water electrolysis, the gC3N4–MoS2 nanocomposites exhibit low overpotentials (OER: 225 mV, HER: 156 mV), small Tafel slope values (OER: 49 mV/dec, HER: 101 mV/dec), and excellent durability (up to 100 h for both OER and HER) at 10 mA/cm2 in 1 M KOH. Furthermore, the gC3N4–MoS2 nanocomposites show excellent overall water electrolysis performance with a low full-cell voltage (1.52 V at 10 mA/cm2) and outstanding long-term cell stability. The superb bifunctional activities of the gC3N4–MoS2 nanocomposites are attributed to the synergistic effects of 2D gC3N4 (i.e., low charge-transfer resistance) and 2D MoS2 (i.e., a large electrochemically active surface area). These findings suggest that the 2D–2D gC3N4–MoS2 nanocomposites could serve as excellent bifunctional catalysts for overall water electrolysis. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

15 pages, 961 KB  
Article
Analysis of Chemical Composition and Odor Characteristics in Particleboards Decorated by Resin-Impregnated Paper, Polypropylene Film and Polyvinyl Chloride Film
by Liming Zhu, Minghui Yang, Lina Tang, Qian Chen, Xiaorui Liu, Xianwu Zou, Yuejin Fu and Bo Liu
Polymers 2025, 17(15), 2145; https://doi.org/10.3390/polym17152145 - 5 Aug 2025
Viewed by 466
Abstract
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or [...] Read more.
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or suppressing the release of VOCs and odorants from particleboard were explored. The substances that were covered or suppressed and newly introduced before and after processing were identified to provide a basis for reducing the odor emissions of PVC-, PP- and RIP-decorated particleboard. Taking undecorated particleboard and particleboard treated by three types of decorative materials as research subjects, the air permeability of the three decorative materials was tested using the Gurley Permeability Tester. TVOC emissions from the boards were evaluated using the 1 m3 environmental chamber method. Qualitative and quantitative analyses of the samples were conducted via thermal desorption–gas chromatography–mass spectrometry (TD-GCMS). The contribution of odor substances was determined using odor activity value (OAV). The results indicated that the permeability from high to low was PVC film, PP film and RIP. Compared with undecorated particleboard, the TVOC emissions of RIP-decorated boards decreased by 93%, PP-decorated particleboard by 83% but the TVOC emissions of PVC-decorated particleboard increased by 67%. PP decoration treatment masked or suppressed the release of 20 odor substances but introduced xylene, which can increase potentially the health risks for PP-decorated particleboard. PVC decoration treatment masked or suppressed 19 odor substances, but it introduced 12 new compounds, resulting in an overall increase in TVOC emissions. RIP treatment did not introduce new odor substances. After PP film and RIP treatments, both the variety of VOCs released and the number of key odor-contributing compounds and modifying odorants decreased. In contrast, the number of modifying odorants and potential odorants increased after PVC treatment. VOC emissions were effectively masked or suppressed by three decoration treatments, same as the release of substances contributing to overall odor of particleboard was reduced. Among them, PP and RIP decorative materials demonstrate better effects. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

32 pages, 8366 KB  
Article
A Comprehensive Study of the Cobalt(II) Chelation Mechanism by an Iminodiacetate-Decorated Disaccharide Ligand
by Cécile Barbot, Laura Gouriou, Mélanie Mignot, Muriel Sebban, Ping Zhang, David Landy, Chang-Chun Ling and Géraldine Gouhier
Molecules 2025, 30(15), 3263; https://doi.org/10.3390/molecules30153263 - 4 Aug 2025
Viewed by 634
Abstract
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment [...] Read more.
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment that is used, in particular, in lithium-ion batteries. The interactions between cobalt(II) and synthesized ligand 9 were systematically studied using different analytical methods such as 1H and 13C NMR, potentiometry, spectrophotometry, ITC, and ICP-AES. We observed a high affinity for the 1:1 complex, one cobalt(II) associated with two iminodiacetate groups, which is 10-fold higher than the 2:1 complex, where each of the two IDA groups interacts alone with a cobalt(II). Taking into account the log βCoL value obtained (≈12.3) with the stoichiometry 1:1, the strength of this complexation with cobalt(II) can be ranked as follows for the most common ligands: IDA < MIDA < NTA < 9 < EDTA < TTHA < DTPA. We further completed a preliminary remediation test with water contaminated with cobalt(II) and recovered cobalt(II) metal using Chelex® resin, which allowed a recycling of the synthetic ligand for future recovering experiments. The results shed light on the great potential of using this synthetic ligand as an effective and green remediation tool. Full article
Show Figures

Graphical abstract

18 pages, 4009 KB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 680
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

25 pages, 11288 KB  
Article
Evaluation of Urban Street Historical Appearance Integrity Based on Street View Images and Transfer Learning
by Jiarui Xu, Yunxuan Dai, Jiatong Cai, Haoliang Qian, Zimu Peng and Teng Zhong
ISPRS Int. J. Geo-Inf. 2025, 14(7), 266; https://doi.org/10.3390/ijgi14070266 - 7 Jul 2025
Viewed by 943
Abstract
The challenges of globalization and urbanization increasingly impact the Historic Urban Landscape (HUL), yet fine-grained and quantitative methods for evaluating HUL remain limited. Adopting a human-centered perspective, this study introduces a novel framework to quantitatively evaluate HUL through the lens of Historical Appearance [...] Read more.
The challenges of globalization and urbanization increasingly impact the Historic Urban Landscape (HUL), yet fine-grained and quantitative methods for evaluating HUL remain limited. Adopting a human-centered perspective, this study introduces a novel framework to quantitatively evaluate HUL through the lens of Historical Appearance Integrity (HAI). An evaluation system comprising four key dimensions (building materials, building colors, decorative details, and streetscape morphology) was constructed using the Analytic Hierarchy Process (AHP). An Elo rating system was subsequently applied to quantify the scores of the indicators. A prediction model was developed based on transfer learning and feature fusion to estimate the scores of the indicators. The model achieved accuracies above 93% and loss values below 0.2 for all four indicators. The framework was applied to the Inner Qinhuai Historical Character Area in Nanjing for validation. Results show that the spatial distribution of HAI in the area exhibits significant spatial heterogeneity. On a 0–100 scale, the average HAI scores were 23.17 for primary roads, 27.73 for secondary roads, and 46.93 for branch roads. This study offers a fine-grained, automated approach to evaluate HAI along urban streets and provides a quantitative reference for heritage conservation and urban renewal strategies. Full article
(This article belongs to the Special Issue Spatial Information for Improved Living Spaces)
Show Figures

Figure 1

14 pages, 12010 KB  
Article
A Highly Sensitive Formaldehyde Gas Sensor Based on Ag2O and PtO2 Co-Decorated LaFeO3 Nanofibers Prepared by Electrospinning
by Xin Wang, Fei Song, Huai’an Fu, Shanshan Yu, Kai Zhang, Zhipeng Tang, Qingkuan Meng, Qiang Jing and Bo Liu
Sensors 2025, 25(13), 3848; https://doi.org/10.3390/s25133848 - 20 Jun 2025
Viewed by 888
Abstract
The widespread use of formaldehyde in both industrial and household products has raised significant health concerns, emphasizing the need for highly sensitive sensors to monitor formaldehyde concentrations in the environment in real time. In this study, we report the fabrication of a highly [...] Read more.
The widespread use of formaldehyde in both industrial and household products has raised significant health concerns, emphasizing the need for highly sensitive sensors to monitor formaldehyde concentrations in the environment in real time. In this study, we report the fabrication of a highly sensitive formaldehyde gas sensor based on Ag2O and PtO2 co-decorated LaFeO3 nanofibers, prepared by electrospinning, with an ultra-low detection limit of 10 ppb. Operating at an optimal temperature of 210 °C, the sensor exhibits high sensitivity, with a response value of 283 to 100 ppm formaldehyde—nearly double the response of the Ag-only decorated LaFeO3 sensor. Additionally, the sensor demonstrated good selectivity, repeatability, and long-term stability over 80 days. The enhanced sensitivity is attributed to the strong adsorption ability of Ag towards both oxygen and formaldehyde, Ag’s catalytic oxidation of formaldehyde, PtO2’s catalytic action on oxygen, and the spillover effect of PtO2 on oxygen. This sensor holds significant potential for environmental monitoring due to its ultrahigh sensitivity and ease of fabrication. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

17 pages, 1128 KB  
Article
Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes
by Ying Zhang, Li-Bo Chen, Hao-Yang Shen, Zi-Chao Wu, Ning-Zheng Zhu, Chong-Jing Gao and Ying Guo
Toxics 2025, 13(7), 517; https://doi.org/10.3390/toxics13070517 - 20 Jun 2025
Viewed by 586
Abstract
Phthalic acid esters (PAEs), a class of synthetic semi-volatile organic compounds, are extensively incorporated into decorative materials. However, their specific occurrence, migration behaviors, and environmental impact on these materials—which comprise the largest surface areas in residential settings—remain insufficiently understood. This study investigated the [...] Read more.
Phthalic acid esters (PAEs), a class of synthetic semi-volatile organic compounds, are extensively incorporated into decorative materials. However, their specific occurrence, migration behaviors, and environmental impact on these materials—which comprise the largest surface areas in residential settings—remain insufficiently understood. This study investigated the distribution, emission dynamics, and environmental burdens of PAEs in flooring commonly used in Chinese households. The results showed that PAEs are widespread in flooring, with total concentrations ranging from 1220 to 166,000 ng/g (14,100 ng/g, median value). Solid wood flooring (55,900 ng/g) exhibited significantly higher PAE levels compared to engineered flooring (22,600 ng/g) and laminate flooring (4000 ng/g) (p < 0.05). Migration experiments revealed that solid wood flooring tended to continuously release PAEs, laminate flooring showed a pronounced capacity for PAE absorption, and engineered flooring exhibited both release and absorption behaviors. The initial PAE concentration is the dominant factor influencing migration rates, while the flooring type and substrate density also contribute to varying degrees. The estimated environmental burdens of PAEs resulting from flooring in newly renovated Chinese households ranged from 3.63 × 109 ng to 3.45 × 1011 ng, with a median value of 1.23 × 1010 ng. Households in the eastern and southwestern regions exhibited the highest PAE burdens, while the southern region showed the lowest. Socioeconomic factors such as residential floor area, number of rooms, household income, and renovation budget significantly influenced the environmental burden of PAEs derived from flooring. Full article
(This article belongs to the Special Issue Environmental Behavior and Risks of Organic Pollutants)
Show Figures

Graphical abstract

26 pages, 8111 KB  
Article
Spatial Perception: How Paper Art Realizes the Expansion Design of Urban Spaces
by Dingwei Zhang, Xiaotong Zhang and Hongtao Zhou
Buildings 2025, 15(12), 1967; https://doi.org/10.3390/buildings15121967 - 6 Jun 2025
Viewed by 999
Abstract
Aiming at the problems of insufficient function, cultural aphasia, and blunted perception faced by contemporary urban public space, this study explores the potential of paper-based materials in enhancing spatial quality and realizing spatial expansion effects, providing new solutions for urban renewal. Taking the [...] Read more.
Aiming at the problems of insufficient function, cultural aphasia, and blunted perception faced by contemporary urban public space, this study explores the potential of paper-based materials in enhancing spatial quality and realizing spatial expansion effects, providing new solutions for urban renewal. Taking the sensory plasticity, visual aesthetics, cultural carrying, and ecological and environmental protection of paper materials as the entry point, we constructed a theoretical model of “paper art space expansion”. Through the design intervention strategy, we explored the application of paper art in the design of interface, space, art creation, and cultural empowerment from visual and tactile perspectives. Through course design, artist interviews, and questionnaire analysis, the study shows that (1) paper material can achieve a balance between function and aesthetics through multi-dimensional design strategies; (2) its environmental attributes and emotional healing value can effectively enhance the emotional connection between people and space; and (3) the contemporary translation of paper art provides an important path for cultural empowerment. This study forms a three-dimensional design framework of “Perception Layer-Technology Layer-Cultural Layer” and proposes a set of innovative models for the application of paper materials in contemporary art and space design, which can provide support for the expansion of space and the increase in content. Future research will focus on the transition of paper art from decoration to the design paradigm of the cultural narrative of intelligent space, deepening the value of paper material as an ecological, cultural, and technological medium, and open up a new direction for the theory and practice of spatial design. At the same time, more attention will be paid to the exploration of the possibility of sensory healing for the blind and other special populations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

14 pages, 4750 KB  
Review
The Development Potential of Spalted Wood Artifacts in China—An Analysis
by Chen Li and Seri C. Robinson
Colorants 2025, 4(2), 19; https://doi.org/10.3390/colorants4020019 - 3 Jun 2025
Viewed by 1050
Abstract
Spalted wood is a natural material characterized by distinctive colors and patterns from wood decay fungi as they digest their substrate and leave behind colored secretions. As an art form, spalted wood was used heavily in western Europe from the 1400s–1600s; however, its [...] Read more.
Spalted wood is a natural material characterized by distinctive colors and patterns from wood decay fungi as they digest their substrate and leave behind colored secretions. As an art form, spalted wood was used heavily in western Europe from the 1400s–1600s; however, its use in other parts of the world remains deeply understudied, even in cultures where wood played a dominant social role. The use of spalted wood in China, in particular, is unknown, despite a growing interest by Chinese researchers in modern spalting practices and their potential commercial value. This study systematically reviews the potential historic use, current artistic value, environmental significance, and future application prospects of spalted wood for a Chinese market. By integrating historical records, modern scientific research, and insights from traditional Chinese woodworking, the study provides a comprehensive analysis of the aesthetic and functional value of spalted wood for Chinese markets. The findings indicate that the random and non-reproducible nature of spalted wood imbues it with exceptional artistic appeal and collectability, which has a strong potential to appeal to Chinese furniture design, decorative arts, and high-end interior applications. Furthermore, spalted wood demonstrates considerable potential for resource recycling by turning otherwise non-commercial, pale, white woods into higher value options—a phenomenon that has been studied across Europe and North America. In China, this has the potential to reduce wood waste and advance ecological design. However, challenges remain in fungal infection control, processing techniques, and market adoption. With ongoing advancements in biotechnology and manufacturing processes, spalted wood is poised to gain greater recognition in Chinese art, design, and cultural innovation while also contributing to green manufacturing and sustainable development. Full article
Show Figures

Figure 1

Back to TopTop