materials-logo

Journal Browser

Journal Browser

Advanced Nanomaterials for Energy Storage and Conversion

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Nanomaterials and Nanotechnology".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 986

Special Issue Editors

Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
Interests: energy storage devices; water electrolysis; nanoscience and technology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
Interests: nanomaterials for energy applications; catalyst synthesis; material characterization; electrochemical analysis

Special Issue Information

Dear Colleagues,

The rapid advances in portable electronic devices and electric vehicles have stimulated the development of energy conversion and storage technologies such as rechargeable batteries, supercapacitors and electrolyzers. The efficiency of these energy conversion and storage devices strongly depends on the performance of electrode materials. Developing highly efficient, inexpensive and eco-friendly electrochemical materials is essential for the exploitation and utilization of renewable energy.

This Special Issue aims to gather the recent progress in advanced nanomaterials and their applications in energy conversion and storage systems. We encourage manuscripts that present novel materials, new synthesis approaches, advanced characterization methods and enhanced electrochemical performance. Topics of interest include, but are not limited to, advanced materials for lithium-ion batteries, sodium-ion batteries, supercapacitors and electrolyzers; novel material designs; and advances in energy conversion and storage technologies. In this Special Issue, research papers, communications and reviews are welcome. 

Dr. Meng Zhou
Guest Editor

Dr. Rong He
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energy conversion and storage
  • batteries
  • supercapacitors
  • electrolysis
  • functional nanomaterials
  • electrode materials
  • electrode fabrication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4250 KB  
Article
Highly Efficient Electrocatalyst of 2D–2D gC3N4–MoS2 Composites for Enhanced Overall Water Electrolysis
by Sankar Sekar, Atsaya Shanmugam, Youngmin Lee and Sejoon Lee
Materials 2025, 18(16), 3775; https://doi.org/10.3390/ma18163775 - 12 Aug 2025
Viewed by 543
Abstract
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, [...] Read more.
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, we employ 2D molybdenum disulfide (MoS2) nanosheets and pyrolytically fabricated 2D graphitic carbon nitride (gC3N4) nanosheets to create 2D gC3N4-decorated 2D MoS2 (2D–2D gC3N4–MoS2) nanocomposites using a facile sonochemical method. The 2D–2D gC3N4–MoS2 nanocomposites show an interconnected and agglomerated structure of 2D gC3N4 nanosheets decorated on 2D MoS2 nanosheets. For water electrolysis, the gC3N4–MoS2 nanocomposites exhibit low overpotentials (OER: 225 mV, HER: 156 mV), small Tafel slope values (OER: 49 mV/dec, HER: 101 mV/dec), and excellent durability (up to 100 h for both OER and HER) at 10 mA/cm2 in 1 M KOH. Furthermore, the gC3N4–MoS2 nanocomposites show excellent overall water electrolysis performance with a low full-cell voltage (1.52 V at 10 mA/cm2) and outstanding long-term cell stability. The superb bifunctional activities of the gC3N4–MoS2 nanocomposites are attributed to the synergistic effects of 2D gC3N4 (i.e., low charge-transfer resistance) and 2D MoS2 (i.e., a large electrochemically active surface area). These findings suggest that the 2D–2D gC3N4–MoS2 nanocomposites could serve as excellent bifunctional catalysts for overall water electrolysis. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

Back to TopTop