Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Questionnaire and Sample Collection
2.3. PAEs Migration Experiment
2.4. Sample Preparation and Instrumental Analysis
2.5. Quality Assurance and Quality Control (QA/QC)
2.6. Migration Rate of PAEs in Flooring
2.7. Annual Variation of PAEs in Flooring
2.8. Statistical Analysis
3. Results and Discussion
3.1. Use of Decoration Materials in Chinese Households
3.2. Concentrations and Compositions of PAEs in Flooring
3.3. Migration of PAEs in Flooring
3.4. Factors Affecting the Migration of PAEs in Flooring
3.5. Estimation of the Environmental Burden of PAEs from Flooring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Sun, Y.; Zhang, Q.; Hou, J.; Wang, P.; Kong, X.; Sundell, J. Phthalate exposure in Chinese homes and its association with household consumer products. Sci. Total Environ. 2020, 719, 136965. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.-G.; Lundgren, B.; Weschler, C.J.; Sigsgaard, T.; Hagerhed-Engman, L.; Sundell, J. Phthalates in indoor dust and their association with building characteristics. Environ. Health Perspect. 2005, 113, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, B.; Liu, C.; Lin, H.; Yang, X.; Zhang, Y. Indoor SVOC pollution in China: A review. Chin. Sci. Bull. 2010, 55, 1469–1478. [Google Scholar] [CrossRef]
- Han, X.; Li, W.-H.; Liu, J.-M.; Wu, C.-D.; Zhuang, Y.; Pei, S.-Y. Controlling techniques and characteristics of organophosphate esters in building environment: A review. Chin. J. Eng. 2022, 44, 305–318. [Google Scholar] [CrossRef]
- Manuja, A.; Ritchie, J.; Buch, K.; Wu, Y.; Eichler, C.M.A.; Little, J.C.; Marr, L.C. Total surface area in indoor environments. Environ. Sci. Process. Impacts 2019, 21, 1384–1392. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Xie, D.; Zhao, A.; Wang, L.; Kreisberg, N.M.; Jayne, J.; Liu, Y. Strong temperature influence and indiscernible ventilation effect on dynamics of some semivolatile organic compounds in the indoor air of an office. Environ. Int. 2022, 165, 107305. [Google Scholar] [CrossRef]
- Lee, B.-C.; Yoon, H.; Lee, B.; Kim, P.; Moon, H.-B.; Kim, Y. Occurrence of bisphenols and phthalates in indoor dust collected from Korean homes. J. Ind. Eng. Chem. 2021, 99, 68–73. [Google Scholar] [CrossRef]
- Bu, S.; Wang, Y.; Wang, H.; Wang, F.; Tan, Y. Analysis of global commonly-used phthalates and non-dietary exposure assessment in indoor environment. Build. Environ. 2020, 177, 106853. [Google Scholar] [CrossRef]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017, 340, 360–383. [Google Scholar] [CrossRef]
- Huang, L.; Qiao, Y.; Deng, S.; Zhou, M.; Zhao, W.; Yue, Y. Airborne phthalates in indoor environment: Partition state and influential built environmental conditions. Chemosphere 2020, 254, 126782. [Google Scholar] [CrossRef]
- Mitro, S.D.; Dodson, R.E.; Singla, V.; Adamkiewicz, G.; Elmi, A.F.; Tilly, M.K.; Zota, A.R. Consumer product chemicals in indoor dust: A quantitative meta-analysis of U.S. studies. Environ. Sci. Technol. 2016, 50, 10661–10672. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.-Y.; Li, W.-L.; Liu, L.-Y.; Sun, Y.; Guo, J.-Q.; Wang, L.; Hung, H.; Li, Y.-F. Seasonal variations of airborne phthalates and novel non-phthalate plasticizers in a test residence in cold regions: Effects of temperature, humidity, total suspended particulate matter, and sources. Sci. Total Environ. 2023, 863, 160852. [Google Scholar] [CrossRef]
- Cui, Z.; Shi, C.; Zha, L.; Liu, J.; Guo, Y.; Li, X.; Zhang, E.; Yin, Z. Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis. Ecotoxicol. Environ. Saf. 2025, 289, 117659. [Google Scholar] [CrossRef]
- Chen, L.-B.; Gao, C.-J.; Zhang, Y.; Shen, H.-Y.; Lu, X.-Y.; Huang, C.; Dai, X.; Ye, J.; Jia, X.; Wu, K.; et al. Phthalate acid esters (PAEs) in indoor dust from decoration material stores: Occurrence, sources, and health risks. Toxics 2024, 12, 505. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, L.; Wang, K.; Liu, F.; Wang, G. Phthalates in glass window films of Chinese university dormitories and their associations with indoor decorating materials and personal care products. Int. J. Environ. Res. Public Health 2022, 19, 15297. [Google Scholar] [CrossRef] [PubMed]
- Kolarik, B.; Bornehag, C.-G.; Naydenov, K.; Sundell, J.; Stavova, P.; Nielsen, O.F. The concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the family. Atmos. Environ. 2008, 42, 8553–8559. [Google Scholar] [CrossRef]
- Ted, S. Human exposure to phthalates via consumer products. Int. J. Androl. 2006, 29, 134–139. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, Y. The influence of surface sorption and air flow rate on phthalate emissions from vinyl flooring: Measurement and modeling. Atmos. Environ. 2015, 103, 147–155. [Google Scholar] [CrossRef]
- Yang, S.; Yang, S.; Luo, A. Phthalates and uterine disorders. Rev. Environ. Health 2025, 40, 97–114. [Google Scholar] [CrossRef]
- Wieczorek, K.; Szczęsna, D.; Jurewicz, J. Environmental exposure to non-persistent endocrine disrupting chemicals and endometriosis: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 5608. [Google Scholar] [CrossRef]
- Mu, X.; Chen, X.; Liu, J.; Yuan, L.; Wang, D.; Qian, L.; Qian, Y.; Shen, G.; Huang, Y.; Li, X.; et al. A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). Environ. Pollut. 2020, 265, 113876. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.-Z.; Liu, L.-L.; Yue, J.-Z.; Lu, Z.-Y.; Deng, R.-Y.; He, X.; Li, C.-C.; Hu, B.; Gao, H.-T. Ameliorative effects of zinc and vitamin E against phthalates-induced reproductive toxicity in male rats. Environ. Toxicol. 2024, 39, 3330–3340. [Google Scholar] [CrossRef] [PubMed]
- Sedha, S.; Lee, H.; Singh, S.; Kumar, S.; Jain, S.; Ahmad, A.; Bin Jardan, Y.A.; Sonwal, S.; Shukla, S.; Simal-Gandara, J.; et al. Reproductive toxic potential of phthalate compounds—State of art review. Pharmacol. Res. 2021, 167, 105536. [Google Scholar] [CrossRef] [PubMed]
- Schiesaro, M.G.; Amato, A.M.L.; Maneschi, C.; Sciabica, V.; Pigatto, E.; Sanna, M. The male reproductive system and endocrine disruptors. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 686–703. [Google Scholar] [CrossRef]
- Zeng, J.-Y.; Zhang, M.; Chen, X.-H.; Liu, C.; Deng, Y.-L.; Chen, P.-P.; Miao, Y.; Cui, F.-P.; Shi, T.; Lu, T.-T.; et al. Prenatal exposures to phthalates and bisphenols in relation to oxidative stress: Single pollutant and mixtures analyses. Environ. Sci. Pollut. Res. 2024, 31, 13954–13964. [Google Scholar] [CrossRef]
- Almeida-Toledano, L.; Navarro-Tapia, E.; Sebastiani, G.; Ferrero-Martínez, S.; Ferrer-Aguilar, P.; García-Algar, Ó.; Andreu-Fernández, V.; Gómez-Roig, M.D. Effect of prenatal phthalate exposure on fetal development and maternal/neonatal health consequences: A systematic review. Sci. Total Environ. 2024, 950, 175080. [Google Scholar] [CrossRef]
- Park, S.; Zimmerman, E.; Huerta-Montañez, G.; Rosario-Pabón, Z.; Vélez-Vega, C.M.; Cordero, J.F.; Alshwabekah, A.; Meeker, J.D.; Watkins, D.J. Gestational exposure to phthalates and phthalate replacements in relation to neurodevelopmental delays in early childhood. Toxics 2023, 11, 65. [Google Scholar] [CrossRef]
- Oh, J.; Schweitzer, J.B.; Buckley, J.P.; Upadhyaya, S.; Kannan, K.; Herbstman, J.B.; Ghassabian, A.; Schmidt, R.J.; Hertz-Picciotto, I.; Bennett, D.H. Early childhood exposures to phthalates in association with attention-deficit/hyperactivity disorder behaviors in middle childhood and adolescence in the ReCHARGE study. Int. J. Hyg. Environ. Health 2024, 259, 114377. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.M.; Kim, J.W.; Cheong, J.H.; Yun, H.J.; Hong, Y.C.; Kim, Y.; Han, D.H.; Yoo, H.J.; Shin, M.S.; et al. Association between phthalates and externalizing behaviors and cortical thickness in children with attention deficit hyperactivity disorder. Psychol. Med. 2015, 45, 1601–1612. [Google Scholar] [CrossRef]
- Oktar, S.; Sungur, S.; Okur, R.; Yilmaz, N.; Ustun, I.; Gokce, C. The relationship between phthalates and obesity: Serum and urine concentrations of phthalates. Minerva Endocrinol. 2017, 42, 46–52. [Google Scholar] [CrossRef]
- Warger, J.; Lucas, M.; Lucas, A. Assessing the contribution of plastic-associated obesogenic compounds to cardiometabolic diseases. Curr. Opin. Endocrinol. Diabetes Obes. 2024, 31, 98–103. [Google Scholar] [CrossRef]
- Mao, Y.-F.; Li, Z.; Zhang, Y.-P.; He, Y.-L.; Tao, W.-Q. A review of mass-transfer models and mechanistic studies of semi-volatile organic compounds in indoor environments. Indoor Built Environ. 2018, 27, 1307–1321. [Google Scholar] [CrossRef]
- Song, W.; Wei, W.; Wang, D.; Zhang, S. Preparation and properties of new plywood composites made from surface modified veneers and polyvinyl chloride films. BioResources 2017, 12, 8320–8339. [Google Scholar] [CrossRef]
- Ulker, O.C.; Ulker, O. Toxicity of formaldehyde, polybrominated diphenyl ethers (PBDEs) and phthalates in engineered wood products (EWPs) from the perspective of the green approach to materials: A Review. BioResources 2019, 14, 7465–7493. [Google Scholar] [CrossRef]
- Magdouli, S.; Daghrir, R.; Brar, S.K.; Drogui, P.; Tyagi, R.D. Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: A critical review. J. Environ. Manag. 2013, 127, 36–49. [Google Scholar] [CrossRef]
- Ait Bamai, Y.; Araki, A.; Kawai, T.; Tsuboi, T.; Saito, I.; Yoshioka, E.; Kanazawa, A.; Tajima, S.; Shi, C.; Tamakoshi, A.; et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Sci. Total Environ. 2014, 468–469, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, Z.; Yao, J.; Hu, M.; Sun, Y.; Dong, C.; Bu, Z. Identification of phthalates from artificial products in Chinese kindergarten classrooms and the implications for preschool children’s exposure assessments. Int. J. Environ. Res. Public Health 2022, 19, 8011. [Google Scholar] [CrossRef]
- Xue, J.; Cai, H.; Li, W.; Pei, Y.; Guan, H.; Guo, Z.; Wu, C.; Qu, C.; Li, W.; Liu, J. Emissions of VOCs and SVOCs from polyvinyl chloride building materials: Contribution to indoor odor and inhalation health risks. Build. Environ. 2023, 229, 109958. [Google Scholar] [CrossRef]
- Lanciotti, R.; Gianotti, A.; Patrignani, F.; Belletti, N.; Guerzoni, M.E.; Gardini, F. Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci. Technol. 2004, 15, 201–208. [Google Scholar] [CrossRef]
- Lv, J.; Sun, S.; Wu, R.; Li, X.; Bai, Y.; Xu, J.; Guo, C. Phthalate esters in dusts from different indoor and outdoor microenvironment and potential human health risk: A case study in Beijing. Environ. Res. 2025, 266, 120513. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Li, Q.; Lu, C. Manufacture and properties of metasequoia-based three-layer parquet flooring. For. Prod. J. 2021, 71, 144–149. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, K.-T.; Choi, K. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature. Sci. Total Environ. 2016, 547, 441–446. [Google Scholar] [CrossRef]
- Afshari, A.; Gunnarsen, L.; Clausen, P.A.; Hansen, V. Emission of phthalates from PVC and other materials. Indoor Air 2004, 14, 120–128. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Guo, J.; Wang, X.; Ji, M.; Huang, L. Partition of phthalates among air, PM2.5, house dust and skin in residential indoor environments. Indoor Air 2022, 32, e13176. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, L.; Wang, K.; Liu, F. Phthalates in glass window films are associated with dormitory characteristics, occupancy activities and habits, and environmental factors. Environ. Sci. Pollut. Res. 2023, 30, 32550–32559. [Google Scholar] [CrossRef] [PubMed]
- Kida, M.; Koszelnik, P. Investigation of the presence and possible migration from microplastics of phthalic acid esters and polycyclic aromatic hydrocarbons. J. Polym. Environ. 2021, 29, 599–611. [Google Scholar] [CrossRef]
- Kashyap, D.; Agarwal, T. Concentration and factors affecting the distribution of phthalates in the air and dust: A global scenario. Sci. Total Environ. 2018, 635, 817–827. [Google Scholar] [CrossRef]
- Shinohara, N.; Mizukoshi, A.; Uchiyama, M.; Tanaka, H. Emission characteristics of diethylhexyl phthalate (DEHP) from building materials determined using a passive flux sampler and micro-chamber. PLoS ONE 2019, 14, e0222557. [Google Scholar] [CrossRef]
- Ouchi, Y.; Yanagisawa, H.; Fujimaki, S. Evaluating phthalate contaminant migration using thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS). Polymers 2019, 11, 683. [Google Scholar] [CrossRef]
- Taeyeon, K.; Seungwoon, S.; Heungjoo, P.; Soonmin, J.; Cheolmin, L.; Il, L.J.; SangWoo, J.; KyungDuk, Z. Surface-dependent gas equilibrium of semi-volatile organic compounds on glass, wood, and polyurethane foam using SPME-GC/MS. Chemosphere 2021, 291, 132869. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, S.; Ma, E. Variation in pore size distribution of wood cell wall under different moisture states. J. Beijing For. Univ. 2021, 43, 128–136. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X. Research progress of multi-scale pore structure and characterization methods of wood. Sci. Silvae Sin. 2014, 50, 123–133. [Google Scholar]
- Turner, J.S. The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech. 1968, 33, 639–656. [Google Scholar] [CrossRef]
Category | Information | ||||
---|---|---|---|---|---|
Urban/rural attribute | Urban | Rural | |||
424 (62.8%) | 251 (37.2%) | ||||
Housing type | Villa | Apartment | Self-built house | ||
80 (11.9%) | 414 (61.3%) | 181 (26.8%) | |||
Living area a (m2) | ≤85 m2 | 86–120 m2 | 121–136 m2 | ≥137 m2 | |
171 (25.3%) | 252 (37.3%) | 84 (12.4%) | 168 (24.9%) | ||
Room number | ≤3 | 4–6 | ≥7 | ||
483 (71.6%) | 176 (26.1%) | 16 (2.3%) | |||
Household income (USD) | <30,000 | 30,000–70,000 | 70,000–150,000 | >150,000 | |
340 (50.4%) | 245 (36.3%) | 72 (10.7%) | 18 (2.7%) | ||
Renovation budget (USD/m2) | <125 | 125–205 | 205–320 | >320 | |
161 (23.9%) | 183 (27.1%) | 174 (25.8%) | 157 (23.3%) | ||
Flooring material | Solid wood flooring | Engineered flooring | Laminate wood flooring | Tile | |
261 (38.7%) | 128 (19.0%) | 106 (15.7%) | 180 (26.7%) | ||
Wall covering | Wallpaper | Wall cloth | Tile | Paint | |
178 (26.4%) | 83 (12.3%) | 121 (17.9%) | 293 (43.4%) | ||
Wooden furniture type b | Tables and Chairs | Wardrobe | Kitchen | Bed | Door |
462 (68.45%) | 650 (96.6%) | 640 (94.8%) | 580 (85.9%) | 570 (84.4%) | |
Engineered wood material | Solid wood | Plywood | Particle board | Fiberboard | Other |
542 (80.3%) | 580 (85.9%) | 472 (69.9%) | 380 (56.3%) | 105 (16.0%) | |
Indoor time (hour) | <8 | 8–10 | 11–13 | 14–24 | |
90 (13.3%) | 251 (37.2%) | 203 (30.1%) | 131 (19.4%) | ||
Ventilation frequency (times/day) | 2–3 | 1 | 0.5 | Almost never | Never |
256 (37.9%) | 263 (39.0%) | 63 (9.3%) | 61 (9.0%) | 32 (4.7%) |
Value | DMP | DEP | DIBP | DBP | DHxP | BBP | DCHP | DEHP | DOP | Σ9 PAEs a |
---|---|---|---|---|---|---|---|---|---|---|
Total (n = 42) | ||||||||||
DF b | 98% | 98% | 100% | 100% | 2% | 14% | 0% | 100% | 0% | |
Min c | nd f | nd | 169 | 295 | nd | nd | nd | 606 | nd | 1220 |
Median d | 1120 | 99.8 | 845 | 1740 | nd | nd | nd | 4290 | nd | 14,100 |
Max e | 18,600 | 20,400 | 22,900 | 13,000 | 1010 | 801 | nd | 160,000 | nd | 166,000 |
Solid wood flooring (n = 13) | ||||||||||
DF | 100% | 100% | 100% | 100% | 0% | 8% | 0% | 100% | 0% | 100% |
Min | 188 | 6 | 169 | 312 | nd | nd | nd | 1350 | nd | 2020 |
Median | 2610 | 129 | 1103 | 2640 | nd | nd | nd | 30,400 | nd | 55,900 |
Max | 18,600 | 20,400 | 22,800 | 13,000 | nd | 801 | nd | 160,000 | nd | 166,000 |
Engineered flooring (n = 15) | ||||||||||
DF | 100% | 100% | 100% | 100% | 7% | 33% | 0% | 100% | 0% | 100% |
Min | 172 | 18.2 | 426 | 892 | nd | nd | nd | 1090 | nd | 4500 |
Median | 1080 | 153 | 1280 | 1680 | nd | nd | nd | 14,700 | nd | 22,600 |
Max | 11,100 | 1360 | 14,300 | 5630 | 1010 | 56.4 | nd | 95,500 | nd | 99,000 |
Laminate wood flooring (n = 14) | ||||||||||
DF | 93% | 93% | 100% | 100% | 0% | 0% | 0% | 100% | 0% | 100% |
Min | nd | nd | 171 | 295 | nd | nd | nd | 606 | nd | 1220 |
Median | 229 | 40 | 452 | 936 | nd | nd | nd | 1950 | nd | 4000 |
Max | 3880 | 276 | 4560 | 8980 | nd | nd | nd | 32,200 | nd | 49,900 |
Variable | β (95% CI) a | p-Value |
---|---|---|
DEHP | ||
Initial concentration | 1.005 (0.641~0.897) | 0.000 |
Density | 0.301 (21,500~113,000) | 0.007 |
Solid wood flooring | 0.235 (1200~33,200) | 0.042 |
Laminate wood flooring | −0.075 (−20,100~−9370) | 0.481 |
Σ9 PAEs | ||
Initial concentration | 0.917 (0.614~1.02) | 0.000 |
Density | 0.332 (−14,500~158,000) | 0.024 |
Solid wood flooring | 0.220 (6410~43,900) | 0.153 |
Laminate wood flooring | −0.051 (−27,300~18,900) | 0.721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, L.-B.; Shen, H.-Y.; Wu, Z.-C.; Zhu, N.-Z.; Gao, C.-J.; Guo, Y. Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes. Toxics 2025, 13, 517. https://doi.org/10.3390/toxics13070517
Zhang Y, Chen L-B, Shen H-Y, Wu Z-C, Zhu N-Z, Gao C-J, Guo Y. Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes. Toxics. 2025; 13(7):517. https://doi.org/10.3390/toxics13070517
Chicago/Turabian StyleZhang, Ying, Li-Bo Chen, Hao-Yang Shen, Zi-Chao Wu, Ning-Zheng Zhu, Chong-Jing Gao, and Ying Guo. 2025. "Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes" Toxics 13, no. 7: 517. https://doi.org/10.3390/toxics13070517
APA StyleZhang, Y., Chen, L.-B., Shen, H.-Y., Wu, Z.-C., Zhu, N.-Z., Gao, C.-J., & Guo, Y. (2025). Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes. Toxics, 13(7), 517. https://doi.org/10.3390/toxics13070517