Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,281)

Search Parameters:
Keywords = dark energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6104 KiB  
Article
Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential
by Weicheng Zhang, Taotao Zeng, Yi Yu, Yuling Liu, Hao He, Ping Li and Zeyan Zhou
Energies 2025, 18(15), 4185; https://doi.org/10.3390/en18154185 - 7 Aug 2025
Abstract
In the renewable energy conversion system, water electrolysis technology is widely regarded as the core means to achieve clean hydrogen production. However, the anodic oxygen evolution reaction (OER) has become a key bottleneck limiting the overall water splitting efficiency due to its slow [...] Read more.
In the renewable energy conversion system, water electrolysis technology is widely regarded as the core means to achieve clean hydrogen production. However, the anodic oxygen evolution reaction (OER) has become a key bottleneck limiting the overall water splitting efficiency due to its slow kinetic process and high overpotential. This study proposes a novel Co3O4-TiO2/CNTs p-n heterojunction catalyst, which was synthesized by hydrothermal method and significantly improved OER activity by combining heterojunction interface regulation and light field enhancement mechanism. Under illumination conditions, the catalyst achieved an overpotential of 390 mV at a current density of 10 mA cm−2, which is superior to the performance of the dark state (410 mV) and single component Co3O4-TiO2 catalysts. The material characterization results indicate that the p-n heterojunction structure effectively promotes the separation and migration of photogenerated carriers and enhances the visible light absorption capability. This work expands the design ideas of energy catalytic materials by constructing a collaborative electric light dual field regulation system, providing a new strategy for developing efficient and low-energy water splitting electrocatalysts, which is expected to play an important role in the future clean energy production and storage field. Full article
Show Figures

Figure 1

8 pages, 342 KiB  
Article
Should the Evolution of Our Universe Be Treated as an Initial Value Problem?
by Martin Tamm
Symmetry 2025, 17(8), 1258; https://doi.org/10.3390/sym17081258 - 7 Aug 2025
Abstract
In classical physics, the traditional way to handle dynamics is to work with initial value problems: Specifying all variables and their time-derivatives at a certain time will, together with the equations of motion, give the state of the system at any time. In [...] Read more.
In classical physics, the traditional way to handle dynamics is to work with initial value problems: Specifying all variables and their time-derivatives at a certain time will, together with the equations of motion, give the state of the system at any time. In this paper, it is questioned whether this is the right way to treat cosmology. The main reason is that cosmology, as opposed to almost all other parts of physics, deals with genuinely global problems. The main example in this paper will be the accelerating expansion. It is not claimed that the model studied here gives any kind of final explanation of this phenomenon. Nevertheless, it shows that what is commonly interpreted as the result of some dark energy, could instead be the result of a global condition for the universe. This model cannot be treated as a classical initial value problem. But an interesting additional property is that it can explain why the rate of acceleration now seems to be decreasing with time. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2025)
Show Figures

Figure 1

19 pages, 2441 KiB  
Article
Simulation and Statistical Validation Method for Evaluating Daylighting Performance in Hot Climates
by Nivin Sherif, Ahmed Yehia and Walaa S. E. Ismaeel
Urban Sci. 2025, 9(8), 303; https://doi.org/10.3390/urbansci9080303 - 4 Aug 2025
Viewed by 159
Abstract
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three [...] Read more.
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three critical variables: glazing type (clear, blue, and dark), Window-to-Wall Ratio (WWR) of 15%, 50%, 75%, and indoor wall finish (light, moderate, dark) colors. These were compared to the Leadership in Energy and Environmental Design (LEED) daylighting quality thresholds. The results revealed that clear glazing paired with high WWR (75%) achieved the highest Spatial Daylight Autonomy (sDA), reaching up to 92% in living spaces. However, this also led to elevated Annual Sunlight Exposure (ASE), with peak values of 53%, exceeding the LEED discomfort threshold of 10%. Blue and dark glazing types successfully reduced ASE to as low as 0–13%, yet often resulted in underlit spaces, especially in private rooms such as bedrooms and bathrooms, with sDA values falling below 20%. A 50% WWR emerged as the optimal balance, providing consistent daylight distribution while maintaining ASE within acceptable limits (≤33%). Similarly, moderate color wall finishes delivered the most balanced lighting performance, enhancing sDA by up to 30% while controlling reflective glare. Statistical analysis using Pearson correlation revealed a strong positive relationship between sDA and ASE (r = 0.84) in highly glazed, clear glass scenarios. Sensitivity analysis further indicated that low WWR configurations of 15% were highly influenced by glazing and finishing types, leading to variability in daylight metrics reaching ±40%. The study concludes that moderate glazing (blue), medium WWR (50%), and moderate color indoor finishes provide the most robust daylighting performance across diverse room types. These findings support an evidence-based approach to façade design, promoting visual comfort, daylight quality, and sustainable building practices. Full article
(This article belongs to the Topic Application of Smart Technologies in Buildings)
Show Figures

Figure 1

14 pages, 2058 KiB  
Article
Integration of Daylight in Building Design as a Way to Improve the Energy Efficiency of Buildings
by Adrian Trząski and Joanna Rucińska
Energies 2025, 18(15), 4113; https://doi.org/10.3390/en18154113 - 2 Aug 2025
Viewed by 248
Abstract
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use [...] Read more.
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use of Building Information Modelling (BIM) as one of the effective strategies for decarbonization of buildings, since a 3D digital representation of both physical and functional characteristics of a building can help to design a more efficient infrastructure. An efficient integration of solar energy in building design can be vital for the enhancement of energy performance in terms of heating, cooling, and lighting demand. This paper presents results of an analysis of how factors related to the use of daylight, such as automatic control of artificial lighting, external shading, or the visual absorptance of internal surfaces, influence the energy efficiency within an example room in two different climatic zones. The simulation was conducted using Design Builder software, with predefined occupancy schedules and internal heat gains, and standard EPW weather files for Warsaw and Genua climate zones. The study indicates that for the examined room, when no automatic sunshades or a lighting control system is utilized, most of the final energy demand is for cooling purposes (45–54%), followed by lighting (42–43%), with only 3–12% for heating purposes. The introduction of sunshades and/or the use of daylight allowed for a reduction of the total demand by up to half. Moreover, it was pointed out that often neglected factors, like the colour of the internal surfaces, can have a significant effect on the final energy consumption. In variants with light interior, the total energy consumption was lower by about 3–4% of the baseline demand, compared to their corresponding ones with dark surfaces. These results are consistent with previous studies on daylighting strategies and highlight the importance of considering both visual and thermal impacts when evaluating energy performance. Similarly, possible side effects of certain actions were highlighted, such as an increase in heat demand resulting from a reduced need for artificial lighting. The results of the analysis highlight the potential of a simulation-based design approach in optimizing daylight use, contributing to the broader goals of building decarbonization. Full article
Show Figures

Figure 1

14 pages, 3378 KiB  
Article
The pcGR Within the Hořava-Lifshitz Gravity and the Wheeler-deWitt Quantization
by Peter O. Hess, César A. Zen Vasconcellos and Dimiter Hadjimichef
Galaxies 2025, 13(4), 85; https://doi.org/10.3390/galaxies13040085 - 1 Aug 2025
Viewed by 173
Abstract
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild [...] Read more.
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild black holes, we derive the Wheeler-deWitt equation, obtaining a quantized description of pcGR. Using perturbative methods and semi-classical approximations, we analyze the solutions of the equations and their physical implications. A key finding is the avoidance of the central singularity due to nonlinear interaction terms in the Hořava-Lifshitz action. Notably, extrinsic curvature (kinetic energy) contributions prove essential for singularity resolution, even in standard GR. Furthermore, the theory offers new perspectives on dark energy, proposing an alternative mechanism for its accumulation. Full article
(This article belongs to the Special Issue Cosmology and the Quantum Vacuum—2nd Edition)
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 198
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

26 pages, 4856 KiB  
Article
PREFACE: A Search for Long-Lived Particles at the Large Hadron Collider
by Burak Hacisahinoglu, Suat Ozkorucuklu, Maksym Ovchynnikov, Michael G. Albrow, Aldo Penzo and Orhan Aydilek
Physics 2025, 7(3), 33; https://doi.org/10.3390/physics7030033 - 1 Aug 2025
Viewed by 232
Abstract
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass [...] Read more.
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass or by considerably small coupling to SM particles. The latter case implies relatively long lifetimes. Such long-lived particles (LLPs) then to have signatures different from those of SM particles. Searches in the “central region” are covered by the LHC general purpose experiments. The forward small angle region far from the interaction point (IP) is unexplored. Such particles are expected to have the energy as large as E = O(1 TeV) and Lorentz time dilation factor γ=E/m102103 (with m the particle mass) hence long enough decay distances. A new class of specialized LHC detectors dedicated to LLP searches has been proposed for the forward regions. Among these experiments, FASER is already operational, and FACET is under consideration at a location 100 m from the LHC IP5 (the CMS detector intersection). However, some features of FACET require a specially enlarged beam pipe, which cannot be implemented for LHC Run 4. In this study, we explore a simplified version of the proposed detector PREFACE compatible with the standard LHC beam pipe in the HL-LHC Run 4. Realistic Geant4 simulations are performed and the background is evaluated. An initial analysis of the physics potential with the PREFACE geometry indicates that several significant channels could be accessible with sensitivities comparable to FACET and other LLP searches. Full article
(This article belongs to the Section High Energy Physics)
Show Figures

Figure 1

7 pages, 784 KiB  
Communication
Mechanoluminescent-Boosted NiS@g-C3N4/Sr2MgSi2O7:Eu,Dy Heterostructure: An All-Weather Photocatalyst for Water Purification
by Yuchen Huang, Jiamin Wu, Honglei Li, Dehao Liu, Qingzhe Zhang and Kai Li
Processes 2025, 13(8), 2416; https://doi.org/10.3390/pr13082416 - 30 Jul 2025
Viewed by 267
Abstract
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi [...] Read more.
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi2O7:Eu,Dy phosphors is combined with NiS@g-C3N4 composite to construct a ternary heterogeneous photocatalytic system, denoted as NCS. In addition to the enhanced separation efficiency of photogenerated charge carriers by the formation of a heterojunction, the introduction of Sr2MgSi2O7:Eu,Dy provides an ultra-driving force for the photocatalytic reactions owing to its mechanoluminescence-induced excitation. Results show that the degradation rate of RhB increased significantly in comparison with pristine g-C3N4 and NiS@g-C3N4, indicating the obvious advantages of the ternary system for charge separation and migration. Moreover, the additional photocatalytic activity of NCS under ultrasound stimulation makes it a promising all-weather photocatalyst even in dark environments. This novel strategy opens up new horizons for the synergistic combination of light-driven and ultrasound-driven heterogeneous photocatalytic systems, and it also has important reference significance for the design and application of high-performance photocatalysts. Full article
(This article belongs to the Special Issue Green Photocatalysis for a Sustainable Future)
Show Figures

Figure 1

21 pages, 2926 KiB  
Article
Exact Solutions and Soliton Transmission in Relativistic Wave Phenomena of Klein–Fock–Gordon Equation via Subsequent Sine-Gordon Equation Method
by Muhammad Uzair, Ali H. Tedjani, Irfan Mahmood and Ejaz Hussain
Axioms 2025, 14(8), 590; https://doi.org/10.3390/axioms14080590 - 29 Jul 2025
Viewed by 355
Abstract
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find [...] Read more.
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find the exact solution of the proposed model, for this purpose, we utilized two effective techniques, including the sine-Gordon equation method and a new extended direct algebraic method. The novelty of these approaches lies in the form of different solutions such as hyperbolic, trigonometric, and rational functions, and their graphical representations demonstrate the different form of solitons like kink solitons, bright solitons, dark solitons, and periodic waves. To illustrate the characteristics of these solutions, we provide two-dimensional, three-dimensional, and contour plots that visualize the magnitude of the (1+1)-dimensional Klein–Fock–Gordon equation. By selecting suitable values for physical parameters, we demonstrate the diversity of soliton structures and their behaviors. The results highlighted the effectiveness and versatility of the sine-Gordon equation method and a new extended direct algebraic method, providing analytical solutions that deepen our insight into the dynamics of nonlinear models. These results contribute to the advancement of soliton theory in nonlinear optics and mathematical physics. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

13 pages, 359 KiB  
Article
Toward the Alleviation of the H0 Tension in Myrzakulov f(R,T) Gravity
by Mashael A. Aljohani, Emad E. Mahmoud, Koblandy Yerzhanov and Almira Sergazina
Universe 2025, 11(8), 252; https://doi.org/10.3390/universe11080252 - 29 Jul 2025
Viewed by 130
Abstract
In this work, we provide a promising way to alleviate the Hubble tension within the framework of Myrzakulov f(R,T) gravity. The latter incorporates both curvature and torsion under a non-special connection. We consider the [...] Read more.
In this work, we provide a promising way to alleviate the Hubble tension within the framework of Myrzakulov f(R,T) gravity. The latter incorporates both curvature and torsion under a non-special connection. We consider the f(R,T)=R+αR2 class, which leads to modified Friedmann equations and an effective dark energy sector. Within this class, we make specific connection choices in order to obtain a Hubble function that coincides with that of ΛCDM at early times while yielding higher H0 values at late times. The reason behind this behavior is that the dark energy equation of state exhibits phantom behavior, which is known to be a sufficient mechanism for alleviating the H0 tension. A full observational comparison with various datasets, including the Cosmic Microwave Background (CMB), is required to test the viability of this scenario. Strictly speaking, the present work does not provide a complete solution to the Hubble tension but rather proposes a promising way to alleviate it. Full article
(This article belongs to the Special Issue Gravity and Cosmology: Exploring the Mysteries of f(T) Gravity)
Show Figures

Figure 1

19 pages, 474 KiB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 412
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

13 pages, 793 KiB  
Communication
Gamma-Ray Bursts Calibrated by Using Artificial Neural Networks from the Pantheon+ Sample
by Zhen Huang, Xin Luo, Bin Zhang, Jianchao Feng, Puxun Wu, Yu Liu and Nan Liang
Universe 2025, 11(8), 241; https://doi.org/10.3390/universe11080241 - 23 Jul 2025
Viewed by 138
Abstract
In this paper, we calibrate the luminosity relation of gamma−ray bursts (GRBs) by employing artificial neural networks (ANNs) to analyze the Pantheon+ sample of type Ia supernovae (SNe Ia) in a manner independent of cosmological assumptions. The A219 GRB dataset is used to [...] Read more.
In this paper, we calibrate the luminosity relation of gamma−ray bursts (GRBs) by employing artificial neural networks (ANNs) to analyze the Pantheon+ sample of type Ia supernovae (SNe Ia) in a manner independent of cosmological assumptions. The A219 GRB dataset is used to calibrate the Amati relation (Ep-Eiso) at low redshift with the ANN framework, facilitating the construction of the Hubble diagram at higher redshifts. Cosmological models are constrained with GRBs at high redshift and the latest observational Hubble data (OHD) via the Markov chain Monte Carlo numerical approach. For the Chevallier−Polarski−Linder (CPL) model within a flat universe, we obtain Ωm=0.3210.069+0.078h=0.6540.071+0.053w0=1.020.50+0.67, and wa=0.980.58+0.58 at the 1 −σ confidence level, which indicates a preference for dark energy with potential redshift evolution (wa0). These findings using ANNs align closely with those derived from GRBs calibrated using Gaussian processes (GPs). Full article
Show Figures

Figure 1

16 pages, 4720 KiB  
Article
Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles
by David Oswaldo Romero-Quitl, Siva Kumar Krishnan, Martha Alicia Palomino-Ovando, Orlando Hernández-Cristobal, José Concepción Torres-Guzmán, Jesús Eduardo Lugo and Miller Toledo-Solano
Nanomaterials 2025, 15(14), 1125; https://doi.org/10.3390/nano15141125 - 19 Jul 2025
Viewed by 343
Abstract
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the [...] Read more.
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the Ag shell and the particle shape, transitioning from spherical nanoparticles to distinctly defined nanocubes. Bright field and high-angle annular dark-field scanning transmission electron microscopy (BF-STEM and HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) were employed to validate the structural and compositional changes. To link morphology with optical behavior, we utilized the Mie and Maxwell–Garnett theoretical models to simulate the dielectric response of the core–shell nanostructures, showing trends that align with experimental UV-visible absorption spectra. This research presents an easy and adjustable method for modifying the plasmonic properties of Ag@Au nanoparticles by varying their shape and shell, offering opportunities for advanced applications in sensing, photonics, and nanophotonics. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

18 pages, 1438 KiB  
Article
Maximum Entropy Estimates of Hubble Constant from Planck Measurements
by David P. Knobles and Mark F. Westling
Entropy 2025, 27(7), 760; https://doi.org/10.3390/e27070760 - 16 Jul 2025
Viewed by 1255
Abstract
A maximum entropy (ME) methodology was used to infer the Hubble constant from the temperature anisotropies in cosmic microwave background (CMB) measurements, as measured by the Planck satellite. A simple cosmological model provided physical insight and afforded robust statistical sampling of a parameter [...] Read more.
A maximum entropy (ME) methodology was used to infer the Hubble constant from the temperature anisotropies in cosmic microwave background (CMB) measurements, as measured by the Planck satellite. A simple cosmological model provided physical insight and afforded robust statistical sampling of a parameter space. The parameter space included the spectral tilt and amplitude of adiabatic density fluctuations of the early universe and the present-day ratios of dark energy, matter, and baryonic matter density. A statistical temperature was estimated by applying the equipartition theorem, which uniquely specifies a posterior probability distribution. The ME analysis inferred the mean value of the Hubble constant to be about 67 km/sec/Mpc with a conservative standard deviation of approximately 4.4 km/sec/Mpc. Unlike standard Bayesian analyses that incorporate specific noise models, the ME approach treats the model error generically, thereby producing broader, but less assumption-dependent, uncertainty bounds. The inferred ME value lies within 1σ of both early-universe estimates (Planck, Dark Energy Signal Instrument (DESI)) and late-universe measurements (e.g., the Chicago Carnegie Hubble Program (CCHP)) using redshift data collected from the James Webb Space Telescope (JWST). Thus, the ME analysis does not appear to support the existence of the Hubble tension. Full article
(This article belongs to the Special Issue Insight into Entropy)
Show Figures

Figure 1

16 pages, 2423 KiB  
Article
Green Light Enhances the Postharvest Quality of Lettuce During Cold Storage
by Shafieh Salehinia, Fardad Didaran, Yvan Gariepy, Sasan Aliniaeifard, Sarah MacPherson and Mark Lefsrud
Horticulturae 2025, 11(7), 792; https://doi.org/10.3390/horticulturae11070792 - 4 Jul 2025
Cited by 1 | Viewed by 431
Abstract
The postharvest quality of lettuce (Lactuca sativa) is significantly influenced by the lighting environment during storage. This study evaluated the effects of green LEDs at 500 nm and 530 nm, white LEDs (400–700 nm), and dark storage on lettuce quality over [...] Read more.
The postharvest quality of lettuce (Lactuca sativa) is significantly influenced by the lighting environment during storage. This study evaluated the effects of green LEDs at 500 nm and 530 nm, white LEDs (400–700 nm), and dark storage on lettuce quality over 14 days at 5 °C. All treatments were applied at 10 µmol m−2 s−1 under a 12 h photoperiod. Quality parameters measured included moisture loss, relative water content (RWC), photosynthetic rate, chlorophyll content (SPAD), total soluble solids (TSSs), electrolyte leakage (EL), color change (∆E), texture (crispness), and overall visual quality (OVQ). Lettuce stored under green LEDs, particularly 530 nm, exhibited superior postharvest quality. Compared to dark storage, 530 nm reduced moisture loss by 7.1%, increased RWC by 9.2%, and reduced transpiration rate. The green light preserved photosynthetic activity (43% decline vs. 77% in the dark), increased TSS, reduced color change by 42%, improved crispness by 46.1%, and limited EL to 54.5%. Shelf life was extended by approximately four days. The 500 nm treatment showed notable improvements, including an 8.4% reduction in moisture loss, 8.2% higher RWC, a smaller photosynthesis decline (25%), and the lowest EL (53.1%). It improved color retention (∆E reduced by 45.3%) and crispness (46.8%). Both green wavelengths effectively maintained lettuce quality during cold storage, with 530 nm being the most effective overall. These results suggest that targeted green LED lighting is a promising, energy-efficient strategy to preserve postharvest quality and extend shelf life in leafy greens. Full article
Show Figures

Graphical abstract

Back to TopTop