A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
Abstract
1. Introduction
2. Energy-Harvesting Technologies and Efficiency
2.1. Asphalt Solar Collectors
2.1.1. Buried Water Pipes
2.1.2. Buried Air Ducts
2.1.3. Optimized Pavement Design for Enhanced Solar Energy Collection
2.2. Photovoltaic Systems
2.2.1. Photovoltaic Pavements
2.2.2. Challenges
2.3. Vibration-Based Harvesting
2.3.1. Piezoelectric Transducers
2.3.2. Durability
2.4. Thermoelectric Generators
3. Applications of Harvested Energy
3.1. Direct Electricity
3.2. Thermal Uses
4. Technical Synergies and Integration
4.1. Hybrid Systems
4.2. Urban Benefits
5. Feasibility and Challenges
5.1. Construction Issues
5.2. Technical Performance
5.3. Economic and Environmental Impact
Technology Type | Payback Period (Years) | Net Present Value (USD) | UHI Mitigation (°C) | Emission Reduction Benefits |
---|---|---|---|---|
ASC [48] | 5 | 3000 | 0.5–3.2 | Reduced Fossil Fuel Use |
PV [11] | >5.4 | - | 6.4–10 | 17% Self-Use Increase |
VBH [98] | 4.6~9.3 | - | - | Potential for Off-Grid Power |
TEG [79] | ~12 | - | 5–10 | Reduced Cooling Demand |
6. Future Research
6.1. Design Optimization
6.2. Material Development
6.3. System Evaluation
6.4. Application Expansion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, X.; Zhang, X.; Chen, G.; Zuo, J.; Pullen, S. Effectiveness of pavement-solar energy system—An experimental study. Appl. Energy 2015, 138, 1–10. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Y.; Li, J.; Wang, J.; Yao, J. Piezoelectric energy harvesting from traffic-induced pavement vibrations. J. Renew. Sustain. Energy 2014, 6, 043110. [Google Scholar] [CrossRef]
- Li, R.; Yu, Y.; Zhou, B.; Guo, Q.; Li, M.; Pei, J. Harvesting energy from pavement based on piezoelectric effects: Fabrication and electric properties of piezoelectric vibrator. J. Renew. Sustain. Energy 2018, 10, 054701. [Google Scholar] [CrossRef]
- Vizzari, D.; Gennesseaux, E.; Lavaud, S.; Bouron, S.; Chailleux, E. Pavement energy harvesting technologies: A critical review. RILEM Tech. Lett. 2021, 6, 93–104. [Google Scholar] [CrossRef]
- Haji Tugiman, M.K.A.; Nisa Khamil, K.; Md Yusop, A.; Mohd Sabri, M.F. Design and investigation of the solar-thermoelectric energy harvesting system at asphalt pavements road. Int. J. Ambient Energy 2023, 44, 929–937. [Google Scholar] [CrossRef]
- Ahmad, S.; Abdul Mujeebu, M.; Farooqi, M.A. Energy harvesting from pavements and roadways: A comprehensive review of technologies, materials, and challenges. Int. J. Energy Res. 2019, 43, 1974–2015. [Google Scholar] [CrossRef]
- Mou, K.; Ji, X.; Liu, J.; Zhou, H.; Tian, H.; Li, X.; Liu, H. Using piezoelectric technology to harvest energy from pavement: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2025, 12, 68–86. [Google Scholar] [CrossRef]
- Hu, H.; Vizzari, D.; Zha, X.; Roberts, R. Solar pavements: A critical review. Renew. Sustain. Energy Rev. 2021, 152, 111712. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, F.; Zhao, H. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering. Renew. Sustain. Energy Rev. 2021, 151, 111522. [Google Scholar] [CrossRef]
- Johnsson, J.; Adl-Zarrabi, B. A numerical and experimental study of a pavement solar collector for the northern hemisphere. Appl. Energy 2020, 260, 114286. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Xue, L.; Kobashi, T. A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level. Renew. Energy 2022, 200, 647–657. [Google Scholar] [CrossRef]
- Gao, Q.; Huang, Y.; Li, M.; Liu, Y.; Yan, Y.Y. Experimental study of slab solar collection on the hydronic system of road. Sol. Energy 2010, 84, 2096–2102. [Google Scholar] [CrossRef]
- Zhao, H.; Ling, J.; Fu, P. A review of harvesting green energy from road. Adv. Mater. Res. 2013, 723, 559–566. [Google Scholar] [CrossRef]
- Pei, J.; Guo, F.; Zhang, J.; Zhou, B.; Bi, Y.; Li, R. Review and analysis of energy harvesting technologies in roadway transportation. J. Clean. Prod. 2021, 288, 125338. [Google Scholar] [CrossRef]
- Sucupira, L.; Castro-Gomes, J. Review of energy harvesting for buildings based on solar energy and thermal materials. Civil. Eng. 2021, 2, 852–873. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, Y.; Li, F. A review on thermoelectric energy harvesting from asphalt pavement: Configuration, performance and future. Constr. Build. Mater. 2019, 228, 116818. [Google Scholar] [CrossRef]
- Bobes-Jesus, V.; Pascual-Muñoz, P.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Asphalt solar collectors: A literature review. Appl. Energy 2013, 102, 962–970. [Google Scholar] [CrossRef]
- Sedgwick, R.; Patrick, M. The use of a ground solar collector for swimming pool heating. Proc. ISES Congress. 1981, 1, 632–636. [Google Scholar]
- Hasebe, M.; Kamikawa, Y.; Meiarashi, S. Thermoelectric Generators using Solar Thermal Energy in Heated Road Pavement. In Proceedings of the 2006 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006. [Google Scholar]
- Mallick, R.B.; Chen, B.-L.; Bhowmick, S. Harvesting energy from asphalt pavements and reducing the heat island effect. Int. J. Sustain. Eng. 2009, 2, 214–228. [Google Scholar] [CrossRef]
- Hashim, G.A.; Sidik, N.A.C. Numerical study of harvesting solar energy from small-scale asphalt solar collector. Adv. Res. Des. 2014, 2, 10–19. [Google Scholar]
- Van Bijsterveld, W.; Houben, L.; Scarpas, A.; Molenaar, A. Using Pavement as Solar Collector: Effect on Pavement Temperature and Structural Response. Transp. Res. Rec. J. Transp. Res. Board 2001, 1778, 140–148. [Google Scholar] [CrossRef]
- Mallick, R.; Carelli, J.; Albano, L.; Bhowmick, S.; Veeraragavan, A. Evaluation of the potential of harvesting heat energy from asphalt pavements. Int. J. Sustain. Eng. 2011, 4, 164–171. [Google Scholar] [CrossRef]
- Loomans, M.; Oversloot, H.; Bondt, A.D.; Jansen, B.; Rij, H.V. Design Tool for the Thermal Energy Potential of Asphalt Pavements. In Proceedings of the 8th International IBPSA Conference, Eindhoven, The Netherlands, 11–14 August 2003. [Google Scholar]
- Mallick, R.B.; Chen, B.L.; Bhowmick, S. Harvesting heat energy from asphalt pavements: Development of and comparison between numerical models and experiment. Int. J. Sustain. Eng. 2012, 5, 159–169. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Xiao, Y.; Liu, G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew. Sustain. Energy Rev. 2015, 48, 624–634. [Google Scholar] [CrossRef]
- Chiarelli, A.; Dawson, A.R.; García, A. Parametric analysis of energy harvesting pavements operated by air convection. Appl. Energy 2015, 154, 951–958. [Google Scholar] [CrossRef]
- García, A.; Partl, M.N. How to transform an asphalt concrete pavement into a solar turbine. Appl. Energy 2014, 119, 431–437. [Google Scholar] [CrossRef]
- Chiarelli, A.; Dawson, A.; Garcia, A. Field evaluation of the effects of air convection in energy harvesting asphalt pavements. Sustain. Energy Technol. Assess. 2017, 21, 50–58. [Google Scholar] [CrossRef]
- Pascual-Muñoz, P.; Castro-Fresno, D.; Serrano-Bravo, P.; Alonso-Estébanez, A. Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors. Appl. Energy 2013, 111, 324–332. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Wu, S.; Riara, M.; Wan, J.; Li, Y. Thermal and rheological performance of asphalt binders modified with expanded graphite/polyethylene glycol composite phase change material (EP-CPCM). Constr. Build. Mater. 2019, 194, 83–91. [Google Scholar] [CrossRef]
- Kong, W.; Liu, Z.; Yang, Y.; Zhou, C.; Lei, J. Preparation and characterizations of asphalt/lauric acid blends phase change materials for potential building materials. Constr. Build. Mater. 2017, 152, 568–575. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, Y.; Jiang, H.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D.; Wu, H.; Mei, Y. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Feng, R.; Wu, X.-W.; Su, J. Composite phase change materials coupled with radiative cooling for asphalt pavement thermal management. Constr. Build. Mater. 2024, 457, 139476. [Google Scholar] [CrossRef]
- Jaiswal, P.; Anupam, B.R.; Chandrappa, A.K.; Sahoo, U.C. Harvesting heat energy using geothermal and hydronic pavements for sustainable cities: A comprehensive review of an emerging idea. Sustain. Cities Soc. 2023, 93, 18. [Google Scholar] [CrossRef]
- Cheng, C.; Cheng, G.; Gong, F.; Fu, Y.; Qiao, J. Performance evaluation of asphalt mixture using polyethylene glycol polyacrylamide graft copolymer as solid–solid phase change materials. Constr. Build. Mater. 2021, 300, 124221. [Google Scholar] [CrossRef]
- Meibodi, S.S.; Loveridge, F. The future role of energy geostructures in fifth generation district heating and cooling networks. Energy 2022, 240, 122481. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.; Yu, M.; Mao, W.; Si, W. Testing and modeling of incomplete phase change heat storage and release of epoxy resin/microcapsule composite phase change materials for asphalt pavement. J. Energy Storage 2025, 105, 114672. [Google Scholar] [CrossRef]
- Northmore, A.B. Canadian Solar Road Panel Design: A Structural and Environmental Analysis. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2014; p. 170. [Google Scholar]
- Dezfooli, A.S.; Nejad, F.M.; Zakeri, H.; Kazemifard, S. Solar pavement: A new emerging technology. Sol. Energy 2017, 149, 272–284. [Google Scholar] [CrossRef]
- Dawson, A.; Mallick, R.; Hernandez, A.; Dehdezi, P. Energy Harvesting from Pavements. In Climate Change, Energy, Sustainability and Pavements; Gopalakrishnan, K., Steyn, W.J., Harvey, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 481–517. [Google Scholar]
- Li, S.; Ma, T.; Wang, D. Photovoltaic pavement and solar road: A review and perspectives. Sustain. Energy Technol. Assess. 2023, 55, 102933. [Google Scholar] [CrossRef]
- Bellucci, P.; Fernandez, D.; La Monica, S.; Schirone, L. Assessment of the photovoltaic potential on noise barriers along national roads in Italy. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 2003, Osaka, Japan, 11–18 May 2003. [Google Scholar]
- Finn, J.; Leitte, A.; Fabisch, M.; Henninger, S. Analysing the efficiency of solar roads within settlement areas in Germany. Urban Clim. 2021, 38, 100894. [Google Scholar] [CrossRef]
- Dai, Y.; Yin, Y.; Lu, Y. Strategies to facilitate photovoltaic applications in road structures for energy harvesting. Energies 2021, 14, 7097. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, H.; Ou, J. A PZT-based smart aggregate for compressive seismic stress monitoring. Smart Mater. Struct. 2012, 21, 105035. [Google Scholar] [CrossRef]
- Dakessian, L.; Harfoushian, H.; Habib, D.; Chehab, G.R.; Saad, G.; Srour, I. Finite Element Approach to Assess the Benefits of Asphalt Solar Collectors. Transp. Res. Rec. 2016, 2575, 79–91. [Google Scholar] [CrossRef]
- Northmore, A.; Tighe, S. Innovative pavement design: Are solar road feasible. In Proceedings of the 2012 Conference of the Transoration Association of Canada, Fredericton, NB, Canada, 14–17 October 2012; p. 11. [Google Scholar]
- Teh, P.-L.; Adebanjo, D.; Kong, D.L.Y. Key enablers and barriers of solar paver technologies for the advancement of environmental sustainability. Heliyon 2021, 7, e08189. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Ziar, H.; Nguyen, T.T.; van Lint, H.; Zeman, M.; Isabella, O. Mapping the photovoltaic potential of the roads including the effect of traffic. Renew. Energy 2022, 182, 427–442. [Google Scholar] [CrossRef]
- Gu, M.; Liu, Y.; Yang, J.; Peng, L.; Zhao, C.; Yang, Z.; Yang, J.; Fang, W.; Fang, J.; Zhao, Z. Estimation of Environmental Effect of PVNB Installed along a Metro Line in China. Renew. Energy 2012, 45, 237–244. [Google Scholar] [CrossRef]
- Schirone, L.; Bellucci, P.; Grasselli, U. Quality issues for photovoltaic-sound barriers. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 2003, Osaka, Japan, 11–18 May 2003. [Google Scholar]
- Zhou, B.C.; Pei, J.Z.; Calautit, J.K.; Zhang, J.P.; Yong, L.X.; Pantua, C.A.J. Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT). Renew. Energy 2022, 194, 1–12. [Google Scholar] [CrossRef]
- Bhuvanesh, M.; Gokul, S.; Manirathinam, M.; Molykutty, M.; Puthilibai, G. Piezoelectric Pavement. In Proceedings of the 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 10–11 December 2020; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Maghsoudi Nia, E.; Wan Abdullah Zawawi, N.; Mahinder Singh, B. Design of a pavement using piezoelectric materials. Materialwiss. Werkstofftech. 2019, 50, 320–328. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, H.; Shi, Z. Modeling on piezoelectric energy harvesting from pavements under traffic loads. J. Intell. Mater. Syst. Struct. 2015, 27, 567–578. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Yu, G.; Gao, Z. Development and performance of a piezoelectric energy conversion structure applied in pavement. Energy Convers. Manage. 2020, 207, 112571. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Li, Q.; Li, Y. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement. Appl. Energy 2018, 229, 18–30. [Google Scholar] [CrossRef]
- Xiong, H.; Wang, L.; Wang, D.; Druta, C. Piezoelectric Energy Harvesting from Traffic Induced Deformation of Pavements. Int. J. Pavement Res. Technol. 2012, 5, 333–337. [Google Scholar]
- Papagiannakis, A.; Montoya, A.; Dessouky, S.; Helffrich, J. Development and evaluation of piezoelectric prototypes for roadway energy harvesting. J. Energy Eng. 2017, 143, 04017034. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Sha, A.; Wang, H.; Guo, L.; Hao, Y. Energy harvesting array materials with thin piezoelectric plates for traffic data monitoring. Constr. Build. Mater. 2021, 302, 124147. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, H.; Jiang, J.; Zhang, Y.; Zhou, Y.; Sun, L.; Zhang, Y. The optimal design of a piezoelectric energy harvester for smart pavements. Int. J. Mech. Sci. 2022, 232, 107609. [Google Scholar] [CrossRef]
- Jiang, W.; Li, P.; Sha, A.; Li, Y.; Yuan, D.; Xiao, J.; Xing, C. Research on pavement traffic load state perception based on the piezoelectric effect. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8264–8278. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, S.; Wang, C.; Song, Z.; Li, Y. Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site. Appl. Energy 2022, 306, 118153. [Google Scholar] [CrossRef]
- Gu, H.; Song, G.; Dhonde, H. Concrete early-age strength monitoring using embedded piezoelectric transducers. Smart Mater. Struct. 2006, 15, 1837–1845. [Google Scholar] [CrossRef]
- Dumoulin, C.; Karaiskos, G.; Sener, J. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers. Smart Mater. Struct. 2012, 21, 105035. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Sha, A.; Liu, Z.; Zhang, F.; Li, X. A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application. J. Clean. Prod. 2022, 369, 133287. [Google Scholar] [CrossRef]
- Kong, Q.; Hou, S.; Ji, Q.; Mo, Y.; Song, G. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22, 085025. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, F.; Sha, A.; Liu, Z.; Li, J.; Hao, Y. Energy harvesting performance of a full-pressure piezoelectric transducer applied in pavement structures. Energy Build. 2022, 266, 112143. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, G.; Wang, J.; Cai, G.; Qin, X.; Shi, K. Fabrication and performance of Tile transducers for piezoelectric energy harvesting. AIP Adv. 2020, 10, 045326. [Google Scholar] [CrossRef]
- Hwang, W.; Kim, K.-B.; Cho, J.Y.; Yang, C.H.; Kim, J.H.; Song, G.J.; Song, Y.; Jeon, D.H.; Ahn, J.H.; Seong, D.H. Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway. Appl. Energy 2019, 243, 313–320. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Ding, G.; Fu, H.; Cai, G. Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system. Energy 2021, 229, 120685. [Google Scholar] [CrossRef]
- Zhao, X.; Xiang, H.; Shi, Z. Piezoelectric energy harvesting from vehicles induced bending deformation in pavements considering the arrangement of harvesters. Appl. Math. Modell. 2020, 77, 327–340. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, Q.; Zhang, H.; Yang, Y.; Wang, J.; Lü, C. Optimal lateral embedded position of piezoelectric energy harvesters under various traffic conditions with wheel-path distribution. J. Intell. Mater. Syst. Struct. 2024, 35, 291–301. [Google Scholar] [CrossRef]
- Wu, G.; Yu, X. System design to harvest thermal energy across pavement structure. In Proceedings of the 2012 IEEE Energytech, Cleveland, OH, USA, 29–31 May 2012. [Google Scholar]
- Guo, L.; Lu, Q. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew. Sustain. Energy Rev. 2017, 72, 761–773. [Google Scholar] [CrossRef]
- Xie, Z.; Shi, K.; Song, L.; Hou, X. Experimental and Field Study of a Pavement Thermoelectric Energy Harvesting System Based on the Seebeck Effect. J. Electron. Mater. 2023, 52, 209–218. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Xu, S.; Hu, H.; Xiao, J.; Sha, A.; Huang, Y. Energy harvesting from asphalt pavement using thermoelectric technology. Appl. Energy 2017, 205, 941–950. [Google Scholar] [CrossRef]
- Khamil, K.N.; Sabri, M.F.M.; Yusop, A.M.; Sa’at, F.A.M.; Isa, A.N. High coolingperformances of H-shape heat sink for thermoelectric energy harvesting system (TEHs) at asphalt pavement. Int. J. Energy Res. 2021, 45, 3242–3256. [Google Scholar] [CrossRef]
- Duarte, F.; Casimiro, F.; Correia, D.; Mendes, R.; Ferreira, A. Waynergy people: A new pavement energy harvest system. Proc. ICE Munic. Eng. 2013, 166, 250–256. [Google Scholar] [CrossRef]
- Venkatesan, G.; Iniyan, S.; Jalihal, P. A theoretical and experimental study of a small-scale barometric sealed flash evaporative desalination system using low grade thermal energy. Appl. Therm. Eng. 2014, 73, 629–640. [Google Scholar] [CrossRef]
- Elminshawy, N.A.S.; Siddiqui, F.R.; Sultan, G.I. Development of a desalination system driven by solar energy and low grade waste heat. Energy Convers. Manag. 2015, 103, 28–35. [Google Scholar] [CrossRef]
- Ferreira, A.J.L. Briefing: Recent developments in pavement energy harvest systems. Proc. Inst. Civ. Eng. Munic. Eng. 2012, 165, 189–192. [Google Scholar] [CrossRef]
- Siebert, N.; Zacharakis, E. Asphalt Solar Collector and Borehole Storage; Design Study for a Small Residential Building Area. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2010; p. 147. [Google Scholar]
- Buscemi, A.; Beccali, M.; Guarino, S.; Lo Brano, V. Coupling a road solar thermal collector and borehole thermal energy storage for building heating: First experimental and numerical results. Energy Convers. Manag. 2023, 291, 117279. [Google Scholar] [CrossRef]
- Randriantsoa, A.N.A.; Fakra, D.A.H.; Rakotondrajaona, L.; Van Der Merwe Steyn, W.J. Recent Advances in Hybrid Energy Harvesting Technologies Using Roadway Pavements: A Review of the Technical Possibility of Using Piezo-thermoelectrical Combinations. Int. J. Pavement Res. Technol. 2023, 16, 796–821. [Google Scholar] [CrossRef]
- Xiang, B.; Cao, X.; Yuan, Y.; Hasanuzzaman, M.; Zeng, C.; Ji, Y.; Sun, L. A novel hybrid energy system combined with solar-road and soil-regenerator: Sensitivity analysis and optimization. Renew. Energy 2018, 129, 419–430. [Google Scholar] [CrossRef]
- Dehdezi, P.K. Enhancing Pavements for Thermal Applications. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2012; p. 225. [Google Scholar]
- Concha, J.L.; Norambuena-Contreras, J. Thermophysical properties and heating performance of self-healing asphalt mixture with fibres and its application as a solar collector. Appl. Therm. Eng. 2020, 178, 115632. [Google Scholar] [CrossRef]
- Liu, Z.; Fei, T. Road PV production estimation at city scale: A predictive model towards feasible assessing regional energy generation from solar roads. J. Clean. Prod. 2021, 321, 129010. [Google Scholar] [CrossRef]
- Nussbaum, J.H.; Lake, R.A.; Coutu, R.A. Standardized testing of non-standard photovoltaic pavement surfaces. In Proceedings of the 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), Dayton, OH, USA, 25–29 July 2016. [Google Scholar]
- Zhu, W.; Wang, J.; Liu, Z.; Li, X. Polarization Effect of Road Piezoelectric Energy Harvester under On-Site Road Conditions. Integr. Ferroelectr. 2023, 231, 185–201. [Google Scholar] [CrossRef]
- Anupam, B.R.; Sahoo, U.C.; Chandrappa, A.K.; Rath, P. Emerging technologies in cool pavements: A review. Constr. Build. Mater. 2021, 299, 123892. [Google Scholar] [CrossRef]
- Mahajan, A.; Goel, A.; Verma, A. A review on energy harvesting based piezoelectric system. Mater. Today. Proc. 2021, 43, 65–73. [Google Scholar] [CrossRef]
- Gholikhani, M.; Roshani, H.; Dessouky, S.; Papagiannakis, A.T. A critical review of roadway energy harvesting technologies. Appl. Energy 2020, 261, 114388. [Google Scholar] [CrossRef]
- Stehly, T.; Duffy, P.; Mulas Hernando, D. 2022 Cost of Wind Energy Review; NREL: Golden, CO, USA, 2023.
- Hill, D.; Agarwal, A.; Tong, N.; Kema, D. Assessment of Piezoelectric Materials for Roadway Energy Harvesting; California Energy Commission: Oakland, CA, USA, 2014.
- Ghalandari, T.; Baetens, R.; Verhaert, I.; Nasir, D.S.; Vuye, C. Thermal performance of a controllable pavement solar collector prototype with configuration flexibility. Appl. Energy 2022, 313, 118908. [Google Scholar] [CrossRef]
- Ghalandari, T.; Kia, A.; Taborda, D.M.G.; Bergh, W.V.; Vuye, C. Thermal performance optimisation of Pavement Solar Collectors using response surface methodology. Renew. Energy 2023, 210, 656–670. [Google Scholar] [CrossRef]
- Ghalandari, T.; Ceulemans, D.; Hasheminejad, N.; Guldentops, G.; Van den Bergh, W.; Verhaert, I.; Vuye, C. A simplified model to assess the thermal performance of pavement solar collectors. Appl. Therm. Eng. 2021, 197, 13. [Google Scholar] [CrossRef]
- Tang, N.; Wu, S.P.; Chen, M.Y.; Pan, P.; Sun, C.J. Effect mechanism of mixing on improving conductivity of asphalt solar collector. Int. J. Heat Mass Transf. 2014, 75, 650–655. [Google Scholar] [CrossRef]
- Klimenta, D.; Tasić, D.; Jevtić, M. The use of hydronic asphalt pavements as an alternative method of eliminating hot spots of underground power cables. Appl. Therm. Eng. 2020, 168, 114818. [Google Scholar] [CrossRef]
- Klimenta, D.; Perovic, B.; Klimenta, J.; Jevtic, M.; Milovanovic, M.; Krstic, I. Controlling the thermal environment of underground cable lines using the pavement surface radiation properties. IET Gener. Transm. Distrib. 2018, 12, 2968–2976. [Google Scholar] [CrossRef]
- Demartino, C.; Quaranta, G.; Maruccio, C.; Pakrashi, V. Feasibility of energy harvesting from vertical pedestrian-induced vibrations of footbridges for smart monitoring applications. Comput. Aided Civ. Infrastruct. Eng. 2022, 37, 1044–1065. [Google Scholar] [CrossRef]
- Nasir, D.; Pantua, C.A.J.; Zhou, B.C.; Vital, B.; Calautit, J.; Hughes, B. Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment. Renew. Energy 2021, 164, 618–641. [Google Scholar] [CrossRef]
- Cheng, T.; Shao, J.; Wang, Z.L. Triboelectric nanogenerators. Nat. Rev. Methods Primers 2023, 3, 39. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef]
- Kumar, V.; Bhusari, R.; Dhok, S.B.; Prakash, A.; Tripathi, R.; Tiwari, S. Design of Magnetic Induction Based Energy-Efficient WSNs for Nonconventional Media Using Multilayer Transmitter-Enabled Novel Energy Model. IEEE Syst. J. 2019, 13, 1285–1296. [Google Scholar] [CrossRef]
Technology | Key Structural Layers/Components | Energy-Transfer medium | Operating Range | Efficiency | Typical Install Sites |
---|---|---|---|---|---|
ASC | Wearing course → conductive binder → serpentine Cu pipes → subbase | 30% glycol–water | Fluid outlet 28–45 °C | 25–34% thermal | South-facing carriageways, wide medians, parking lots, and bridge decks in sunny regions |
PV | Tempered glass cover → encapsulated crystalline–Si cells → EVA → aluminum backplate → bedding mortar | Direct electrical | 0.5 kW m−2 irradiance | 17–22% electrical | Low-traffic lanes, sidewalks, cycleways, noise-barrier panels, and unshaded highways |
VBH | Surface slab → steel load-transfer plate → PZT stack modules → epoxy grout | Mechanical strain → charge | 0.1–0.4 MPa wheel loads | 1–5 mW cm−2 | Toll plazas, speed bumps, bus stops, and urban arterials with heavy traffic |
TEG | Hot shoe (pavement surface) → Bi2Te3 couples → cold sink fins (ambient) | Temperature gradient | ΔT = 15–35 °C | 1–3% electrical | Hot-climate pavements, tunnel entrances, solar parking lots, and airport taxiways |
Application Scenario | Technology Type | Energy Output | Efficiency (%) | Other Metrics |
---|---|---|---|---|
Direct Electricity | Piezoelectric [47] | 525 J/h (0.15 Wh) | - | - |
PV [11] | 245 kWh/m2 | 42–49 | - | |
TEG [20] | 0.3–5.0 W | - | - | |
Thermal Uses | Single-pass ASC [48] | 4.0–13.6 °C Water Temp. Rise | 21.9 | Pavement Life Extension of 3 Years |
PCM-integrated ASC [35] | - | - | Daytime Temp. Reduction of 8.7 °C |
Technology Type | Sub-Technology | Efficiency (%) | Energy Output | Temperature Reduction (°C) | Other Key Metrics |
---|---|---|---|---|---|
Asphalt Solar Collector (ASC) | Buried Water Pipes [13] | 30 | 150–300 W/m3 | 0.5–3.2 | - |
Buried Air Ducts | - | - | - | Airflow Rate 0.58 m/s | |
Porous Middle Layer | 75–95 | - | - | - | |
PCM Integration | - | 150–200 kWh/m3 [36] | 8.7 | - | |
Photovoltaic System (PV) | PV Pavements [11] | 42–49 | 245 kWh/m2 | 6.4 | - |
Vibration-Based Harvesting | Piezoelectric Transducers [59] | - | 50.41 mW | - | LCOE USD 0.08–0.20/kWh |
Thermoelectric Generator (TEG) | TEG [20] | - | 0.3–5.0 W | - | Temperature Gradient 23 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wei, L.; Huang, C.; Qin, Y. A Review on the Technologies and Efficiency of Harvesting Energy from Pavements. Energies 2025, 18, 3959. https://doi.org/10.3390/en18153959
Chen S, Wei L, Huang C, Qin Y. A Review on the Technologies and Efficiency of Harvesting Energy from Pavements. Energies. 2025; 18(15):3959. https://doi.org/10.3390/en18153959
Chicago/Turabian StyleChen, Shijing, Luxi Wei, Chan Huang, and Yinghong Qin. 2025. "A Review on the Technologies and Efficiency of Harvesting Energy from Pavements" Energies 18, no. 15: 3959. https://doi.org/10.3390/en18153959
APA StyleChen, S., Wei, L., Huang, C., & Qin, Y. (2025). A Review on the Technologies and Efficiency of Harvesting Energy from Pavements. Energies, 18(15), 3959. https://doi.org/10.3390/en18153959