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Abstract

We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended for-
mulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a
regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with
modified gravitational theories through the introduction of a minimal length scale. Fo-
cusing on Schwarzschild black holes, we derive the Wheeler-deWitt equation, obtaining a
quantized description of pcGR. Using perturbative methods and semi-classical approxi-
mations, we analyze the solutions of the equations and their physical implications. A key
finding is the avoidance of the central singularity due to nonlinear interaction terms in the
Hořava-Lifshitz action. Notably, extrinsic curvature (kinetic energy) contributions prove
essential for singularity resolution, even in standard GR. Furthermore, the theory offers
new perspectives on dark energy, proposing an alternative mechanism for its accumulation.

Keywords: General Relativity; black holes; Wheeler-deWitt quantization; pseudo-complex
General Relativity

1. Introduction
General relativity (GR) is one of the most successful theories in physics, with its predic-

tions consistently validated by numerous observations [1]. However, in extreme situations
such as strong gravitational fields near the event horizon of a black hole, the limitations of
GR become apparent.

The formation of singularities at the center of black holes is a long-standing issue,
which is expected to be resolved in a quantum gravity framework where the ultraviolet
completion of gravity could introduce a minimal length scale or modify the spacetime
geometry in such a way that the singularity is avoided. An alternative approach to address-
ing singularities is pseudocomplex General Relativity (pcGR) [2,3], an algebraic extension
of GR modeled by a parameter b that characterizes deviations of the standard theory. pcGR
has been applied to black hole physics, predicting the existence of stable “dark stars”
and a continuous transition from neutron stars to black holes [4]. Notably, pcGR main-
tains Lorentz invariance while incorporating a minimal length parameter, unaffected by
Lorentz contraction.
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Despite its merits, this study explores a unified framework combining pcGR with
Hořava-Lifshitz gravity [5,6]—a regularized modification of general relativity that employs
Lifshitz-type anisotropic scaling between time and space. This scaling asymmetry alters
the ultraviolet behavior of the theory, potentially ensuring renormalizability. The resulting
unification of pcGR with Hořava-Lifshitz gravity opens a promising avenue for a consistent
ultraviolet completion of gravity. While certain aspects of this approach remain specula-
tive, the proposed mathematical formulation provides a coherent description of quantum
gravitational effects in primordial cosmology and black hole dynamics.

As a result of the combination of pcGR with the Hořava-Lifshitz gravity [5], which
introduces higher-order terms in the Riemann tensor, the anisotropic scaling of HL gravity
can be used to modify the UV behavior of the pseudo-complex metric, potentially leading
to a theory that is both renormalizable and consistent with the algebraic properties of
spacetime. The potential effectiveness of this approach has been demonstrated in recent
studies on complexified cosmological theories, where Hořava-Lifshitz gravity yields a
Wheeler-DeWitt equation that was successfully applied to resolve cosmological singularities
and offers a new perspective on explaining the rate of accelerating cosmic expansion and
the inflationary period [7].

Contemporary theoretical work has demonstrated that algebraic extensions of General
Relativity can address both UV completion and infrared consistency challenges. In particu-
lar, the pseudo-complex formulation provides a mathematically rigorous framework for
introducing a minimal length scale while preserving Lorentz invariance, as shown in [2,3].
Our unification with Hořava-Lifshitz gravity, as emphasized, builds on this foundation by
incorporating the anisotropic scaling that characterizes the renormalizability properties of
HL gravity [6]. This combination offers distinct advantages: the pcGR structure maintains
the successful low-energy predictions of General Relativity, while the HL terms regulate
the high-energy behavior through their intrinsic momentum-dependent scaling.

Notably, this unification could lead to distinct signatures in the gravitational wave
signal from binary black hole mergers, potentially observable by future gravitational wave
detectors such as LISA [8] or the Einstein Telescope [9]. The potential effectiveness of this
approach was demonstrated once again in a recent study [10] involving Hořava-Lifshitz
gravity incorporated into a complex cosmological theory which reveals a high sensitivity
of relic gravitational wave amplitudes to the primordial matter and energy content of the
universe. Moreover, this formulation predicts stochastic homogeneous distributions of
gravitational wave intensities arising from the interplay of short- and long-spacetime effects
within a non-commutative algebraic framework. The results of this formulation [10] align
with the future expected observations of relic gravitational waves, predicted to pervade the
universe as a stochastic, homogeneous background [11–16].

The unification of pcGR and HL gravity offers a promising approach to resolv-
ing the singularity problem by introducing a minimal length scale, the Planck length
(lP =

√
h̄G/c3 ≈ 1.62 × 10−35 m), where the effects of quantum gravity become signifi-

cant [17–20]. This synergy leverages the anisotropic scaling of HL gravity to modify the
pseudo-complex metric, preventing singularity formation. The pseudo-complex struc-
ture of pcGR provides a mathematical framework for spacetime geometry, althought the
Hořava-Lifshitz gravity terms not only regulate the metric near the classical singularity but
also enable a consistent resolution of black hole singularities.

The unification of pcGR and Hořava-Lifshitz gravity could explain dark energy as
an emergent effect of modified gravity. The anisotropic scaling in HL gravity alters the
pseudo-complex metric, inducing an infrared phase that reproduces dark energy behavior.
Interestingly, this framework could also lead to novel predictions for the large-scale struc-
ture of the universe, potentially testable against observations from upcoming surveys such
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as Euclid [21] or LSST [22]. In this context, the pseudocomplex structure of pcGR provides
a mathematical framework for describing the spacetime geometry, while the HL gravity
terms regulate the behavior of the metric at large distances.

Finally, the unification of pcGR and HL gravity allows exploration of the UV com-
pletion of gravity. This combination enables the construction of a UV-complete theory
of gravity, where the anisotropic scaling of HL gravity modifies the UV behavior of the
pseudo-complex metric. Once again, despite its speculative nature, the unification may
lead to a theory that is renormalizable, consistent with the algebraic properties of spacetime,
and predictive at all energy scales, including the ultraviolet regime, where quantum gravity
effects dominate. The resulting theory could have implications for our understanding of
cosmic microwave background radiation, particularly in the context of inflationary models
that rely on modified gravity theories. For example, the modified UV behavior of the theory
could lead to changes in the predicted power spectrum of primordial fluctuations.

In hybrid theory combining pcGR and HL gravity, the Lorentz invariance of pcGR is
modified by the anisotropic scaling introduced by HL gravity. Specifically, the ultraviolet
behavior of the theory is governed by the HL gravity terms, which break Lorentz invariance,
whereas the infrared behavior is expected to be dominated by the pcGR framework, which
preserves Lorentz invariance. This dichotomy suggests that the hybrid theory may exhibit
a transition from Lorentz-breaking behavior at high energies to approximate Lorentz
invariance at larger distances or lower energies. The implications of this merger for the
Lorentz invariance of the hybrid theory require careful consideration, and a detailed
analysis of this issue is beyond the scope of the present study. However, it is worth noting
that the potential consequences of Lorentz invariance breaking in hybrid theory could
have significant implications for our understanding of gravity and its relationship to other
fundamental interactions. Further investigation of this issue is warranted and will be
pursued in a separate study.

In short, while the combination of pcGR and HL gravity may seem unconventional,
our proposal leverages the strengths of both frameworks to provide a potentially renormal-
izable and consistent theory of gravity. This unification not only offers a new perspective
on resolving black hole singularities and addressing the dark energy problem, but also
provides a framework for exploring the UV completion of gravity and making novel pre-
dictions for large-scale structure observations. More research is needed to fully explore the
implications of this unification, and we will address some of these issues in the following
sections of this paper.

The paper is organized as follows. Section 2 reviews the Schwarzschild metric and
presents the Hořava-Lifshitz action. Section 3 derives the Lagrangian and Hamiltonian
formulations and obtains the Wheeler-deWitt equation. Section 4 presents the results and
Section 5 draws conclusions.

2. pcGR and the Hořava-Lifshitz Hamiltonian
For a detailed introduction to pcGR, we refer the reader to [2,3,23]. Here, we focus

on the spatial metric components, which are the only terms contributing to the Hořava-
Lifshitz formulation due to its foliation of 4-dimensional spacetime into 3-dimensional
spatial sheets.

The adopted 3-d line element is [3,23]

ds2 = g̃11dr2 + g̃22dϑ2 + g̃33dφ2 , (1)

with (r, ϑ, φ) representing respectively the radial, colatitude, and latitude coordinates respectively.
The Schwarzschild metric gij is defined on a 3-dimensional spatial hypersurface,

with i = 1, 2, 3 corresponding to r, ϑ, and φ, respectively, whose components are [3,23]
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g̃11 =

(
1 − 2m

r
+

B
6r4

)
,

g̃22 = r2,

g̃33 = r2sin2(ϑ). (2)

In pcGR, the parameter B models the accumulation of dark energy around a star. For B = 0,
the metric reduces to the Schwarzschild solution of General Relativity. The dark energy
contribution introduces an additional term in the metric, proportional to B = C/rn, where
n > 3 [23]. Although we restrict the r-dependence on n = 4 for concreteness, higher-order
dependencies (n > 4) have been explored in Ref. [23] with minimal qualitative impact.

Before we proceed, for simplicity, alternative parameterizations are introduced, namely

y ≡ r
m

, b ≡ B
m4 , (3)

where y and b correspond respectively to the reparameterization of the radial distance and
the accumulation of dark energy around a star.

In terms of the new variables, the metric components transform as g̃11 → m2dy2,
g̃22 → m2y2, and g̃33 → m2y2 sin(ϑ). In particular, the common factor m2 can be factored
in these expressions, allowing us to define a rescaled line element ds̃2 = ds2/m2 that is
manifestly independent of m.

With these new characterizations, the line element (1) becomes

ds̃2 = g11dy2 + g22dϑ2 + g33dφ2 , (4)

where the gij are pure functions of y:

g11 =

(
1 − 2

y
+

b
6y4

)
;

g22 = y2 ;

g33 = y2sin2(ϑ) . (5)

This reparameterization eliminates any explicit dependence on the mass parameter m.
Furthermore, we restricted our analysis to the orbital plane by setting ϑ = π/2, treating
it as a static variable. Although our study focuses on theoretical implications, further
investigation of parameter b and observational constraints is warranted. Parameter b,
as stressed before, governs the accumulation of dark energy around a star, and its value
could potentially be constrained by observations of stellar dynamics or other astrophysical
phenomena. We treat b as a free parameter due to the speculative nature of dark energy.
In particular, previous studies have considered a specific value of b = 81/8, which eliminates
the event horizon and predicts a distinct ring structure in the accretion disk near a black hole.
Observing this ring structure could provide a direct measurement of b. Although current
telescope resolutions are insufficient to resolve this feature, our analysis remains general by
not fixing b to a specific value, allowing for a broader exploration of its implications.

The Hořava-Lifshitz action, for the quantization of pcGR, is given by [5,24]:

SHL =
∫

d3xdtL =
M2

P
2

∫
d3x dt N

√
g
(

KijKij − λK2 − g0M2
P − g1R

−g2M−2
P R2 − g3M−2

P RijRij − g4M−4
P R3 − g5M−4

P R(Ri
jR

j
i)

−g6M−4
P Ri

jR
j
kR

k
i − g7M−4

P R∇2R− g8M−4
P ∇iRjk∇iRjk

)
. (6)
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In this expression, MP denotes the Planck mass and ∇i is the covariant derivative in
3-dimensions. The action comprises kinetic and potential terms, the kinetic term involves
the extrinsic curvature tensor Kij and the potential term depends on the Ricci tensor.
Within the perturbative framework, we truncate the potential to fourth-order terms (g4) and
set λ = 1, which is a natural choice in the context of general relativity, where λ represents
a parameter that measures the deviation from the standard diffeomorphism invariance
that preserves folliation. By setting λ = 1, we effectively recover the standard gravitational
action in the infrared limit. Furthermore, the truncation of higher-order terms is motivated
by the assumption that their contributions are suppressed by powers of the relevant
energy scale, rendering them negligible in the context of our analysis. Although these
approximations may limit the precision of our results, they enable us to capture the essential
features of the system and provide a tractable framework for exploring the Wheeler-deWitt
equation. For a more comprehensive discussion of the implications of λ and its potential
values, we refer the reader to [5].

The contribution of kinetic energy is defined in terms of the extrinsic metric covariant
and contravariant tensors Kij and Kij:

Kij =
1

2σN

(
−

∂gij

∂t
+∇i Nj +∇jNi

)
and Kij =

1
2σN

(
∂gij

∂t
+∇i N j +∇jNi

)
, (7)

where Ni is the Arnowitt-Deser-Misner (ADM) shift vector and where the extrinsic metric
scalar is represented by K.

The potential contribution is in turn defined in terms of the Ricci curvature scalar.
This theory is based on the ADM foliation of the 4-dimensional space, partitioning the
space-time into 3-dimensional space sheets and a perpendicular-time parameter vector.
The action in (6) produces propagators that make the theory renormalizable in the UV limit
and recover the GR in the IR limit [5]. The deviation from the Lorentz symmetry implies
that a minimal length is effectively introduced.

In this contribution we will, for simplicity, restrict the Hořava-Lifshitz action to up to
third order terms and also exclude derivative terms. In most sample calculations, we apply
the naturalness condition, which means that all parameters are set to 1, except explicitly stated
differently, assuming an equal contribution at all scales. The naturalness condition, which
requires all dimensionless parameters to be of order unity, is motivated by the expectation
that the theory should not rely on fine tuning to reproduce observed physics [25,26].
This principle is widely adopted in effective field theories, as parameters are generically
expected to be natural in size unless a symmetry or other mechanism (e.g., decoupling)
explicitly suppresses them [27]. Imposing the naturalness condition eliminates fine-tuned
parameters and prevents unphysical hierarchies or instabilities, while simultaneously
revealing possible fixed points or physically meaningful regimes.

In summary, this section has outlined the theoretical framework for pcGR and its
unification with Hořava-Lifshitz gravity, the choice λ = 1 have been justified, and the natu-
ralness condition has been imposed to minimize fine-tuned parameters. This framework
will serve as the basis for our subsequent analysis of the Wheeler-deWitt equation and the
implications for black hole physics.

3. The Lagrangian of pcGR Within the Hořava-Lifshitz Action
The Lagrange density of this theory (L), the kinetic energy density (T ) and the poten-

tial (V) can be recovered from the action (6), with the following definitions:
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L = T − V , (8)

T = (KijKij − λK2) , (9)

V = G0 + G1 R + G2 R2 + G3 RijRij + G4 R3, (10)

where the rescaled parameter Gk is set as gk
Md

P
, expressed in terms of the original interaction

parameters gk, defined in (6).

3.1. Kinetic Energy

In Hořava-Lifshitz gravity, foliation-preserving diffeomorphism invariance constrains
the lapse function N to be spatially constant. We therefore adopt the gauge choice N = 1
and Ni = 0 for the lapse function and the shift vector, respectively. This gauge-fixing
simplifies the kinetic term, as demonstrated in [24]. From

Kij = Kij = gipgjqKpq (11)

and (7), we obtain after a lengthy calculation the expression for KijKij:

KijKij =
6
(
b2 + 2y3(2by − 6b + 6y5 − 24y4 + 27y3))ẏ2

y2(b + 6(y − 2)y3)
2 ; (12)

K, which represents the trace of Kij, in the second term of the kinetic energy term (9),
then becomes

K = −
2
(
2b + 3(2y − 5)y3)ẏ
y(b + 6(y − 2)y3)

. (13)

The time derivative of y is denoted by ẏ. Setting λ = 1 [24], we arrive at the following
expression for the kinetic energy:

T = KijKij − K2

= −
2
(
5b + 6(y − 4)y3)

y2(b + 6(y − 2)y3)
ẏ2

= −Θ(y)ẏ2 , (14)

where Θ(y), given by

Θ(y) =
2
(
5b + 6(y − 4)y3)

y2(b + 6(y − 2)y3)
, (15)

captures the properties of inertia of the system under changes in y.

3.2. Potential Energy

The building blocks of the interaction are expressed in terms of the variables and
parameters of the pcGR, specifically for the Schwarzschild case. While Mathematica [28]
was used to verify the results, all calculations were carefully performed by hand to ensure
precision. For brevity and focus on novel results, we omit detailed derivations of standard
quantities such as metric components, extrinsic curvature, Christoffel symbols, and Ricci
tensor, as these can be found in classical texts on general relativity [1,29]. Our emphasis
is on the application of pcGR to the Schwarzschild case and the resulting implications for
quantum gravity. The potential energy contains many different terms, and it is not very
illustrative to describe them all at once. Alternatively, we can use Equation (10) and list the
building blocks of potential energy, which are:
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(a) The Ricci scalar

R = b/y6 ; (16)

(b) the interaction RijRji

RijRji =
4(b − 3y3)2

9y12 + 2
(b + 6y3)2

36y12 . (17)

We finally arrive at

V = G0 + G1
b
y6 + G2

b2

y12 + G3

(
4(b − 3y3)2

9y12 + 2
(b + 6y3)2

36y12

)
+ G4

b3

y18 . (18)

3.3. Hamiltonian and the Wheeler-deWitt Equation

The canonical quantization procedure is applied to the variable y. To achieve this, we
first define the canonical momentum Πy as the derivative of the Lagrange density L with
respect to the parametric “velocity” ẏ, yielding

Πy =
∂L
∂ẏ

= −2Θ(y)ẏ . (19)

This definition of the canonical momentum is a crucial step in the quantization process,
where the momentum is subsequently promoted to an operator. The time parameter in
this context is defined within the Arnowitt-Deser-Misner (ADM) foliation of spacetime,
providing a framework for describing the dynamics of the system.

Resolving for ẏ, we get

ẏ = − 1
2Θ(y)

Πy , (20)

which results for the kinetic energy (14) into

T = −
Π2

y

4Θ(y)
. (21)

Combining Equations (18) and (21), the Hamiltonian density can be written as

H = T + V

= −
Π2

y

4Θ(y)
+ V . (22)

The canonical quantization procedure follows DeWitt’s original prescription [30]
for constrained Hamiltonian systems, promoting classical constraints to operators that
annihilate physical states. In our framework, the Hamiltonian constrain

HΨ = 0 (23)

generates the Wheeler-DeWitt-equation—a timeless Schrödinger equation governing quan-
tum spacetime geometry. The pseudo-complex (pcGR) metric structure naturally introduces
a minimal length scale, while the Hořava-Lifshitz terms provide ultraviolet regularization.
The momentum Πy is quantized through the operator prescription.

Πy → Π̂y = −ih̄
∂

∂y
, (24)
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which transforms the Wheeler-DeWitt equation into

H
(

y,−ih̄
∂

∂y

)
Ψ(y) =

d2Ψ(y)
dy2 + 4Θ(y)V = 0 . (25)

The following expression is used

Pot(y) ≡ 4Θ(y)V , (26)

defines an effective potential where the inertia function Θ(y) modulates V by encoding
the “resistance” of the system to y-variations. This modulation critically determines the
dynamical evolution. The repulsive core of the potential at small y manifests the singularity
resolution in our pcGR-HL framework, analogous to bounce phenomena in loop quantum
cosmology [31]. Key distinctions emerge from: (i) the pseudocomplex algebraic structure
modifying the metric at fundamental level; (ii) Hořava-Lifshitz nonlinearities generating a
stabilizing potential barrier (Pot(y) → +∞ as y → 0).

4. Results
The behavior of the potential Pot(y) shown in the left panel of Figure 1, is analyzed

in the context of the Hořava-Lifshitz action for b = 0, which reduces to the standard
Schwarzschild solution in General Relativity. The potential exhibits a pocket structure with
infinite walls in the region y < 2, indicative of a confined system. At y = 2, the results indi-
cate the position of the event horizon, where the black hole wave function is concentrated.
The repulsive potential towards r = my = 0 can be attributed to the non-linear terms in the
Hořava-Lifshitz action, which dominate the behavior of the potential in this region and
prevent the formation of a singularity.
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P
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Figure 1. The potential Pot(y) as a function of y = r
m . The left figure corresponds to b = 0, which

reduces to the standard Schwarzschild solution in General Relativity. The right figure corresponds
to b = 81

8 , above which no event-horizon exists. The unit of the vertical axis is proportional to M2
p,

as can be seen in (6).

The right panel of Figure 1 corresponds to b = 81
8 , a limiting value above which there

is no event horizon. The potential tends to −∞ at y = 3
2 , signaling the disappearance of

the event horizon above this value of b. However, the potential remains repulsive towards
r = 0, suggesting that nonlinear terms continue to play a crucial role in avoiding the
formation of a singularity.

For parameter values b > 81
8 (Figure 2), increasing b produces three key effects: the

potential minimum becomes broader and shallower, the black hole wave function ψ(y)
exhibits stronger spatial localization, and the system stabilizes at a fixed radial position
ymin. This enhanced localization facilitates the numerical solution of the wave equation,
while the constant minimum position ymin corresponds to a stable stellar configuration
with fixed radius R = ymin. This reflects the result obtained in previous publications on



Galaxies 2025, 13, 85 9 of 14

pcGR. Even when an event horizon exists, the higher-order terms of the Hořava-Lifshitz
action prevent the colapse of the star to a singularity.
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Figure 2. The potential Pot(y) as a function of y = r
m . The left figure is for b = 11 and the right figure

is for b = 12, all values above b = 81
8 . The unit of the vertical axis is similar to the previous figure.

In contrast, when higher-order terms are skipped, as shown in Figure 3 (V = 1), all
information is contained in the inertia function Θ(y). In this case, the inertia effect of the
kinetic energy plays the dominant role and still localizes the wave function in r = my > 0,
indicating that the system flexes resistance to contracting to the center, even in GR.

−40
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P
o
t
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Figure 3. The potential Pot(y) as a function of y = r
m . In this figure, all parameters Gk are zero,

except G0 = 1, i.e., V = 1. The unit of the vertical axis is similar to the previous figures.

The features of the potential can be understood in terms of the competition between
the gravitational and kinetic terms in the Hořava-Lifshitz action. The former tends to create
a singularity, while the latter provides a repulsive contribution that prevents the collapse of
the system. Our analysis suggests that this interplay is responsible for the emergence of the
event horizon and the avoidance of singularities in the system.

In particular, we anticipate that a detailed analysis of the eigenvalues and masses will
provide further insight into the properties of black holes in the context of HL gravity and
may even shed light on the potential observational signatures of these systems. Our work
provides a first step in exploring the connection between pcGR and HL gravity and lays
the groundwork for further investigation of the relationship between these approaches.

We have selected several values of the parameter b to illustrate the dependence of
the wave function Ψ(y) on this parameter. The values of b were chosen to demonstrate
the varying effects of the potential V on the solution of the Wheeler-deWitt equation.
Specifically, the different values of b modify the shape and amplitude of the potential,
leading to distinct profiles of wave functions. This range of solutions showcases the
sensitivity of the wave function to changes in potential V , as depicted in the figures for
various values of b.

Figures 4–7 depict quantum solutions of the Wheeler-deWitt Equation (25) for a
regularized black hole (i.e., without a central singularity). The results of Figure 4 show
the sample solution family of the black hole wave function and resemble the typical
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evolutionary behavior of a quantum-mechanical wave packet with an envelope containing
transverse-wave solutions inside. The plots in Figures 5–7 show samples of individual
solutions of the black hole wave function.

Figure 4. On the left image sample solutions family of the black hole wave function Ψ(y) assuming
b = 1, the naturalness condition for the G parameters and the initial conditions Ψ(1) = 0 and
Ψ(1) = 1. Solutions with b = 0 show a quite similar behavior. On the right the corresponding sample
solutions for b = 10.125.

Figure 5. Sample of individual solutions of the black hole wave function Ψ(y) adopting the natural-
ness condition for the G parameters, b = 10.125, and the initial conditions Ψ(1) = 0, on the left and
Ψ(1) = 1 on right.

The interpretation of an oscillating quantum wave packet of a regularized black hole
and the corresponding individual solutions requires a quantum-mechanical appreciation
of the modified space- time structure near the black hole core. Based on the following
references (see [32–37]), we address some interpretative conjectural aspects. It is important
to remember that, in classical general relativity, black holes contain a singularity at the
center, where the curvature diverges. Quantum gravity models, in turn, often regularize
the singularity by replacing it with a high-density quantum nucleus or a Planck-scale
structure (such as a quantum jump, for example), resulting in an effective metric near
the center that may resemble a de Sitter-type geometry or other nonsingular geometry.
From a quantum-mechanical perspective, the corresponding wave functions describe the
probability amplitude of finding quantum gravitational degrees of freedom (or matter fields)
in a given state. In the case where the wave function oscillates, this suggests a dynamical
evolution, which could be due to quantum fluctuations of the black hole’s internal geometry,
a gravitational backlash from matter entering or leaving the black hole composing Hawking
radiation, or even quasi- normal mode oscillations of the horizon or core that are quantumly
corrected. In our analysis, the Wheeler-DeWitt equation yields wave functions that exhibit
oscillatory behavior, which may seem counterintuitive given the static nature of spacetime.
However, this apparent paradox can be resolved by considering the quantum nature of
the system. In quantum gravity, the wave function describes the probability amplitude
of finding the system in a particular state. The oscillations in the wave function can be
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attributed to quantum fluctuations of the black hole’s internal geometry or quasi-normal
mode oscillations of the horizon/core that are quantum-corrected. These oscillations do
not necessarily imply a dynamical evolution of the spacetime itself, but rather reflect the
quantum nature of the system. Our results suggest that the oscillating wave functions
describe a quantum black hole with a non-singular core, where the classical singularity is
replaced by a high-density quantum nucleus. The oscillations may encode information
about the quantum structure of the black hole, such as the discreteness of the area spectrum
or the unitary propagation of information. In this context, the statement refering to the
oscillation of wave function as suggesting a dynamical evolution should be understood
as referring to the quantum dynamics of the system, rather than a classical dynamical
evolution of the spacetime.

Figure 6. Sample of individual solutions of the black hole wave function Ψ(y) adopting the natu-
ralness condition for the G parameters, b = 11, and the initial conditions Ψ(1) = 0, on the left and
Ψ(1) = 1 on right.

Figure 7. Sample of individual solutions of the black hole wave function Ψ(y) adopting the natu-
ralness condition for the G parameters, b = 12, and the initial conditions Ψ(1) = 0, on the left and
Ψ(1) = 1 on right.

Concerning interpreting the oscillations, we could consider radial and temporal com-
ponents. Radial oscillations may represent a superposition of states in which the black hole
core pulses between expanded and contracted phases (such as a branch cut or a quantum
bounce scenario) [7,38]. Temporal oscillations, in turn, could indicate energy eigenstates
of the quantum black hole (e.g., discrete mass/area spectra). The physical implications of
these scenarios indicate for instance a singularity resolution in which the oscillations may
encode how quantum effects smear out the classical singularity into a finite-sized, dynamic
core. Alternatively, it may indicate information preservation, in the sense that nonsingular
evolution could unitarily propagate information (with no loss to a singularity), with oscilla-
tions reflecting interference or revival effects. With respect to observable signatures, if the
oscillations couple to the outgoing Hawking radiation, they can impart modulations to the
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emission spectrum; and as a result gravitational wave echoes from the quantum nucleus
can arise if the oscillations excite quasi-normal modes.

The boundary conditions adopted in this work follow the conventional canons of
convergence, as well as stability and continuity of the solutions of differential equations,
and are in tune with the Bekenstein criterion [32]. Considering spatially connected regions
within the particle horizon of a given observer, locus of the most distant points that can be
observed at a specific time t0 in an event, made Bekenstein’s conjecture an upper bound
for the entropy of a black hole. According to the criterion, the entropy S is proportional to
the number of Planck areas to cover the black hole’s event horizon. Taking in a simplified
way the proper distance d(t) of a pair of objects, at an arbitrary time t and its relation to the
proper distance d(t0) at a reference time t0, results in d(t) = u(t)d(t0), this implies that for
t = t0, u(t0) = 1. We consider the boundary condition |u(t0) = 1|, assuming that time t0

is the location of the most distant points that can be observed, in line with the Bekenstein
criterion. These boundary conditions lead to Ψ(u(t)) → Ψ(1) = 1 and Ψ(1) = 0. Regarding
possible interpretations involving amplitude variations, the possible causes of an increase,
decrease, or stability of the amplitudes may be due to several factors. Among the possible
causes for the increase in amplitudes, resonance effects, instability in quantum geometry,
and energy influx stand out, signaling an indefinite transition or jump, such as the formation
of a white hole, or indicating a quantum revitalization. Decreasing amplitudes are generally
associated with decoherence effects, dispersive effects, or even absorption effects by an
effective horizon, implying ‘information leakage’ or even temporary suppression, as in a
collapse-rebound scenario. Finally, the stability of the amplitudes would possibly indicate
stationary or quasi-stationary configurations or even an equilibrium between the expansion
and contraction phases, indicating a metastable quantum black hole or a quasi-classical
regime where quantum fluctuations are suppressed.

As a final comment, the oscillating wave functions reflect the dynamical non-singular
quantum geometry of the black hole interior. Its interpretation is based on the predictions of
the underlying theory for how spacetime and matter behave at Planckian densities. Probing
these oscillations theoretically could bridge quantum gravity with observable phenomena
such as gravitational waves or modified Hawking radiation.

5. Conclusions
This work develops a unified framework combining Hořava-Lifshitz gravity with

pseudo-complex General Relativity (pcGR), which generalizes Einstein’s theory through
two fundamental modifications: (i) the introduction of a minimal length scale, and (ii) the
natural emergence of dark energy effects in strong gravitational fields near black holes.
Our analysis yields four key insights. First, the Wheeler-DeWitt quantization of pcGR
demonstrates that nonlinear Hořava-Lifshitz interaction terms prevent singularity forma-
tion independently of dark-energy effects. Second, the kinetic energy terms—particularly
the inertia contribution—play an essential role in this singularity resolution mechanism.
Third, systems with large dark-energy parameters (b > 81/8) exhibit strongly localized
wave functions, while smaller values correspond to stable stellar configurations with radii
determined by potential minima. Finally, quantum corrections manifest as wave function
oscillations that effectively smear the classical singularity.

These quantum gravity predictions may produce observable signatures in gravita-
tional wave signals from compact binary mergers. Current LIGO-Virgo observations [39]
have constrained deviations from classical general relativity, with our model remaining
consistent with these bounds while predicting distinctive features in the kHz regime. Fu-
ture third-generation detectors like the Einstein Telescope [40] will provide the sensitivity
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required to test these predictions, particularly through precision measurements of the
ringdown phase, where quantum horizon fluctuations become significant.

Our results establish a concrete connection between three fundamental aspects of
modified gravity: (1) the regularization of singularities through nonlinear interactions,
(2) the critical role of kinetic terms in quantum gravity, and (3) the interplay between
minimal length scales and dark energy in strong field regimes. This framework opens new
avenues for investigating quantum gravitational effects in both theoretical and observa-
tional contexts.
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