Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Au NPs
2.3. Synthesis of Bimetallic Au@Ag NPs
2.4. Synthesis of Au@Ag Nanocubes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Theoretical Formalism
n | ||
---|---|---|
1 | 0.44 | 0.214 |
2 | 0.24 | 0.297 |
3 | 0.04 | 0.345 |
4 | 0.05 | 0.440 |
5 | 0.10 | 0.563 |
6 | 0.09 | 0.706 |
References
- Atwater, H. The promise of plasmonics. Sci. Am. 2007, 296, 56. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006, 239, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Fortina, P.; Kricka, L.J.; Graves, D.J.; Park, J.; Hyslop, T.; Tam, F.; Halas, N.; Surrey, S.; Waldman, S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol. 2007, 25, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442. [Google Scholar] [CrossRef] [PubMed]
- Haes, A.; Van Duyne, R.P. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596. [Google Scholar] [CrossRef] [PubMed]
- Lezec, H.J.; Dionne, J.A.; Atwater, H.A. Negative refraction at visible frequencies. Science 2007, 316, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef] [PubMed]
- Akimov, A.; Mukherjee, A.; Yu, C.L.; Chang, D.E.; Zibrov, A.S.; Hemmer, P.R.; Park, H.; Lukin, M.D. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007, 450, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Ferry, V.E.; Sweatlock, L.A.; Pacifici, D.; Atwater, H.A. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett. 2008, 8, 4391–4397. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, P.; Chon, J.W.M.; Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 2009, 459, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, V.; Kwon, H.; Gresi, A.; Ivanov, Y.P.; Schirato, A.; Albasini, A.; Cuscinà, M.; Balesta, G.; De Luca, A.; Macoraferri, N.; et al. Dry synthesis of bi-layer nanoporous metal films as plasmonic metamaterial. Nanophotonics 2024, 13, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, B.; Krenn, J.R.; Schider, G.; Ditlbacher, H.; Salerno, M.; Felidj, N.; Leitner, A.; Aussenegg, F.R.; Weeber, J.C. Surface plasmon propagation in microscale metal stripes. Appl. Phys. Lett. 2001, 79, 51–53. [Google Scholar] [CrossRef]
- Bozhevolnyi, S.I.; Volkov, V.S.; Devaux, E.; Laluet, J.Y.; Ebbesen, T.W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 509–512. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Tang, Z.; Huo, T.; Wu, D.; Tang, J.H. Ag/Au Bimetallic Core–Shell Nanostructures: A Review of Synthesis and Applications. J. Manuf. Mater. Process. 2025, 9, 131. [Google Scholar] [CrossRef]
- Tsao, K.-C.; Lo, Y.-C.; Lu, Y.-R.; Fu, H.-C.; Kuo, T.-R.; Wu, J.-M.; Ho, K.-C.; Yeh, M.-H.; Chen, L.-C.; Chen, K.-H. Controllable Synthesis of Core–Shell Gold–Silver Nanoparticles and Their Optical Properties. J. Am. Chem. Soc. 2014, 136, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.K.; Esparza, R.; Flores-Ruiz, F.J.; Padilla-Ortega, E.; Luna-Bárcenas, G.; Sanchez, I.C.; Pal, U. Seed-Mediated Growth of Ag@Au Nanodisks with Improved Chemical Stability and Surface-Enhanced Raman Scattering. ACS Omega 2018, 3, 12600–12608. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; González-Rubio, G.; Van Gordon, K.D.; Bals, S.; Kotov, N.A.; Liz-Marzán, L.M. Seed-Mediated Growth and Advanced Characterization of Chiral Gold Nanorods. Adv. Mater. 2024, 36, 2412473. [Google Scholar] [CrossRef] [PubMed]
- Haldar, K.K.; Kundu, S.; Patra, A. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 21946–21953. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhang, Y.; Wang, Z.; Yang, W.; Zhou, J.; Li, H. Tailoring the Plasmonic Properties of Au@Ag Core–Shell Nanostructures via Shell Thickness Control and Surface Roughness Engineering. ACS Omega 2022, 7, 3312–3323. [Google Scholar] [CrossRef] [PubMed]
- Samal, A.K.; Polavarapu, L.; Manna, D.; Xu, Q.-H.; Kim, J.-Y.; Panigrahi, S.; Yang, D.-P.; Yu, T.; Kim, H.; Xing, Y.; et al. Size Tuning of Au@Ag Core–Shell Nanoparticles in Organic Phase. Langmuir 2013, 29, 15076–15082. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.K.; Srivastava, S.; López-Luke, T.; Pal, U. Optical Signatures and SERS Activity of Au–Ag Nanoparticles with Tunable Compositions and Shell Thickness. J. Phys. Chem. C 2021, 125, 13759–13769. [Google Scholar] [CrossRef]
- Ma, Y.; Li, X.; Li, C.; Wang, Y.; Wang, L.; Chen, Y. Highly Sensitive SERS Detection of Formaldehyde Using Core–Shell Au@Ag Nanorods. ACS Nano 2010, 4, 6725–6734. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.Y.; Schwartzberg, A.M.; Orme, C.A.; Talley, C.E.; O’Connell, B.; Zhang, J.Z. Controlled Growth and Shape Formation of Gold Nanoparticles Using Surface Plasmon Resonance Conditions. J. Phys. Chem. C 2008, 112, 6319–6329. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 2nd ed.; Wiley: New York, NY, USA, 1975; p. 748. [Google Scholar]
- Noguez, C.; Villagómez, C.J.; González, A.L. Plasmonics of multifaceted metallic nanoparticles. Phys. Status Solidi B 2015, 253, 56–71. [Google Scholar] [CrossRef]
- Kolesov, R.; Grotz, B.; Balasubramanian, G.; Stöhr, R.J.; Nicolet, A.A.L.; Hemmer, P.R.; Jelezko, F.; Wachtrup, J. Wave-particle duality of single surface plasmon polaritons. Nat. Phys. 2009, 5, 470–474. [Google Scholar] [CrossRef]
- Koller, D.M.; Hohenau, A.; Ditlbacher, H.; Galler, N.; Reil, F.; Aussenegg, F.R.; Leitner, A.; List, E.J.W.; Krenn, J.R. Organic plasmon-emitting diode. Nat. Phot. 2008, 2, 684–687. [Google Scholar] [CrossRef]
- Falk, A.L.; Koppens, F.H.L.; Yu, C.L.; Kang, K.; de Leon Snapp, N.; Akimov, A.V.; Jo, M.-H.; Lukin, M.D.; Park, H. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 2009, 5, 475–479. [Google Scholar] [CrossRef]
- Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image Processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Fuchs, R. Theory of the optical properties of ionic crystal cubes. Phys. Rev. B 1975, 11, 1732–1740. [Google Scholar] [CrossRef]
- Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. 2007, 111, 3806–3819. [Google Scholar] [CrossRef]
- Steiner, A.M.; Mayer, M.; Schletz, D.; Wolf, D.; Formanek, P.; Hübner, R.; Dulle, M.; Förster, S.; König, T.A.F.; Fery, A. Silver Particles with Rhombicuboctahedral Shape and Effectively Isotropic Interactions with Light. Chem. Mater. 2019, 31, 2822–2827. [Google Scholar] [CrossRef]
- Theiss, J.; Pavaskar, P.; Echternach, P.M.; Muller, R.E.; Cronin, S.B. Plasmonic Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates. Nano Lett. 2010, 10, 2749–2754. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Estrada, O.; Morales-Luna, G.; Reyes-Coronado, A.; Calles-Martínez, A.; García-Valenzuela, A. Sensitivity of optical reflectance to the deposition of plasmonic nanoparticles and limits of detection. J. Nanophoton. 2016, 10, 026019. [Google Scholar] [CrossRef]
- Zheludev, N.I. A Roadmap for Metamaterials. Opt. Photonics News 2011, 22, 30–35. [Google Scholar] [CrossRef]
- Jhonson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Chettiar, U.K.; Engheta, N. Internal homogenization: Effective permittivity of a coated sphere. Opt. Express 2012, 20, 22976–22986. [Google Scholar] [CrossRef] [PubMed]
- Wallén, H.; Kettunen, H.; Sihvola, A. Mixing Formulas and Plasmonic Composites. In Metamaterials and Plasmonics: Fundamentals, Modelling, Applications; Zouhdi, S., Sihvola, A., Vinogradov, A.P., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 91–102. [Google Scholar]
- Diaz-HR, R.; Esquivel-Sirvent, R.; Noguez, C. Plasmonic Response of Nested Nanoparticles with Arbitrary Geometry. J. Phys. Chem. C 2016, 120, 2349–2359. [Google Scholar] [CrossRef]
- Moroz, A. Electron mean free path in a spherical shell geometry. J. Phys. Chem. C 2008, 112, 10641–10652. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley-Interscience: New York, NY, USA, 1983; pp. 46–163. [Google Scholar]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
Sample | (nm) | (nm) | Circularity of (nm) | Circularity of |
Sph-10 | 0.97 | 0.87 | ||
Sph-50 | 0.89 | 0.94 | ||
Sph-100 | 0.72 | 0.95 | ||
Sample | (nm) | Side (nm) | Circularity of | |
Sample A | 0.82 | |||
Sample B | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Quitl, D.O.; Krishnan, S.K.; Palomino-Ovando, M.A.; Hernández-Cristobal, O.; Torres-Guzmán, J.C.; Lugo, J.E.; Toledo-Solano, M. Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles. Nanomaterials 2025, 15, 1125. https://doi.org/10.3390/nano15141125
Romero-Quitl DO, Krishnan SK, Palomino-Ovando MA, Hernández-Cristobal O, Torres-Guzmán JC, Lugo JE, Toledo-Solano M. Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles. Nanomaterials. 2025; 15(14):1125. https://doi.org/10.3390/nano15141125
Chicago/Turabian StyleRomero-Quitl, David Oswaldo, Siva Kumar Krishnan, Martha Alicia Palomino-Ovando, Orlando Hernández-Cristobal, José Concepción Torres-Guzmán, Jesús Eduardo Lugo, and Miller Toledo-Solano. 2025. "Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles" Nanomaterials 15, no. 14: 1125. https://doi.org/10.3390/nano15141125
APA StyleRomero-Quitl, D. O., Krishnan, S. K., Palomino-Ovando, M. A., Hernández-Cristobal, O., Torres-Guzmán, J. C., Lugo, J. E., & Toledo-Solano, M. (2025). Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles. Nanomaterials, 15(14), 1125. https://doi.org/10.3390/nano15141125