Maximum Entropy Estimates of Hubble Constant from Planck Measurements
Abstract
1. Introduction
2. Maximum Entropy
3. Model, Parameter Space, and Data Selection for Temperature Anisotropy Analysis
3.1. Temperature Anisotropy in the CMB
3.1.1. Expansion of the Universe
3.1.2. Evolution of Quantum Perturbations
3.1.3. Hydrodynamic Model
3.2. Parameter Space
3.3. Data Selection
4. Results
4.1. Probability Densities and Parameter Estimates
4.2. Modeled and Measured Power Spectra
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Sen, M.K.; Stoffa, P.L. Bayesian inference, Gibbs’ sampler and uncertainty estimation in geophysical inversion. Geophys. Prospect. 1996, 44, 313–350. [Google Scholar] [CrossRef]
- Green, P.J. Trans-dimensional Markov chain Monte Carlo. In Oxford Statistical Science Series; Oxford University Press: Oxford, UK, 2003; Chapter 6; Volume 4, pp. 179–198. [Google Scholar]
- Sambridge, M.; Gallagher, K.; Jackson, A.; Rickwood, P. Trans-dimensional inverse problems, model comparison and the evidence. Geophys. J. Int. 2006, 167, 528–542. [Google Scholar] [CrossRef]
- Parmer, V.; Thapa, V.B.; Kumar, A.; Bandyopadhyay, D.; Sinha, M. Bayesian inference of the dense-matter equation of state of neutron stars with antikaon condensation. Phys. Rev. C 2024, 110, 045804. [Google Scholar] [CrossRef]
- Beznogov, M.V.; Raduta, A.R. Bayesian survey of the dense matter equation of state built upon Skyrme effective interactions. Astrophys. J. 2024, 966, 216. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Jaynes, E.T. Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 227–241. [Google Scholar] [CrossRef]
- Giffin, A.; Caticha, A. Updating probabilities with data and moments. In Proceedings of the 27th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Saratoga Springs, NY, USA, 8–13 July 2007; pp. 1–5. [Google Scholar]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results: Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, 1–56. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results: VI. cosmological parameters. Astron. Astrophys. 2020, 641, 1–67. [Google Scholar]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological observations. Astrophys. J. Suppl. Ser. 2011, 192, 18. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Yu, J.T. Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 1970, 162, 815–836. [Google Scholar] [CrossRef]
- Sunyaev, R.A.; Zel’dovich, Y.B. Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 1970, 7, 3–19. [Google Scholar] [CrossRef]
- Lewis, A.; Challinor, A.; Lasenby, A. Efficient Computation of CMB anisotropies in closed FRW models. Astrophys. J. 2000, 538, 473–476. [Google Scholar] [CrossRef]
- Helm, J. A new version of the Lambda-CDM cosmological model, with extensions and new calculations. J. Mod. Phys. 2024, 15, 193–238. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Frenk, C.S.; White, S.D.M. Dark matter and cosmic structure. Ann. Phys. 2012, 524, 507–534. [Google Scholar] [CrossRef]
- Diemand, J.; Moore, B. The structure and evolution of cold dark matter halos. Adv. Sci. Lett. 2011, 4, 297–310. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 1998, 496, 605–614. [Google Scholar] [CrossRef]
- Sachs, R.K.; Wolfe, A.M. Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 1967, 147, 73. [Google Scholar] [CrossRef]
- Hu, W.; Sugiyama, N. Anisotropies in the cosmic microwave background: An Analytic Approach. Astrophys. J. 1995, 444, 489–506. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008; Chapters 5–7; p. 10. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Knobles, D.P.; Sagers, J.D.; Koch, R.A. Maximum entropy approach to statistical inference for an ocean acoustic waveguide. J. Acoust. Soc. Am. 2012, 131, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Bilbro, G.; Van den Bout, D.E. Maximum entropy and learning theory. Neural Comput. 1992, 4, 839–853. [Google Scholar] [CrossRef]
- Tishby, N.; Levin, E.; Solla, S.A. Consistent inference of probabilities in layered networks: Predictions and generalization. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Washington, DC, USA, 18–22 June 1989; Volume 2, pp. 403–410. [Google Scholar]
- Levin, E.; Tishby, N.; Solla, S.A. A statistical approach to learning and generalization in layered neural networks. Proc. IEEE 1990, 78, 1568–1574. [Google Scholar] [CrossRef]
- Knobles, D.P.; Neilsen, T.; Hodgkiss, W. Inference of source signatures of merchant ships in shallow ocean environments. J. Acoust. Soc. Am. 2024, 155, 3144–3155. [Google Scholar] [CrossRef]
- Nuttall, J.R.; Neilsen, T.B.; Transtrum, M.K. Maximum entropy temperature selection via the equipartition theorem. Proc. Meet. Acoust. 2023, 52, 070004. [Google Scholar]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.K.; Stoffa, P.L. Global Optimization Methods in Geophysical Inversion; Cambridge University Press: Cambridge, UK, 2013; Chapter 4. [Google Scholar]
- Goffe, W.L.; Ferrier, G.L.; Rogers, J. Global optimization of statistical functions with simulated annealing. J. Econom. 1994, 60, 65–100. [Google Scholar] [CrossRef]
- Weinberg, S. Adiabatic Modes in Cosmology. Phys. Rev. D 2003, 67, 123504. [Google Scholar] [CrossRef]
- Mukhanov, V.S. Quantum theory of gauge-invariant cosmological perturbations. Zh. Eksp. Teor. Fiz. 1988, 94, 1–11. [Google Scholar]
- Sasaki, S. Large scale quantum fluctuations in the inflationary universe. Prog. Theor. Phys. 1986, 76, 1036–1046. [Google Scholar] [CrossRef]
- Bardeen, J.M. Gauge invariant cosmological perturbations. Phys. Rev. D 1980, 22, 1882–1905. [Google Scholar] [CrossRef]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–392. [Google Scholar] [CrossRef]
- DESI Collaboration; Abdul-Karim, M.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.; Allende Prieto, C.; Alves, O.; Anand, A.; Andrade, U.; et al. DESI DR2 results II: Measurements of baryon acoustic oscillations and cosmological constraints. arXiv 2025, arXiv:2503.14738v2. [Google Scholar]
- Wilkinson Microwave Anisotropy Probe (WMAP) Year 1 Data Release. Available online: https://lambda.gsfc.nasa.gov/data/map/powspec/wmap_lcdm_pl_model_yr1_v1.txt (accessed on 1 January 2025).
- Page, L.; Hinshaw, G.; Komatsu, E.; Nolta, M.R.; Spergel, D.N.; Bennett, C.L.; Barnes, C.; Bean, R.; Doré, O.; Dunkley, J.; et al. Three year Wilkinson microwave anisotropy probe (WMAP) observations: Polarization analysis. Astrophys. J. Suppl. Ser. 2007, 170, 335–376. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.J.; Jang, I.S.; Lee, A.J.; Owens, K.A. Status report on the Chicago-Carnegie Hubble program (CCHP): Measurement of the Hubble constant using the Hubble and James Webb space telescopes. Astrophys. J. 2025, 985, 203. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Jang, I.S.; Hoyt, T.J.; Lee, A.J.; Owens, K.A. Status report on the Chicago-Carnegie Hubble program (CCHP): Three independent astrophysical determinations of the Hubble constant using the James Webb space telescope. Astrophys. J. 2024, 985, 31. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw-Hill: New York, NY, USA, 1965; Chapter 7. [Google Scholar]
- Tolman, R.C. A general theory of energy partition with applications to quantum theory. Phys. Rev. 1918, 11, 261–275. [Google Scholar] [CrossRef]
Parameter | Lower Bound | Upper Bound |
---|---|---|
0.90 | 1.1 | |
0.10 | 0.90 | |
0.1 | 0.2 | |
0.01 | 0.03 | |
Parameter | 2018 | ||
---|---|---|---|
1.0050 | 1.0040 ± 0.035 | 0.9649 ±0.0042 | |
0.6649 | 0.6667 ± 0.070 | 0.6847 ± 0.0073 | |
0.1457 | 0.1480 ± 0.0108 | 0.1430 ± 0.0011 | |
0.02243 | 0.02232 ± 00090 | 0.02237 ± 0.00015 | |
1.8208 | 1.8160 ± 0.0880 | — | |
0.6594 | 0.6700 ± 0.0436 | 0.6736 ± 0.0054 | |
0.3351 | 0.3333 ± 0.0404 | 0.3153 ± 0.0073 |
Extrema | ΛCDM | HM | Planck |
---|---|---|---|
220.8 | 218.0 | 220.6 | |
410.0 | 415.5 | 416.3 | |
536.0 | 541.5 | 538.1 | |
673.0 | 676.0 | 675.5 | |
814.0 | 819.0 | 809.8 | |
1017.0 | 1022.0 | 1001.1 | |
1126.0 | 1132.0 | 1147.0 | |
1314.0 | 1300.0 | 1290.0 | |
1421.5 | 1424.0 | 1446.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knobles, D.P.; Westling, M.F. Maximum Entropy Estimates of Hubble Constant from Planck Measurements. Entropy 2025, 27, 760. https://doi.org/10.3390/e27070760
Knobles DP, Westling MF. Maximum Entropy Estimates of Hubble Constant from Planck Measurements. Entropy. 2025; 27(7):760. https://doi.org/10.3390/e27070760
Chicago/Turabian StyleKnobles, David P., and Mark F. Westling. 2025. "Maximum Entropy Estimates of Hubble Constant from Planck Measurements" Entropy 27, no. 7: 760. https://doi.org/10.3390/e27070760
APA StyleKnobles, D. P., & Westling, M. F. (2025). Maximum Entropy Estimates of Hubble Constant from Planck Measurements. Entropy, 27(7), 760. https://doi.org/10.3390/e27070760