Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,245)

Search Parameters:
Keywords = cracking behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2470 KiB  
Article
Correlation Between Packing Voids and Fatigue Performance in Sludge Gasification Slag-Cement-Stabilized Macadam
by Yunfei Tan, Xiaoqi Wang, Hao Zheng, Yingxu Liu, Juntao Ma and Shunbo Zhao
Sustainability 2025, 17(14), 6587; https://doi.org/10.3390/su17146587 - 18 Jul 2025
Abstract
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled [...] Read more.
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled mechanism between pore structure and fatigue behavior, especially in the context of solid-waste-based CMs. In this study, a cost-effective alkali-activated sludge gasification slag (ASS) was proposed as a sustainable CM substitute for ordinary Portland cement (OPC) in CSM. A dual evaluation approach combining cross-sectional image analysis and fatigue loading tests was employed to reveal the effect pathway of void structure optimization on fatigue resistance. The results showed that ASS exhibited excellent cementitious reactivity, forming highly polymerized C-A-S-H/C-S-H gels that contributed to a denser microstructure and superior mechanical performance. At a 6% binder dosage, the void ratio of ASS–CSM was reduced to 30%, 3% lower than that of OPC–CSM. The 28-day unconfined compressive strength and compressive resilient modulus reached 5.7 MPa and 1183 MPa, representing improvements of 35.7% and 4.1% compared to those of OPC. Under cyclic loading, the ASS system achieved higher energy absorption and more uniform stress distribution, effectively suppressing fatigue crack initiation and propagation. Moreover, the production cost and carbon emissions of ASS were 249.52 CNY/t and 174.51 kg CO2e/t—reductions of 10.9% and 76.2% relative to those of OPC, respectively. These findings demonstrate that ASS not only improves fatigue performance through pore structure refinement but also offers significant economic and environmental advantages, providing a theoretical foundation for the large-scale application of solid-waste-based binders in pavement engineering. Full article
Show Figures

Figure 1

33 pages, 3543 KiB  
Article
Shallow Sliding Failure of Slope Induced by Rainfall in Highly Expansive Soils Based on Model Test
by Shuangping Li, Bin Zhang, Shanxiong Chen, Zuqiang Liu, Junxing Zheng, Min Zhao and Lin Gao
Water 2025, 17(14), 2144; https://doi.org/10.3390/w17142144 - 18 Jul 2025
Abstract
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes [...] Read more.
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes of highly expansive soils induced by rainfall, using model tests to explore deformation and mechanical behavior under cyclic wetting and drying conditions, focusing on the interaction between soil properties and environmental factors. Model tests were conducted in a wedge-shaped box filled with Nanyang expansive clay from Henan, China, which is classified as high-plasticity clay (CH) according to the Unified Soil Classification System (USCS). The soil was compacted in four layers to maintain a 1:2 slope ratio (i.e., 1 vertical to 2 horizontal), which reflects typical expansive soil slope configurations observed in the field. Monitoring devices, including moisture sensors, pressure transducers, and displacement sensors, recorded changes in soil moisture, stress, and deformation. A static treatment phase allowed natural crack development to simulate real-world conditions. Key findings revealed that shear failure propagated along pre-existing cracks and weak structural discontinuities, supporting the progressive failure theory in shallow sliding. Cracks significantly influenced water infiltration, creating localized stress concentrations and deformation. Atmospheric conditions and wet-dry cycles were crucial, as increased moisture content reduced soil suction and weakened the slope’s strength. These results enhance understanding of expansive soil slope failure mechanisms and provide a theoretical foundation for developing improved stabilization techniques. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
27 pages, 15704 KiB  
Article
Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure
by Shengxuan Ding, Jiren Li and Mingqiang Wang
Materials 2025, 18(14), 3379; https://doi.org/10.3390/ma18143379 - 18 Jul 2025
Abstract
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A [...] Read more.
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A total of 30 cube specimens (50 mm × 50 mm × 50 mm)—comprising three types (Corner, Stripe, and R-a-p)—were fabricated and tested under compressive and splitting tensile loading along three orthogonal directions using a 2000 kN electro-hydraulic testing machine. The results indicate that 3D-printed concrete exhibits significantly lower strength than cast-in-place concrete, which is attributed to weak interfacial bonds and interlayer pores. Notably, the R-a-p specimen’s Z-direction compressive strength is 38.7% lower than its Y-direction counterpart. To complement the mechanical tests, DIC, CT scanning, and SEM analyses were conducted to explore crack development, internal defect morphology, and microstructure. A finite element model based on the experimental data successfully reproduced the observed failure processes. This study not only enhances our understanding of anisotropic behavior in 3D-printed concrete but also offers practical insights for print-path optimization and sustainable structural design. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

15 pages, 2854 KiB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 7058 KiB  
Article
Experimental Investigation of Steel Bar Corrosion in Recycled Plastic Aggregate Concrete Exposed to Calcium Chloride Cycles
by Federica Zanotto, Alice Sirico, Andrea Balbo, Patrizia Bernardi, Sebastiano Merchiori, Vincenzo Grassi, Beatrice Belletti and Cecilia Monticelli
Materials 2025, 18(14), 3361; https://doi.org/10.3390/ma18143361 - 17 Jul 2025
Abstract
Recycling plastics waste into concrete represents one of the possible approaches for its valorization, offering both economic and environmental benefits. Although numerous studies have explored the mechanical properties of concrete with plastics waste, its durability performance remains largely unexplored. In this context, this [...] Read more.
Recycling plastics waste into concrete represents one of the possible approaches for its valorization, offering both economic and environmental benefits. Although numerous studies have explored the mechanical properties of concrete with plastics waste, its durability performance remains largely unexplored. In this context, this study aims to assess the electrochemical behavior of rebars embedded in reinforced concrete modified by partially replacing natural aggregates with recycled plastics, comparing their behavior to that of conventional concrete. The corrosion of reinforcing steel bars was evaluated by wet and dry cycles (w/d) in calcium chloride solutions, monitoring corrosion potential and potentiostatic polarization resistance, and recording electrochemical impedance spectroscopy (EIS) and polarization curves. In addition, the chloride diffusion tendency and the mechanical performances were assessed in unreinforced samples. The findings indicate that in environments with lower chloride concentrations, concrete with plastic granules provides good protection against rebar corrosion. Although the mechanical results of the studied mixes confirmed that incorporating plastic granules as aggregates in the concrete matrix causes a reduction in compressive strength, as known in the literature, the modified concrete also exhibits improved post-cracking behavior, resulting in enhanced ductility and fracture toughness. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 5072 KiB  
Article
Study on the Mechanical Properties of Optimal Water-Containing Basalt Fiber-Reinforced Concrete Under Triaxial Stress Conditions
by Kaide Liu, Songxin Zhao, Yaru Guo, Wenping Yue, Chaowei Sun, Yu Xia, Qiyu Wang and Xinping Wang
Materials 2025, 18(14), 3358; https://doi.org/10.3390/ma18143358 - 17 Jul 2025
Abstract
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents [...] Read more.
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents (0.0%, 0.05%, 0.10%, 0.15%, and 0.20%) to determine the optimal fiber content of 0.1%. The compressive strength of the concrete with this fiber content increased by 13.5% compared to the control group without fiber, reaching 36.90 MPa, while the tensile strength increased by 15.9%, reaching 2.33 MPa. Subsequently, NMR and SEM techniques were employed to analyze the internal pore structure and micro-morphology of BFRC. It was found that an appropriate amount of basalt fiber (content of 0.1%) can optimize the pore structure and form a reticular three-dimensional structure. The pore grading was also improved, with the total porosity decreasing from 7.48% to 7.43%, the proportion of harmless pores increasing from 4.03% to 4.87%, and the proportion of harmful pores decreasing from 1.67% to 1.42%, thereby significantly enhancing the strength of the concrete. Further triaxial compression tests were conducted to investigate the mechanical properties of BFRC under different confining pressures (0, 3, and 6 MPa) and water contents (0%, 1%, 2%, and 4.16%). The results showed that the stress–strain curves primarily underwent four stages: initial crack compaction, elastic deformation, yielding, and failure. In terms of mechanical properties, when the confining pressure increased from 0 MPa to 6 MPa, taking dry sandstone as an example, the peak stress increased by 54.0%, the elastic modulus increased by 15.7%, the peak strain increased by 37.0%, and the peak volumetric strain increased by 80.0%. In contrast, when the water content increased from 0% to 4.16%, taking a confining pressure of 0 MPa as an example, the peak stress decreased by 27.4%, the elastic modulus decreased by 43.2%, the peak strain decreased by 59.3%, and the peak volumetric strain decreased by 106.7%. Regarding failure characteristics, the failure mode shifted from longitudinal splitting under no confining pressure to diagonal shear under confining pressure. Moreover, as the confining pressure increased, the degree of failure became more severe, with more extensive cracks. However, when the water content increased, the failure degree was relatively mild, but it gradually worsened with further increases in water content. Based on the CDP model, a numerical model for simulating the triaxial compression behavior of BFRC was developed. The simulation results exhibited strong consistency with the experimental data, thereby validating the accuracy and applicability of the model. Full article
Show Figures

Figure 1

15 pages, 721 KiB  
Article
Effect of Superabsorbent Polymer Size on Strength and Shrinkage in Concrete Mixtures
by Wissawin Arckarapunyathorn, Pochpagee Markpiban and Raktipong Sahamitmongkol
Polymers 2025, 17(14), 1942; https://doi.org/10.3390/polym17141942 - 16 Jul 2025
Viewed by 102
Abstract
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm [...] Read more.
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm and 600–1180 µm. The primary focus was on evaluating compressive strength, elastic modulus, autogenous shrinkage, drying shrinkage, and total shrinkage. The mechanical performance and dimensional stability were measured at different curing ages, and microstructural analysis was conducted using X-ray fluorescence (XRF) at 7 days to examine changes in chemical composition. Results showed that smaller SAP sizes contributed to more homogeneous internal curing, improved hydration, and higher matrix density. In contrast, larger SAP particles were more effective in reducing shrinkage but slightly compromised strength and stiffness. This study emphasizes the importance of selecting appropriate SAP particle sizes to balance mechanical integrity and shrinkage control, contributing to the development of high-performance concrete with reduced cracking potential. Full article
(This article belongs to the Special Issue Polymer Materials for Construction)
Show Figures

Figure 1

20 pages, 5009 KiB  
Article
Combined Behavior of Reinforced Concrete Out-of-Plane Parts Beams Encased with Steel Section
by Hasan M. A. Albegmprli, Doaa T. Hashim and Muthanna A. N. Abbu
Buildings 2025, 15(14), 2473; https://doi.org/10.3390/buildings15142473 - 15 Jul 2025
Viewed by 207
Abstract
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, [...] Read more.
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, on the ultimate strength, deflection, and rotation in addition to the ductility, energy absorption, and failure mode. A total of nine beams were modelized numerically, divided into three series. The first one included one straight beam, while the remaining two series included four beams each made with out-of-plane parts with and without steel sections. The beams with out-of-plane parts connected the two, three, four, and five concrete segments. The outcomes revealed that the beams made with out-of-plane parts showed less strength than straight beams, which increased the connected segments and reduced the ultimate strength capacity. The regular beam’s linearity was dissimilar to the zigzag beams, which showed a linearity of 32% and was reduced to 22%, 20%, 19.67%, and 16% for beam out-of-plane parts made with two, three, four, and five segments, respectively. Forming a zigzag in the plane of the beams reduced the cracking load, but the decrement depended on the number of parts, which led to more reduction in the yielding load. Concerning the deflection and deformations, the concrete straight beams failed in flexure, with maximum deflection occurring at the midspan of the beam, which was different for beams without plane parts, which showed a combined shear-torsional failure for which the maximum deformation occurred at the midspan with inclination of connected parts on the interior perpendicular axis. Encasing the beams’ out-of-plane parts with steel sections enhanced the structural behavior. The ductility and energy absorption of the out-of-plane parts beams were less than the straight ones, but encasing the beams with a steel section improved the ductility and energy absorption twice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 5979 KiB  
Article
Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing
by Lianhua Ma, Heng Sun, Xu Dong, Zhenyue Liu and Biao Wang
Polymers 2025, 17(14), 1936; https://doi.org/10.3390/polym17141936 - 15 Jul 2025
Viewed by 249
Abstract
With the extensive application of 3D-printed composites across multiple industries, the investigation into their structural reliability under complex loading conditions has become a critical research focus. This study comprehensively employs acoustic emission (AE) monitoring, digital image correlation (DIC) measurement, and micro-computed tomography (Micro-CT) [...] Read more.
With the extensive application of 3D-printed composites across multiple industries, the investigation into their structural reliability under complex loading conditions has become a critical research focus. This study comprehensively employs acoustic emission (AE) monitoring, digital image correlation (DIC) measurement, and micro-computed tomography (Micro-CT) visualization techniques to explore the progressive damage behavior of 3D-printed sandwich-structured composites reinforced with continuous carbon fiber sheets under three-point bending. Mechanical tests show that increasing the fiber content of face sheets from 10% to 20% enhances average bending strength by 56%, while low fiber content compromises stiffness and load-bearing capacity. AE analysis categorizes damage modes into matrix cracking (<50 kHz), debonding/delamination (50–150 kHz), and fiber breakage (>150 kHz) using k-means clustering algorithms. DIC measurement reveals significant structural deformation processes during damage progression. The AE-DIC-Micro-CT combination demonstrates an initial undamaged state, followed by damage initiation and propagation in the subsequent stages. This integrated approach provides an effective method for damage assessment, guiding the design and reliability improvement of 3D-printed composites. Full article
Show Figures

Graphical abstract

15 pages, 7741 KiB  
Article
Experimental Study on Low-Shrinkage Concrete Mix Proportion for Post-Casting Belt of Full-Section Casting in Immersed Tube
by Bang-Yan Liang, Wen-Huo Sun, Chun-Lin Deng, Qian Hu and Yong-Hui Huang
Materials 2025, 18(14), 3315; https://doi.org/10.3390/ma18143315 - 14 Jul 2025
Viewed by 136
Abstract
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then [...] Read more.
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then carried out to investigate the influence of factors such as the reinforcement ratio and stress, expansive agent content and composition, fly ash content, and curing temperature and humidity on the expansive effect of calcium–magnesium composite expansive agents. Field tests revealed that casting segments exhibit initial expansion followed by shrinkage, reaching a final strain of 348 με (microstrain). Laboratory investigations demonstrated that reinforcement (20–30 MPa stress) in post-casting belts effectively restrains segments without compromising the performance of calcium–magnesium composite expansive agents. The optimal 5:3:2 ratio of CaO, MgO 90s, and MgO 200s agents controlled shrinkage strain within 80 με by combining CaO’s rapid early expansion with MgO’s sustained effect. Field validation confirmed the mix’s effectiveness in preventing cracking, with key findings: (1) fly ash content and curing conditions significantly influence expansive behavior, and (2) shrinkage development can be precisely regulated through agent composition adjustments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 13878 KiB  
Review
The Structural Performance of Fiber-Reinforced Geopolymers: A Review
by Salvatore Benfratello, Luigi Palizzolo, Carmelo Sanfilippo, Antonino Valenza and Sana Ullah
Eng 2025, 6(7), 159; https://doi.org/10.3390/eng6070159 - 14 Jul 2025
Viewed by 268
Abstract
Geopolymers (GPs), as promising alternatives to ordinary Portland cement (OPC)-based concrete, have gained interest in the last 20 years due to their enhanced mechanical properties, durability, and lower environmental impact. Synthesized from industrial by-products such as slag and fly ash, geopolymers offer a [...] Read more.
Geopolymers (GPs), as promising alternatives to ordinary Portland cement (OPC)-based concrete, have gained interest in the last 20 years due to their enhanced mechanical properties, durability, and lower environmental impact. Synthesized from industrial by-products such as slag and fly ash, geopolymers offer a sustainable solution to waste management, resource utilization, and carbon dioxide reduction. However, similarly to OPC, geopolymers exhibit brittle behavior, and this characteristic defines a limit for structural applications. To tackle this issue, researchers have focused on the characterization, development, and implementation of fiber-reinforced geopolymers (FRGs), which incorporate various fibers to enhance toughness, ductility, and crack resistance, allowing their use in a wide range of structural applications. Following a general overview of sustainability considerations, this review critically analyzes the structural performance and capability of geopolymers in structural repair applications. Geopolymers demonstrate notable potential in new construction and repair applications. However, challenges such as complex mix designs, the availability of alkaline activators, curing temperatures, fiber matrix compatibility issues, and limited standards are restricting its large-scale adoption. The analysis and consolidation of an extensive dataset would support the viability of geopolymer as a durable and sustainable alternative to what is currently used in the construction industry, especially when fiber reinforcement is effectively integrated. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

28 pages, 17257 KiB  
Article
A Crystal Plasticity Phase-Field Study on the Effects of Grain Boundary Degradation on the Fatigue Behavior of a Nickel-Based Superalloy
by Pengfei Liu, Zhanghua Chen, Xiao Zhao, Jianxin Dong and He Jiang
Materials 2025, 18(14), 3309; https://doi.org/10.3390/ma18143309 - 14 Jul 2025
Viewed by 184
Abstract
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of [...] Read more.
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of the GH4169 alloy under both room and elevated temperatures. Grain boundaries are explicitly modeled, enabling the competition between transgranular and intergranular cracking to be accurately captured. The grain boundary separation energy and surface energy, calculated via molecular dynamics simulations, are employed as failure criteria for grain boundary and intragranular material points, respectively. The simulation results reveal that under oxygen-free conditions, fatigue crack propagation at both room and high temperatures is governed by sustained shear slip, with crack advancement hindered by grains exhibiting low Schmid factors. When grain boundary oxidation is introduced, increasing oxidation levels progressively degrade grain boundary strength and reduce overall fatigue resistance. Specifically, at room temperature, oxidation shortens the duration of crack arrest near grain boundaries. At elevated service temperatures, intensified grain boundary degradation facilitates a transition in crack growth mode from transgranular to intergranular, thereby accelerating crack propagation and exacerbating fatigue damage. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 7489 KiB  
Article
Influence of Recycled Tire Steel Fiber Content on the Mechanical Properties and Fracture Characteristics of Ultra-High-Performance Concrete
by Junyan Yu, Qifan Wu, Dongyan Zhao and Yubo Jiao
Materials 2025, 18(14), 3300; https://doi.org/10.3390/ma18143300 - 13 Jul 2025
Viewed by 244
Abstract
Ultra-high-performance concrete (UHPC) reinforced with recycled tire steel fibers (RTSFs) was studied to evaluate its mechanical properties and cracking behavior. Using acoustic emission (AE) monitoring, researchers tested various RTSF replacement rates in compression and flexural tests. Results revealed a clear trend: mechanical properties [...] Read more.
Ultra-high-performance concrete (UHPC) reinforced with recycled tire steel fibers (RTSFs) was studied to evaluate its mechanical properties and cracking behavior. Using acoustic emission (AE) monitoring, researchers tested various RTSF replacement rates in compression and flexural tests. Results revealed a clear trend: mechanical properties initially improved then declined with increasing RTSF content, peaking at 25% replacement. AE analysis showed distinct patterns in energy release and crack propagation. Signal timing for energy and ringing count followed a delayed-to-advanced sequence, while b-value and information entropy changes indicated optimal flexural performance at specific replacement rates. RA-AF classification demonstrated that shear failure reached its minimum (25% replacement), with shear cracks increasing at higher ratios. These findings demonstrate RTSFs’ dual benefits: enhancing UHPC performance while promoting sustainability. The 25% replacement ratio emerged as the optimal balance, improving strength while delaying crack formation. This study provides insights into the mechanism by which waste tire steel fibers enhance the performance of UHPC. This research provides valuable insights for developing eco-friendly UHPC formulations using recycled materials, offering both environmental and economic advantages for construction applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 4663 KiB  
Article
Low-Cycle Fatigue Behavior of Nuclear-Grade Austenitic Stainless Steel Fabricated by Additive Manufacturing
by Jianhui Shi, Huiqiang Liu, Zhengping Liu, Runzhong Wang, Huanchun Wu, Haitao Dong, Xinming Meng and Min Yu
Crystals 2025, 15(7), 644; https://doi.org/10.3390/cryst15070644 - 13 Jul 2025
Viewed by 207
Abstract
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy [...] Read more.
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM), including additive manufactured (AM) and forged materials. The results showed that the microstructure of the AM material exhibited anisotropy for the X, Y, and Z directions. The tensile and impact properties of the X, Y, and Z directions in AM material were similar. The fatigue life (Nf) of X- and Y-direction specimens was better than that of Z-direction specimens. The tensile, impact, and fatigue properties of all AM materials were lower than those of the forged specimens. The Z direction specimens of AM material showed the best plastic strain by the highest transition fatigue life (NT) during the fatigue strain amplitude at 0.3% to 0.6%. The forged specimens showed the best fatigue properties under the plastic strain amplitude control mode. Fatigue fracture surfaces of AM and forged materials exhibited multi- and single-fatigue crack initiation sites, respectively. This could be attributed to the presence of incompletely melted particles and manufacturing defects inside the AM specimens. The dislocation morphology of AM and forged fatigue specimens was observed to study the low-cycle fatigue behaviors in depth. Full article
Show Figures

Figure 1

Back to TopTop