Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing
Abstract
1. Introduction
2. Materials and Experimental Procedure
2.1. Materials and Specimens Fabrication
2.2. Mechanical Testing and Characterization
3. Results and Discussion
3.1. Mechanical Properties
3.2. AE Monitoring and Signal Analysis
3.3. DIC Measurement
3.4. Progressive Damage Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Tian, X.; Zhang, M.; Abliz, D.; Li, D.; Ziegmann, G. Interfacial Performance and Fracture Patterns of 3D Printed Continuous Carbon Fiber with Sizing Reinforced PA6 Composites. Compos. Part A Appl. Sci. Manuf. 2018, 114, 368–376. [Google Scholar] [CrossRef]
- Hou, Z.; Tian, X.; Zhang, J.; Li, D. 3D Printed Continuous Fibre Reinforced Composite Corrugated Structure. Compos. Struct. 2018, 184, 1005–1010. [Google Scholar] [CrossRef]
- Hou, Z.; Tian, X.; Zhang, J.; Zhe, L.; Zheng, Z.; Li, D.; Malakhov, A.V.; Polilov, A.N. Design and 3D Printing of Continuous Fiber Reinforced Heterogeneous Composites. Compos. Struct. 2020, 237, 111945. [Google Scholar] [CrossRef]
- Yang, C.; Tian, X.; Liu, T.; Cao, Y.; Li, D. 3D Printing for Continuous Fiber Reinforced Thermoplastic Composites: Mechanism and Performance. Rapid Prototyp. J. 2017, 23, 209–215. [Google Scholar] [CrossRef]
- Justo, J.; Távara, L.; García-Guzmán, L.; París, F. Characterization of 3D Printed Long Fibre Reinforced Composites. Compos. Struct. 2018, 185, 537–548. [Google Scholar] [CrossRef]
- Quan, C.; Han, B.; Hou, Z.; Zhang, Q.; Tian, X.; Lu, T. 3D Printed Continuous Fiber Reinforced Composite Auxetic Honeycomb Structures. Compos. B Eng. 2020, 187, 107858. [Google Scholar] [CrossRef]
- Junaedi, H.; Budiman, B.A.; Ishak, M.; Shamsuddin, S.M.; Kurniawan, D. Mechanical Characteristics of Sandwich Structures with 3D-Printed Bio-Inspired Gyroid Structure Core and Carbon Fiber-Reinforced Polymer Laminate Face-Sheet. Polymers 2024, 16, 1698. [Google Scholar] [CrossRef]
- Carneiro, O.S.; Silva, A.F.; Gomes, R. Fused Deposition Modeling with Polypropylene. Mater. Des. 2015, 83, 768–776. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kortschot, M.T. Stiffness Prediction of 3D Printed Fiber-Reinforced Thermoplastic Composites. Rapid Prototyp. J. 2019, 26, 549–555. [Google Scholar] [CrossRef]
- Karimi, A.; Rahmatabadi, D.; Baghani, M. Various FDM Mechanisms Used in the Fabrication of Continuous-Fiber Reinforced Composites: A Review. Polymers 2024, 16, 831. [Google Scholar] [CrossRef]
- Melenka, G.W.; Cheung, B.K.O.; Schofield, J.S.; Dawson, M.R.; Carey, J.P. Evaluation and Prediction of the Tensile Properties of Continuous Fiber-Reinforced 3D Printed Structures. Compos. Struct. 2016, 153, 866–875. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Liu, S. Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing. J. Mater. Process. Technol. 2016, 238, 218–225. [Google Scholar] [CrossRef]
- Chang, B.; Li, X.; Parandoush, P.; Ruan, S.; Shen, C.; Lin, D. Additive Manufacturing of Continuous Carbon Fiber Reinforced Poly-Ether-Ether-Ketone with Ultrahigh Mechanical Properties. Polym. Test. 2020, 88, 106563. [Google Scholar] [CrossRef]
- Ueda, M.; Kishimoto, S.; Yamawaki, M.; Matsuzaki, R.; Todoroki, A.; Hirano, Y.; Le Duigou, A. 3D Compaction Printing of a Continuous Carbon Fiber Reinforced Thermoplastic. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105985. [Google Scholar] [CrossRef]
- Mei, H.; Ali, Z.; Yan, Y.; Ali, I.; Cheng, L. Influence of Mixed Isotropic Fiber Angles and Hot Press on the Mechanical Properties of 3D Printed Composites. Addit. Manuf. 2019, 27, 150–158. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, Y.; Li, S.; Wang, K.; Yao, S.; Liu, Z.; Garmestani, H. Tailorable Rigidity and Energy-Absorption Capability of 3D Printed Continuous Carbon Fiber Reinforced Polyamide Composites. Compos. Sci. Technol. 2020, 199, 108337. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Ledoux, Y.; Khammassi, S.; Leneveu, E.; Pelleter, J. Experimental Investigation on the Dynamic Behavior of 3D Printed CF-PEKK Composite under Cyclic Uniaxial Compression. Compos. Struct. 2020, 247, 112474. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Mathur, K.; Seyam, A.-F.M. Impact Resistance and Failure Mechanism of 3D Printed Continuous Fiber-Reinforced Cellular Composites. J. Text. Inst. 2020, 112, 752–766. [Google Scholar] [CrossRef]
- Dou, H.; Cheng, Y.; Ye, W.; Zhang, D.; Li, J.; Miao, Z.; Rudykh, S. Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites. Materials 2020, 13, 3830. [Google Scholar] [CrossRef]
- Brejcha, V.; Klecka, J.; Novotny, P.; Zicha, J. Comparison of Bending Properties of Sandwich Structures Using Conventional and 3D-Printed Core with Flax Fiber Reinforcement. J. Compos. Sci. 2025, 9, 182. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Hu, Y.; Wang, H. Additive Manufacturing of Carbon Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: Effects of Process Parameters on Tensile Properties. J. Compos. Mater. 2016, 51, 451–462. [Google Scholar] [CrossRef]
- Lopez, E.; Felgueiras, T.; Grunert, C.; Brückner, F.; Riede, M.; Seidel, A.; Marquardt, A.; Leyens, C.; Beyer, E. Evaluation of 3D-Printed Parts by Means of High-Performance Computer Tomography. J. Laser Appl. 2018, 30, 032014. [Google Scholar] [CrossRef]
- Foteinidis, G.; Koutsotolis, L.; Ntaflos, A.; Paipetis, A.S. 3D Structural Damage Visualisation in Fiber Composites via a Smart 3D Capacitive Printed Sensor Network. Sens. Actuators A Phys. 2025, 391, 116643. [Google Scholar] [CrossRef]
- Valentine, D.; Mamma, B.; Abdeslam, B.; Pierre, A.; Ndiaye, K.; Ngo, T. Design and Validation of a Selective Binding 3D Printer for Bio-Based Construction Materials. Dev. Built Environ. 2024, 20, 100579. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Cazzato, A. Acoustic Emissions in 3D Printed Parts under Mode I Delamination Test. Materials 2018, 11, 1760. [Google Scholar] [CrossRef]
- Zhang, H.; Dickson, A.N.; Sheng, Y.; McGrail, T.; Dowling, D.P.; Wang, C.; Neville, A.; Yang, D. Failure Analysis of 3D Printed Woven Composite Plates with Holes under Tensile and Shear Loading. Compos. B Eng. 2020, 186, 107835. [Google Scholar] [CrossRef]
- He, Q.; Wang, H.; Fu, K.; Ye, L. 3D Printed Continuous CF/PA6 Composites: Effect of Microscopic Voids on Mechanical Performance. Compos. Sci. Technol. 2020, 191, 108077. [Google Scholar] [CrossRef]
- Somireddy, M.; Singh, C.V.; Czekanski, A. Mechanical Behaviour of 3D Printed Composite Parts with Short Carbon Fiber Reinforcements. Eng. Fail. Anal. 2020, 107, 104232. [Google Scholar] [CrossRef]
- Shulga, E.; Karamov, R.; Sergeichev, I.S.; Konev, S.D.; Shurygina, L.I.; Akhatov, I.S.; Shandakov, S.D.; Nasibulin, A.G. Fused Filament Fabricated Polypropylene Composite Reinforced by Aligned Glass Fibers. Materials 2020, 13, 3442. [Google Scholar] [CrossRef]
- Pan, Z.-B.; Zhou, W.; Zhang, K.; Ma, L.-H.; Liu, J. Flexural Damage and Failure Behavior of 3D Printed Continuous Fiber Composites by Complementary Nondestructive Testing Technology. Polym. Compos. 2022, 43, 26582. [Google Scholar] [CrossRef]
- Essassi, K.; Rebiere, J.-L.; El Mahi, A.; Ben Souf, M.A.; Bouguecha, A.; Haddar, M. Investigation of the Static Behavior and Failure Mechanisms of a 3D Printed Bio-Based Sandwich with Auxetic Core. Int. J. Appl. Mech. 2020, 12, 2050051. [Google Scholar] [CrossRef]
- Wu, S.; Shan, Z.; Chen, K.; Zhou, D.; Liang, W.; Wu, X. Bending Damage of 3D Printing T-Beam. J. Phys. Conf. Ser. 2023, 2459, 012141. [Google Scholar] [CrossRef]
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM: West Conshohocken, PA, USA, 2017.
- Zhu, L.; Zhao, W.; Zhao, Y.; Guan, X. Mechanism Analysis of Rheological Properties of 3D Printed Steel Slag Cementitious Composite Based on Low Field Nuclear Magnetic Relaxation Test. Case Stud. Constr. Mater. 2024, 20, e03046. [Google Scholar] [CrossRef]
- Zhou, W.; Han, K.; Qin, R.; Zhang, Y. Investigation of Mechanical Behavior and Damage of Three-Dimensional Braided Carbon Fiber Composites. Mater. Res. Express 2019, 6, 085601. [Google Scholar] [CrossRef]
- Tabrizi, I.E.; Oz, F.E.; Zanjani, J.S.M.; Mandal, S.K.; Yildiz, M. Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermography. Mech. Mater. 2022, 164, 104113. [Google Scholar] [CrossRef]
- Ma, L.; Du, X.; Zhou, W.; Huang, C.; Sun, W.; Wang, B. Acoustic emission and multiscale computation-guided tensile damage identification in woven composite laminates at cryogenic temperatures as low as 20 K. Thin-Walled Struct. 2024, 205, 112464. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, W.; Yin, H.; Shang, Y. Progressive Damage Analysis of Three-Dimensional Braided Composites under Flexural Load by Micro-CT and Acoustic Emission. Compos. Struct. 2019, 226, 111196. [Google Scholar] [CrossRef]
- Li, L.; Swolfs, Y.; Straumit, I.; Yan, X.; Lomov, S.V. Cluster Analysis of Acoustic Emission Signals for 2D and 3D Woven Carbon Fiber/Epoxy Composites. J. Compos. Mater. 2015, 50, 1921–1935. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, B.; Yu, F.; Chen, C. Cluster Analysis of Acoustic Emission Signals and Infrared Thermography for Defect Evolution Analysis of Glass Epoxy Composites. Infrared Phys. Technol. 2021, 112, 103581. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, W.; Zhang, Y.; Ding, Z. Cluster Analysis of Acoustic Emission Signals and Deformation Measurement for Delaminated Glass Fiber Epoxy Composites. Compos. Struct. 2018, 195, 349–358. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, K.; Wang, Z.X.; Li, Z.; Chen, L.; Shi, Q.; Yu, S.; Li, Z.; Zhang, L.; Guo, L. Cross-scale data-based damage identification of CFRP laminates using acoustic emission and deep learning. Eng. Fract. Mech. 2023, 294, 109724. [Google Scholar] [CrossRef]
- Dai, J.; Liang, X.; Yao, X.; Yeh, H. Study of Cracked Unidirectional Glass Fiber-Reinforced Composites by Digital Speckle Correlation Method. J. Reinf. Plast. Compos. 2016, 24, 1737–1746. [Google Scholar] [CrossRef]
Parameters | Specimen A | Specimen B |
---|---|---|
Fiber content | 20% | 10% |
Thickness | 0.1 mm | 0.1 mm |
Lattice core | Triangle | Triangle |
Packing density | 37% | 37% |
Fiber layers | 8 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Sun, H.; Dong, X.; Liu, Z.; Wang, B. Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing. Polymers 2025, 17, 1936. https://doi.org/10.3390/polym17141936
Ma L, Sun H, Dong X, Liu Z, Wang B. Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing. Polymers. 2025; 17(14):1936. https://doi.org/10.3390/polym17141936
Chicago/Turabian StyleMa, Lianhua, Heng Sun, Xu Dong, Zhenyue Liu, and Biao Wang. 2025. "Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing" Polymers 17, no. 14: 1936. https://doi.org/10.3390/polym17141936
APA StyleMa, L., Sun, H., Dong, X., Liu, Z., & Wang, B. (2025). Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing. Polymers, 17(14), 1936. https://doi.org/10.3390/polym17141936