Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,061)

Search Parameters:
Keywords = cotton plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5700 KiB  
Article
Genome-Wide Identification and Expression Analysis of the GH19 Chitinase Gene Family in Sea Island Cotton
by Jingjing Ma, Yilei Long, Jincheng Fu, Nengshuang Shen, Le Wang, Shuaijun Wu, Jing Li, Quanjia Chen, Qianli Zu and Xiaojuan Deng
Curr. Issues Mol. Biol. 2025, 47(8), 633; https://doi.org/10.3390/cimb47080633 (registering DOI) - 7 Aug 2025
Abstract
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, [...] Read more.
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, physicochemical property characterization of the encoded proteins, subcellular localization prediction, phylogenetic reconstruction, chromosomal mapping, promoter cis-element analysis, and comprehensive expression profiling using transcriptomic data and qRT-PCR (including tissue-specific expression, hormone treatments, and Fusarium oxysporum infection assays). A total of 107 GH19 genes were identified across the four species (35 in G. barbadense, 37 in G. hirsutum, 19 in G. arboreum, and 16 in G. raimondii). The molecular weights of GH19 proteins ranged from 9.9 to 97.3 kDa, and they were predominantly predicted to localize to the extracellular space. Phylogenetic analysis revealed three well-conserved clades within this family. In tetraploid cotton, GH19 genes were unevenly distributed across 12 chromosomes, often clustering in certain regions, whereas in diploid species, they were confined to five chromosomes. Promoter analysis indicated that GH19 gene promoters contain numerous stress- and hormone-responsive motifs, including those for abscisic acid (ABA), ethylene (ET), and gibberellin (GA), as well as abundant light-responsive elements. The expression patterns of GH19 genes were largely tissue-specific; for instance, GbChi23 was predominantly expressed in the calyx, whereas GbChi19/21/22 were primarily expressed in the roots and stems. Overall, this study provides the first comprehensive genomic and functional characterization of the GH19 family in G. barbadense, laying a foundation for understanding its role in disease resistance mechanisms and aiding in the identification of candidate genes to enhance plant defense against biotic stress. Full article
21 pages, 4164 KiB  
Article
Characterization and Functional Analysis of the FBN Gene Family in Cotton: Insights into Fiber Development
by Sunhui Yan, Liyong Hou, Liping Zhu, Zhen Feng, Guanghui Xiao and Libei Li
Biology 2025, 14(8), 1012; https://doi.org/10.3390/biology14081012 - 7 Aug 2025
Abstract
Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of FBNs in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the FBN gene family in cotton. A total of 28 [...] Read more.
Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of FBNs in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the FBN gene family in cotton. A total of 28 GhFBN genes were identified in upland cotton, with systematic analyses of their phylogenetic relationships, protein motifs, gene structures, and hormone-responsive cis-regulatory elements. Expression profiling of GhFBN1A during fiber development revealed stage-specific activity across the developmental continuum. Transcriptomic analyses following hormone treatments demonstrated upregulation of GhFBN family members, implicating their involvement in hormone-mediated regulatory networks governing fiber cell development. Collectively, this work presents a detailed molecular characterization of cotton GhFBNs and establishes a theoretical foundation for exploring their potential applications in cotton breeding programs aimed at improving fiber quality. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

23 pages, 2767 KiB  
Article
Sustainable Cotton Production in Sicily: Yield Optimization Through Varietal Selection, Mycorrhizae, and Efficient Water Management
by Giuseppe Salvatore Vitale, Nicolò Iacuzzi, Noemi Tortorici, Giuseppe Indovino, Loris Franco, Carmelo Mosca, Antonio Giovino, Aurelio Scavo, Sara Lombardo, Teresa Tuttolomondo and Paolo Guarnaccia
Agronomy 2025, 15(8), 1892; https://doi.org/10.3390/agronomy15081892 - 6 Aug 2025
Abstract
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown [...] Read more.
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown Mediterranean cultivars (Armonia and ST-318) under three irrigation levels (I-100: 100% crop water requirement; I-70: 70%; I-30: 30%) across two Sicilian soil types (sandy loam vs. clay-rich). Under I-100, lint yields reached 0.99 t ha−1, while severe deficit (I-30) yielded only 0.40 t ha−1. However, moderate deficit (I-70) maintained 75–79% of full yields, proving a viable strategy. AMF inoculation significantly enhanced plant height (68.52 cm vs. 65.85 cm), boll number (+22.1%), and seed yield (+12.5%) (p < 0.001). Cultivar responses differed: Armonia performed better under water stress, while ST-318 thrived with full irrigation. Site 1, with higher organic matter, required 31–38% less water and achieved superior irrigation water productivity (1.43 kg m−3). Water stress also shortened phenological stages, allowing earlier harvests—important for avoiding autumn rains. These results highlight the potential of combining adaptive irrigation, resilient cultivars, and AMF to restore sustainable cotton production in the Mediterranean, emphasizing the importance of soil-specific management. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

28 pages, 5073 KiB  
Article
Exploring the Potential of Nitrogen Fertilizer Mixed Application to Improve Crop Yield and Nitrogen Partial Productivity: A Meta-Analysis
by Yaya Duan, Yuanbo Jiang, Yi Ling, Wenjing Chang, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Bin Liu
Plants 2025, 14(15), 2417; https://doi.org/10.3390/plants14152417 - 4 Aug 2025
Viewed by 169
Abstract
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase [...] Read more.
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase yield and income and improve nitrogen fertilizer efficiency. This study used urea alone (Urea) and slow-release nitrogen fertilizer alone (C/SRF) as controls and employed meta-analysis and a random forest model to assess MNF effects on crop yield and nitrogen partial factor productivity (PFPN), and to identify key influencing factors. Results showed that compared with urea, MNF increased crop yield by 7.42% and PFPN by 8.20%, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 20 °C, and elevations of 750–1050 m; in soils with a pH of 5.5–6.5, where 150–240 kg·ha−1 nitrogen with 25–35% content and an 80–100 day release period was applied, and the blending ratio was ≥0.3; and when planting rapeseed, maize, and cotton for 1–2 years. The top three influencing factors were crop type, nitrogen rate, and soil pH. Compared with C/SRF, MNF increased crop yield by 2.44% and had a non-significant increase in PFPN, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 5 °C, average annual precipitation ≤ 400 mm, and elevations of 300–900 m; in sandy soils with pH > 7.5, where 150–270 kg·ha−1 nitrogen with 25–30% content and a 40–80 day release period was applied, and the blending ratio was 0.4–0.7; and when planting potatoes and rapeseed for 3 years. The top three influencing factors were nitrogen rate, crop type, and average annual precipitation. In conclusion, MNF should comprehensively consider crops, regions, soil, and management. This study provides a scientific basis for optimizing slow-release nitrogen fertilizers and promoting the large-scale application of MNF in farmland. Full article
(This article belongs to the Special Issue Nutrient Management for Crop Production and Quality)
Show Figures

Figure 1

20 pages, 4847 KiB  
Article
FCA-STNet: Spatiotemporal Growth Prediction and Phenotype Extraction from Image Sequences for Cotton Seedlings
by Yiping Wan, Bo Han, Pengyu Chu, Qiang Guo and Jingjing Zhang
Plants 2025, 14(15), 2394; https://doi.org/10.3390/plants14152394 - 2 Aug 2025
Viewed by 260
Abstract
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based [...] Read more.
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based on FCA-STNet. The model leverages historical sequences of cotton seedling RGB images to generate an image of the predicted growth at time t + 1 and extracts 37 phenotypic traits from the predicted image. A novel STNet structure is designed to enhance the representation of spatiotemporal dependencies, while an Adaptive Fine-Grained Channel Attention (FCA) module is integrated to capture both global and local feature information. This attention mechanism focuses on individual cotton plants and their textural characteristics, effectively reducing the interference from common field-related challenges such as insufficient lighting, leaf fluttering, and wind disturbances. The experimental results demonstrate that the predicted images achieved an MSE of 0.0086, MAE of 0.0321, SSIM of 0.8339, and PSNR of 20.7011 on the test set, representing improvements of 2.27%, 0.31%, 4.73%, and 11.20%, respectively, over the baseline STNet. The method outperforms several mainstream spatiotemporal prediction models. Furthermore, the majority of the predicted phenotypic traits exhibited correlations with actual measurements with coefficients above 0.8, indicating high prediction accuracy. The proposed FCA-STNet model enables visually realistic prediction of cotton seedling growth in open-field conditions, offering a new perspective for research in growth prediction. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

15 pages, 4969 KiB  
Article
Duplicated Genes on Homologous Chromosomes Decipher the Dominant Epistasis of the Fiberless Mutant in Cotton
by Yu Le, Xingchen Xiong, Zhiyong Xu, Meilin Chen, Yuanxue Li, Chao Fu, Chunyuan You and Zhongxu Lin
Biology 2025, 14(8), 983; https://doi.org/10.3390/biology14080983 - 2 Aug 2025
Viewed by 122
Abstract
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT [...] Read more.
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT and a natural fiberless mutant, fblSHZ. The 12:3:1 segregation ratio in F2 populations (including 1848 and 3100 individuals that were developed in 2016 and 2018, respectively) revealed dominant epistasis, with the fuzz gene exerting dominance over the lint gene. Genetic linkage analysis revealed that GhMYB25like_A12 controls fuzz fiber initiation, while both GhMYB25like_A12 and GhMYB25like_D12 regulate lint fiber development. Sequencing analyses showed that the fblSHZ mutant exhibited a K104M mutation in the R2R3 domain of GhMYB25like_A12 and a transposable element insertion in GhMYB25like_D12, leading to fiberless seeds. Knockout of GhMYB25like_A12 produced fuzzless seeds, knockout of GhMYB25like_D12 led to no obvious change in seeds, and knockout of both (GhMYB25like_A12&D12) resulted in fiberless seeds. The 12:3:1 ratio reappeared in the F2 population developed from the GhMYB25like_A12&D12 mutated plants as female and Jin668 as the male, which further confirmed the genetic interaction observed in fblSHZ. RNA-seq analysis revealed that GhMYB25like regulates cotton fiber initiation through multiple pathways, especially fatty acid metabolism. This study elucidates the key genes and their genetic interaction mechanisms governing cotton fiber initiation, providing a theoretical foundation for genetic improvement of cotton fiber traits. Full article
(This article belongs to the Special Issue Cotton: Genomics, Biotechnology and Molecular Breeding)
Show Figures

Figure 1

15 pages, 2307 KiB  
Article
Two B-Box Proteins, GhBBX21 and GhBBX24, Antagonistically Modulate Anthocyanin Biosynthesis in R1 Cotton
by Shuyan Li, Kunpeng Zhang, Chenxi Fu, Chaofeng Wu, Dongyun Zuo, Hailiang Cheng, Limin Lv, Haiyan Zhao, Jianshe Wang, Cuicui Wu, Xiaoyu Guo and Guoli Song
Plants 2025, 14(15), 2367; https://doi.org/10.3390/plants14152367 - 1 Aug 2025
Viewed by 177
Abstract
The red plant phenotype of R1 cotton is a genetic marker produced by light-induced anthocyanin accumulation. GhPAP1D controls this trait. There are two 228 bp tandem repeats upstream of GhPAP1D in R1 cotton. In this study, GUS staining assays in transgenic Arabidopsis thaliana [...] Read more.
The red plant phenotype of R1 cotton is a genetic marker produced by light-induced anthocyanin accumulation. GhPAP1D controls this trait. There are two 228 bp tandem repeats upstream of GhPAP1D in R1 cotton. In this study, GUS staining assays in transgenic Arabidopsis thaliana (L.) Heynh. demonstrated that tandem repeats in the GhPAP1D promoter-enhanced transcriptional activity. GhPAP1D is a homolog of A. thaliana AtPAP1. AtPAP1’s expression is regulated by photomorphogenesis-related transcription factors such as AtHY5 and AtBBXs. We identified the homologs of A. thaliana AtHY5, AtBBX21, and AtBBX24 in R1 cotton, designated as GhHY5, GhBBX21, and GhBBX24, respectively. Y1H assays confirmed that GhHY5, GhBBX21, and GhBBX24 each bound to the GhPAP1D promoter. Dual-luciferase reporter assays revealed that GhHY5 weakly activated the promoter activity of GhPAP1D. Heterologous expression assays in A. thaliana indicated that GhBBX21 promoted anthocyanin accumulation, whereas GhBBX24 had the opposite effect. Dual-luciferase assays showed GhBBX21 activated GhPAP1D transcription, while GhBBX24 repressed it. Further study indicated that GhHY5 did not enhance GhBBX21-mediated transcriptional activation of GhPAP1D but alleviates GhBBX24-induced repression. Together, our results demonstrate that GhBBX21 and GhBBX24 antagonistically regulate anthocyanin accumulation in R1 cotton under GhHY5 mediation, providing insights into light-responsive anthocyanin biosynthesis in cotton. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

14 pages, 2074 KiB  
Article
Special Regulation of GhANT in Ovules Increases the Size of Cotton Seeds
by Ning Liu, Yuping Chen, Yangbing Guan, Geyi Guan, Jian Yang, Feng Nie, Kui Ming, Wenqin Bai, Ming Luo and Xingying Yan
Genes 2025, 16(8), 912; https://doi.org/10.3390/genes16080912 - 30 Jul 2025
Viewed by 290
Abstract
Background: Gossypium hirsutum L. is one of the main economic crops worldwide, and increasing the size/weight of its seeds is a potential strategy to improve its seed-related yield. AINTEGUMENTA (ANT) is an organogenesis transcription factor mediating cell proliferation and expansion in Arabidopsis, [...] Read more.
Background: Gossypium hirsutum L. is one of the main economic crops worldwide, and increasing the size/weight of its seeds is a potential strategy to improve its seed-related yield. AINTEGUMENTA (ANT) is an organogenesis transcription factor mediating cell proliferation and expansion in Arabidopsis, but little is known about its candidate function in upland cotton seed. Results: In this study, functional characterization of GhANT in the cotton seed development stage was performed. The expression pattern analysis showed that GhANT was predominantly expressed in the ovules, and its expression was consistent with the ovules’ development stage. Heterologous expression of GhANT in Arabidopsis promoted plant organ growth and led to larger seeds. Importantly, specific expression of GhANT by the TFM7 promoter in the cotton ovules enlarged the seeds and increased the cotton seed yield, as compared with the wild-type in a three-year field trial. Furthermore, transcription level analysis showed that numerous genes involved in cell division were up-regulated in the ovules of TFM7::GhANT lines in comparison to the wild-type. These results indicate that GhANT is a potential genetic resource for improving cotton seed yield through its molecular links with cell cycle controllers. Full article
(This article belongs to the Special Issue 5Gs in Crop Genetic and Genomic Improvement: 2nd Edition)
Show Figures

Figure 1

16 pages, 8038 KiB  
Article
Comparative Transcriptome and Volatile Metabolome Analysis of Gossypium hirsutum Resistance to Verticillium Wilt
by Ni Yang, Chaoli Xu, Yajun Liang, Juyun Zheng, Shiwei Geng, Fenglei Sun, Shengmei Li, Chengxia Lai, Mayila Yusuyin, Zhaolong Gong and Junduo Wang
Genes 2025, 16(8), 877; https://doi.org/10.3390/genes16080877 - 25 Jul 2025
Viewed by 205
Abstract
Background: In recent years, changes in climate conditions and long-term continuous cropping have led to the increased occurrence of Verticillium wilt in various cotton-growing regions, causing significant economic losses in cotton production. Research has shown that volatile substances are closely linked to plant [...] Read more.
Background: In recent years, changes in climate conditions and long-term continuous cropping have led to the increased occurrence of Verticillium wilt in various cotton-growing regions, causing significant economic losses in cotton production. Research has shown that volatile substances are closely linked to plant disease resistance; however, studies on their roles in the response of cotton to Verticillium wilt, including their relationship with gene regulation, are limited. Methods: In this study, the transcriptomes and metabolomes of Xinluzao 57 (a highly susceptible Verticillium wilt variety) and 192,868 (a highly resistant Verticillium wilt variety) were sequenced at different time points after inoculation with Verticillium wilt. Results: A total of 21,911 commonly differentially expressed genes (DEGs) were identified within and between the materials, and they were clustered into eight groups. Significant annotations were made in pathways related to amino acids and anthocyanins. Metabolomics identified and annotated 26,200 volatile metabolites across nine categories. A total of 158 differentially accumulated metabolites (DAMs) were found within and between the materials; three clusters were identified, and the 10 metabolites with the most significant fold changes were highlighted. Weighted gene coexpression network analysis (WGCNA) revealed that 13 genes were significantly correlated with guanosine, 6 genes were correlated with 2-deoxyerythritol, and 32 genes were correlated with raffinose. Conclusions: Our results provide a foundation for understanding the role of volatile substances in the response of cotton to Verticillium wilt and offer new gene resources for future research on Verticillium wilt resistance. Full article
(This article belongs to the Special Issue Genetic Research on Crop Stress Resistance and Quality Traits)
Show Figures

Figure 1

19 pages, 4354 KiB  
Article
Genomic Insights into ARR Genes: Key Role in Cotton Leaf Abscission Formation
by Hongyan Shi, Zhenyu Wang, Yuzhi Zhang, Gongye Cheng, Peijun Huang, Li Yang, Songjuan Tan, Xiaoyu Cao, Xiaoyu Pei, Yu Liang, Yu Gao, Xiang Ren, Quanjia Chen and Xiongfeng Ma
Int. J. Mol. Sci. 2025, 26(15), 7161; https://doi.org/10.3390/ijms26157161 - 24 Jul 2025
Viewed by 302
Abstract
The cytokinin response regulator (ARR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. However, the functional mechanism of ARR genes in cotton leaf abscission remains incompletely understood. In this study, a total [...] Read more.
The cytokinin response regulator (ARR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. However, the functional mechanism of ARR genes in cotton leaf abscission remains incompletely understood. In this study, a total of 86 ARR genes were identified within the genome of Gossypium hirsutum. These genes were categorized into four distinct groups based on their phylogenetic characteristics, supported by analyses of gene structures and conserved protein motifs. The GhARR genes exhibited an uneven distribution across 25 chromosomes, with three pairs of tandem duplication events observed. Both segmental and tandem duplication events significantly contributed to the expansion of the ARR gene family. Furthermore, numerous putative cis-elements were identified in the promoter regions, with hormone and stress-related elements being common among all 86 GhARRs. Transcriptome expression profiling screening results demonstrated that GhARRs may play a mediating role in cotton’s response to TDZ (thidiazuron). The functional validation of GhARR16, GhARR43, and GhARR85 using virus-induced gene silencing (VIGS) technology demonstrated that the silencing of these genes led to pronounced leaf wilting and chlorosis in plants, accompanied by a substantial decrease in petiole fracture force. Overall, our study represents a comprehensive analysis of the G. hirsutum ARR gene family, revealing their potential roles in leaf abscission regulation. Full article
(This article belongs to the Special Issue Plant Stress Biology)
Show Figures

Figure 1

20 pages, 2970 KiB  
Review
The Rise of Eleusine indica as Brazil’s Most Troublesome Weed
by Ricardo Alcántara-de la Cruz, Laryssa Barbosa Xavier da Silva, Hudson K. Takano, Lucas Heringer Barcellos Júnior and Kassio Ferreira Mendes
Agronomy 2025, 15(8), 1759; https://doi.org/10.3390/agronomy15081759 - 23 Jul 2025
Viewed by 577
Abstract
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and [...] Read more.
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and adaptability to various environmental conditions. A critical challenge relates to its widespread resistance to multiple herbicide modes of action, notably glyphosate and acetyl-CoA carboxylate (ACCase) inhibitors. Resistance mechanisms include 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) target-site mutations, gene amplification, reduced translocation, glyphosate detoxification, and mainly ACCase target-site mutations. This literature review summarizes the current knowledge on herbicide resistance in goosegrass and its management in Brazil, with an emphasis on integrating chemical and non-chemical strategies. Mechanical and physical controls are effective in early or local infestations but must be combined with chemical methods for lasting control. Herbicides applied post-emergence of weeds, especially systemic ACCase inhibitors and glyphosate, remain important tools, although widespread resistance limits their effectiveness. Sequential applications and mixtures with contact herbicides such as glufosinate and protoporphyrinogen oxidase (PPO) inhibitors can improve control. Pre-emergence herbicides are effective when used before or immediately after planting, with adequate soil moisture being essential for their activation and effectiveness. Given the complexity of resistance mechanisms, chemical control alone is not enough. Integrated weed management programs, combining diverse herbicides, sequential treatments, and local resistance monitoring, are essential for sustainable goosegrass management. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

17 pages, 2789 KiB  
Article
GhSPX1s Interact with GhPHR1A and GhPHL1A in Regulating Phosphate Starvation Response in Cotton
by Nuerkaimaier Mulati, Miaomiao Hao, Yuxin Yang, Yanping Shi, Guanghui Xiao and Liping Zhu
Biology 2025, 14(8), 916; https://doi.org/10.3390/biology14080916 - 23 Jul 2025
Viewed by 269
Abstract
SPX (SYG1/Pho81/XPR1) family genes play a pivotal role in phosphorus signaling, phosphorus uptake, and phosphorus translocation in plants. However, to date, the SPX family genes have not been systematically investigated in cotton. In this study, we conducted a genome-wide analysis and [...] Read more.
SPX (SYG1/Pho81/XPR1) family genes play a pivotal role in phosphorus signaling, phosphorus uptake, and phosphorus translocation in plants. However, to date, the SPX family genes have not been systematically investigated in cotton. In this study, we conducted a genome-wide analysis and identified 44 SPX family genes in Gossypium hirsutum, classifying them into four subfamilies (SPX, SPX-MFS, SPX-EXS, and SPX-RING) based on conserved domains. An expression analysis revealed that the majority of SPX family genes were highly expressed in the root and stem. We identified hormone response, stress response, low-temperature response, and PHR1 binding sequence (P1BS) cis-elements in the promoters of the SPX genes. Additionally, the expression of GhPHO1-4, GhSPX1-1/1-2/1-3, and GhSPX-MFS2-1/2-2 was significantly altered under phosphorus-deficient conditions and may be involved in the regulation of Pi response. A Y2H assay suggested that GhSPX1-1 interacts with GhPHR1A and GhSPX1-2 interacts with GhPHL1A. Our findings provide a basis for further cloning and functional verification of genes related to the regulatory network of low phosphorus tolerance in cotton. Full article
Show Figures

Figure 1

18 pages, 21045 KiB  
Article
Genome-Wide Characterization of the ABI3 Gene Family in Cotton
by Guoyong Fu, Yanlong Yang, Tahir Mahmood, Xinxin Liu, Zongming Xie, Zengqiang Zhao, Yongmei Dong, Yousheng Tian, Jehanzeb Farooq, Iram Sharif and Youzhong Li
Genes 2025, 16(8), 854; https://doi.org/10.3390/genes16080854 - 23 Jul 2025
Viewed by 253
Abstract
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted [...] Read more.
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted a comprehensive genome-wide investigation of the ABI3 gene family across 26 plant species, with a focus on 8 Gossypium species. Analyses included phylogenetics, chromosomal localization, synteny assessment, gene duplication patterns, protein domain characterization, promoter cis-regulatory element identification, and tissue-specific/spatiotemporal expression profiling under different organizations of Gossypium hirsutum. Results: Phylogenetic and chromosomal analyses revealed conserved ABI3 evolutionary patterns between monocots and dicots, alongside lineage-specific expansion events within Gossypium spp. Syntenic relationships and duplication analysis in G. hirsutum (upland cotton) indicated retention of ancestral synteny blocks and functional diversification driven predominantly by segmental duplication. Structural characterization confirmed the presence of conserved B3 domains in all G. hirsutum ABI3 homologs. Promoter analysis identified key stress-responsive cis-elements, including ABA-responsive (ABRE), drought-responsive (MYB), and low-temperature-responsive (LTRE) motifs, suggesting a role in abiotic stress regulation. Expression profiling demonstrated significant tissue-specific transcriptional activity across roots, stems, leaves, and fiber developmental stages. Conclusions: This study addresses a significant knowledge gap by elucidating the evolution, structure, and stress-responsive expression profiles of the ABI3 gene family in cotton. It establishes a foundational framework for future functional validation and targeted genetic engineering strategies aimed at developing stress-resilient cotton cultivars with enhanced fiber quality. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

28 pages, 5015 KiB  
Article
Design and Experiment of a Vertical Cotton Stalk Crushing and Returning Machine with Large and Small Dual-Blade Discs
by Xiaohu Guo, Bin Li, Yang Liu, Shiguo Wang, Zhong Tang, Yuncheng Dong and Xiangxin Liu
Agriculture 2025, 15(15), 1572; https://doi.org/10.3390/agriculture15151572 - 22 Jul 2025
Viewed by 322
Abstract
To address the problems of low crushing efficiency and uneven distribution in traditional straw crushing and returning machines for cotton stalk return operations in Xinjiang, a vertical straw crushing and returning machine with large and small dual-blade discs was designed, adapted to Xinjiang’s [...] Read more.
To address the problems of low crushing efficiency and uneven distribution in traditional straw crushing and returning machines for cotton stalk return operations in Xinjiang, a vertical straw crushing and returning machine with large and small dual-blade discs was designed, adapted to Xinjiang’s cotton planting model. The machine employs a differentiated configuration of large and small blade discs corresponding to four and two rows of cotton stalks, respectively, effectively reducing tool workload while significantly improving operational efficiency. A simulation model of the crushing and returning machine was developed using the discrete element method (DEM), and a flexible cotton stalk model was established to systematically investigate the effects of machine forward speed, crushing blade rotational speed, and knife tip-to-ground clearance on operational performance. Single-factor simulation experiments were conducted using crushing qualification rate and broken stalk drop rate as evaluation indicators. Subsequently, a multi-factor orthogonal field experiment was designed with Design-Expert software (13.0.1.0, Stat-Ease Inc, Minneapolis, MN, USA). The optimal working parameters were determined to be machine forward speed of 3.5 m/s, crushing blade shaft speed of 1500 r/min, and blade tip ground clearance of 60 mm. Verification tests demonstrated that under these optimal parameters, the straw crushing qualification rate reached 95.9% with a broken stalk drop rate of 15.5%. The relative errors were less than 5% compared to theoretical optimization values, confirming the reliability of parameter optimization. This study provides valuable references for the design optimization and engineering application of straw return machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop