Nutrient Management for Crop Production and Quality

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Nutrition".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 497

Special Issue Editors

College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
Interests: nutrient management; integration of water and fertilizer; tillage practice; double cropping system; crop physiology; sustainable agriculture; high yield, high quality, and high efficiency

E-Mail
Guest Editor
Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
Interests: plant nutrition and regulation; fertilization; micronutrient; biofortification; integration of water and fertilizer; high-yielding and high efficiency; dryland water and fertilizer management
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the improvement of people's living standards and the rapid development of the food processing industry, the demands for high-quality crops are becoming increasingly stringent. Thus, the target of crop production has gradually shifted from high yields to high yields with high quality in many countries. There are lots of practical nutrient management strategies used to improve the yields and quality of crops; however, most of these lack of convincing experimental data and are not in-depth mechanistic studies. Related research has mainly focused on major crops, especially when data and prior studies come from farmers or extension personnel. Additionally, the technologies used for achieving high yields and high quality should be thoroughly summarized and shared globally to increase the production and quality of crops.

This Special Issue focuses on standalone technologies and integrated technologies used for achieving high-yield and high-quality crops. The effects of yield and quality improvements and their underlying mechanisms should be presented at the field, nutrition, physiology, ecology, and even molecular level. New technologies involving the integration of agricultural machines, nutrient management, and “green” technologies that have been developed to improve the yield, processing, and nutritional qualities of crops are particularly welcome. Original research articles, short communications, and reviews will be welcomed.

Dr. Ming Huang
Dr. Xiaoli Hui
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nutrient management
  • high yield
  • high quality
  • integration of water and fertilizer
  • soil tillage practice
  • crop physiology
  • integrated technologies
  • double cropping system
  • food crops
  • micronutrients
  • plant growth regulators
  • drones

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 5073 KiB  
Article
Exploring the Potential of Nitrogen Fertilizer Mixed Application to Improve Crop Yield and Nitrogen Partial Productivity: A Meta-Analysis
by Yaya Duan, Yuanbo Jiang, Yi Ling, Wenjing Chang, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Bin Liu
Plants 2025, 14(15), 2417; https://doi.org/10.3390/plants14152417 - 4 Aug 2025
Viewed by 284
Abstract
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase [...] Read more.
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase yield and income and improve nitrogen fertilizer efficiency. This study used urea alone (Urea) and slow-release nitrogen fertilizer alone (C/SRF) as controls and employed meta-analysis and a random forest model to assess MNF effects on crop yield and nitrogen partial factor productivity (PFPN), and to identify key influencing factors. Results showed that compared with urea, MNF increased crop yield by 7.42% and PFPN by 8.20%, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 20 °C, and elevations of 750–1050 m; in soils with a pH of 5.5–6.5, where 150–240 kg·ha−1 nitrogen with 25–35% content and an 80–100 day release period was applied, and the blending ratio was ≥0.3; and when planting rapeseed, maize, and cotton for 1–2 years. The top three influencing factors were crop type, nitrogen rate, and soil pH. Compared with C/SRF, MNF increased crop yield by 2.44% and had a non-significant increase in PFPN, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 5 °C, average annual precipitation ≤ 400 mm, and elevations of 300–900 m; in sandy soils with pH > 7.5, where 150–270 kg·ha−1 nitrogen with 25–30% content and a 40–80 day release period was applied, and the blending ratio was 0.4–0.7; and when planting potatoes and rapeseed for 3 years. The top three influencing factors were nitrogen rate, crop type, and average annual precipitation. In conclusion, MNF should comprehensively consider crops, regions, soil, and management. This study provides a scientific basis for optimizing slow-release nitrogen fertilizers and promoting the large-scale application of MNF in farmland. Full article
(This article belongs to the Special Issue Nutrient Management for Crop Production and Quality)
Show Figures

Figure 1

Back to TopTop