Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = concrete-filled rectangular steel tube columns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7703 KiB  
Article
A Restoring Force Correction Model for Enveloped Steel Jacket-Confined Seismic-Damaged Rectangular Recycled Aggregate Concrete-Filled Steel Tubular Columns
by Jun Yan, Sheng Peng, Naimeng Chen, Tianlei Wang and Yang Song
Buildings 2024, 14(11), 3521; https://doi.org/10.3390/buildings14113521 - 4 Nov 2024
Viewed by 876
Abstract
In order to establish a suitable restoring force correction model for enveloped steel jacket (ESJ)-confined seismic-damaged rectangular recycled aggregate concrete-filled steel tubular (RRACFST) columns, based on experimental research, a study of the seismic performance and parameters of ESJ-confined seismic-damaged RRACFST columns was carried [...] Read more.
In order to establish a suitable restoring force correction model for enveloped steel jacket (ESJ)-confined seismic-damaged rectangular recycled aggregate concrete-filled steel tubular (RRACFST) columns, based on experimental research, a study of the seismic performance and parameters of ESJ-confined seismic-damaged RRACFST columns was carried out. The restoring force theory, model test, and OpenSees simulation of ESJ-confined seismic-damaged RRACFST columns were conducted. Firstly, a trilinear model of the skeleton curve and a suitable restoring force model for ESJ-confined seismic-damaged RRACFST columns were established. The results were compared with the model test results, and it was found that the two results had good consistency. Secondly, the initial damage of the RRACFST column was simulated by the reducing material properties method, and a correct numerical model for ESJ-confined seismic-damaged RRACFST columns was proposed. The influence mechanism of seismic parameters of the RRACFST column was clarified. Finally, the seismic parameter combination with the best seismic performance for ESJ-confined seismic-damaged RRACFST columns was established; namely, the replacement rate of recycled coarse aggregate is 50%, the concrete strength is C40, the axial compression ratio is 0.3, the strength of the rectangular steel tube is Q345, the wall thickness of the steel tube is 4 mm, and the slenderness ratio is 7.5. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 4980 KiB  
Article
A Simple Method to Evaluate the Bearing Capacity of Concrete-Filled Steel Tubes with Rectangular and Circular Sections: Beams, Columns, and Beam–Columns
by Panagiota Katsimpini, George Papagiannopoulos and George Hatzigeorgiou
Appl. Sci. 2024, 14(19), 8995; https://doi.org/10.3390/app14198995 - 6 Oct 2024
Cited by 4 | Viewed by 1188
Abstract
This study investigates the behavior and capacity of concrete-filled steel tubes (CFTs) with rectangular and circular sections under various loading conditions: axial loads, pure-bending, and combined axial load-bending moments. A finite element-based numerical model is developed and validated against existing experimental data. Using [...] Read more.
This study investigates the behavior and capacity of concrete-filled steel tubes (CFTs) with rectangular and circular sections under various loading conditions: axial loads, pure-bending, and combined axial load-bending moments. A finite element-based numerical model is developed and validated against existing experimental data. Using an extensive databank generated from finite element analysis, this research proposes analytical empirical relations for determining the bearing capacity of rectangular and circular composite beams, columns, and beam–columns. These relations provide a direct, concise, and efficient method for calculating the ultimate strength of CFT members, making them valuable for engineering design. Comparisons between the proposed analytical results and previous experimental studies demonstrate the high accuracy of this method in analyzing rectangular and circular CFT member behavior. The findings contribute to a better understanding of CFT structural performance and offer practical tools for designers working with these composite elements. Full article
Show Figures

Figure 1

18 pages, 7861 KiB  
Article
Stability of Steel Columns with Concrete-Filled Thin-Walled Rectangular Profiles
by Vincent Kvocak, Ruslan Kanishchev, Peter Platko, Elvira Hodovanets and Mohamad Al Ali
Sustainability 2023, 15(23), 16217; https://doi.org/10.3390/su152316217 - 22 Nov 2023
Cited by 3 | Viewed by 1892
Abstract
This paper provides a numerical and experimental analysis of global stability of axially compressed columns made of thin-walled rectangular concrete-filled steel tubes (CFSTs), with the consideration of initial geometric imperfections. The presented work introduces the theory of stability and strength of composite structural [...] Read more.
This paper provides a numerical and experimental analysis of global stability of axially compressed columns made of thin-walled rectangular concrete-filled steel tubes (CFSTs), with the consideration of initial geometric imperfections. The presented work introduces the theory of stability and strength of composite structural members subjected to axial compressive force. Moreover, a numerical calculation method for the determination of column resistance under axial load is presented, taking into account the influence of second-order effects that are considered in the European standard for the design of such members. This paper also presents the method of creating 3D models using the ABAQUS software, numerical analysis, and comparison of the obtained numerical results with experimental tests. In addition to the actual boundary and load conditions, the real properties of the used materials were also taken into account during the creation of 3D models. The actual properties of the used materials were obtained experimentally. Based on the obtained results and their comparison, several new findings and proven facts about the design and assessment of axially compressed columns made of thin-walled rectangular steel tubes filled with concrete are presented in the conclusions of the paper. Full article
Show Figures

Figure 1

24 pages, 10205 KiB  
Article
Structural Performance of Internally Stiffened Double-Skinned Profiled Composite Walls with Openings
by Salam J. Hilo, Mohammed J. Hamood, Alaa Hussein Al-Zuhairi, Ahmed W. Al Zand, A. B. M. A. Kaish, Mustafa M. Ali, Marwah M. Faris and Wan Hamidon W. Badaruzzaman
Buildings 2023, 13(6), 1499; https://doi.org/10.3390/buildings13061499 - 10 Jun 2023
Cited by 3 | Viewed by 1611
Abstract
The double-skin profiled composite wall (DSPCW) system, filled with concrete material, is favorable in modern structures due to its high strength and ductility. Openings may be required within this composite wall (DSPCW) for various reasons, similar to a conventional bearing wall, which can [...] Read more.
The double-skin profiled composite wall (DSPCW) system, filled with concrete material, is favorable in modern structures due to its high strength and ductility. Openings may be required within this composite wall (DSPCW) for various reasons, similar to a conventional bearing wall, which can lead to a reduction in bearing capacity. Therefore, to avoid changes in the geometry, materials, and thickness of this DSPCW wall, a new internally stiffening concept has been suggested by providing embedded cold-formed steel tube (CFST) columns. For this purpose, two full-scale DSPCW specimens were tested under static axial load, one of which was fabricated with a large opening size and stiffened with two octagonal CFST columns, while the other was designed without an opening and served as a control wall specimen. The results showed that the stiffened DSPCW with an opening achieved a slightly lower ultimate bearing strength (−9.4%) than the control wall specimen, with no reduction in the ductility behavior. Furthermore, several finite element models of DSPCW have been analyzed and designed to investigate additional parameters that were not experimentally tested, including the effects of the embedded CFST column’s shape and different types of internal stiffeners longitudinally provided inside these columns. The numerical investigation confirmed that the embedded CFST column with an octagonal cross-section was more efficient compared to the hexagonal and rectangular shapes by about 11% and 18.4%, respectively. Furthermore, using internal steel stiffeners for embedded tubes with a T-shape improved the axial bearing capacity of the DSPCW with an opening slightly higher than the corresponding stiffened walls with other investigated stiffener shapes (V-shaped, U-shaped, and L-shaped). Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 7071 KiB  
Article
Axial Compressive Behavior of Cross-Shaped CFST Stub Columns with Steel Bar Truss Stiffening
by Yu Tao, Chao Gong, Sumei Zhang, Xiaozhong Li, Xiao Tan and Junjie Hu
Materials 2023, 16(11), 4147; https://doi.org/10.3390/ma16114147 - 2 Jun 2023
Cited by 2 | Viewed by 1511
Abstract
Concrete-filled steel tube (CFST) columns have been widely used in residential buildings due to their high bearing capacity, good ductility, and reliable seismic performance. However, conventional circular, square, or rectangular CFST columns may protrude from the adjacent walls, resulting in inconvenience in terms [...] Read more.
Concrete-filled steel tube (CFST) columns have been widely used in residential buildings due to their high bearing capacity, good ductility, and reliable seismic performance. However, conventional circular, square, or rectangular CFST columns may protrude from the adjacent walls, resulting in inconvenience in terms of the arrangement of furniture in a room. In order to solve the problem, special-shaped CFST columns, such as cross-shaped, L-shaped, and T-shaped columns, have been suggested and adopted in engineering practice. These special-shaped CFST columns have limbs with the same width as the adjacent walls. However, compared with conventional CFST columns, the special-shaped steel tube provides weaker confinement to the infilled concrete under axial compressive load, especially at concave corners. The parting at concave corners is the key factor affecting the bearing capacity and ductility of the members. Therefore, a cross-shaped CFST column with steel bar truss stiffening is suggested. In this paper, 12 cross-shaped CFST stub columns were designed and tested under axial compression loading. The effects of steel bar truss node spacing and column–steel ratio on the failure mode, bearing capacity, and ductility were discussed in detail. The results indicate that the columns with steel bar truss stiffening can change the final deformation mode of the steel plate from single-wave buckling to multiple-wave buckling, and the failure modes of columns also subsequently change from single-section concrete crushing failure to multiple-section concrete crushing failure. The steel bar truss stiffening shows no obvious effect on the axial bearing capacity of the member but significantly improves the ductility. The columns with a steel bar truss node spacing of 140 mm can only increase the bearing capacity by 6.8% while nearly doubling the ductility coefficient from 2.31 to 4.40. The experimental results are compared with those of six design codes worldwide. The results show that the Eurocode 4 (2004) and the Chinese code CECS159-2018 can be safely used to predict the axial bearing capacity of cross-shaped CFST stub columns with steel bar truss stiffening. Full article
Show Figures

Figure 1

23 pages, 10923 KiB  
Article
Cyclic Performance of Prefabricated Shear Wall Connected to Columns by Rectangular Concrete-Filled Steel Tube Keys
by Zhijun Zhou, Ming Li, Qian Wu, Shuang Yuan and Li Zhang
Coatings 2022, 12(10), 1584; https://doi.org/10.3390/coatings12101584 - 19 Oct 2022
Cited by 1 | Viewed by 4162
Abstract
A prefabricated frame–shear wall structure is a major structure in an assembled building. To find a method of connecting a shear wall and columns that can both reduce the amount of wet work required and maintain adequate stiffness, we propose connecting the shear [...] Read more.
A prefabricated frame–shear wall structure is a major structure in an assembled building. To find a method of connecting a shear wall and columns that can both reduce the amount of wet work required and maintain adequate stiffness, we propose connecting the shear wall to the vertical frame using rectangular concrete-filled steel tube keys (RCFSTKs). Static tests of a cast-in-place frame–shear wall structure without keys and a prefabricated structure with RCFSTKs were conducted to compare their seismic performance. The feasibility of the new method was analyzed. Finite element models were then set up to determine if plain concrete blocks between RCFSTKs could be removed and to identify the influence of different parameters on the cyclic performance of the assembled structure. The results show that the use of RCFSTK is practical. Compared with a dimensionally similar cast-in-place shear wall–column construction, a prefabricated shear wall connected to columns by RCFSTKs has a fuller hysteresis curve, better ductility, slightly higher energy dissipation, and slightly slower degradation of stiffness and bearing capacity. The removal of inter-key concrete blocks significantly reduces bearing capacity and initial stiffness. The cyclic performance of the assembled structure is primarily influenced by the number of RCFSTKs, the thickness of the steel tube key wall, and the axial compression ratio, with less effect from key unit height, steel strength, and concrete grade in RCFSTKs. Full article
(This article belongs to the Special Issue Current Research in Cement and Building Materials)
Show Figures

Figure 1

19 pages, 19906 KiB  
Article
Research on Confinement Effect of the Outer Steel Tube in Notched Square CFST Columns
by Biao Li, Faxing Ding, Yujie Yu, Jingke Zhang, Qiong Huang, Chenjie Gong and Haibo Wang
Materials 2022, 15(15), 5161; https://doi.org/10.3390/ma15155161 - 25 Jul 2022
Cited by 2 | Viewed by 1837
Abstract
The outer steel tube in a concrete-filled steel tubular (CFST) column confines the core concrete and improves the compressive strength of the core concrete. When there is a notch damage in the tube, the confinement effect may be affected. The confinement effects of [...] Read more.
The outer steel tube in a concrete-filled steel tubular (CFST) column confines the core concrete and improves the compressive strength of the core concrete. When there is a notch damage in the tube, the confinement effect may be affected. The confinement effects of the notched steel tube in rectangular CFST columns were systematically investigated by using numerical approaches. Refined three-dimensional finite element models with advanced concrete constitutive relations were established. With the verified finite element modeling method, full-sized square CFST columns with horizontal, vertical, or diagonal notches at different locations of the steel tube were simulated. Stress distributions and deformation modes of the steel tube and core concrete were analyzed. Columns with a horizontal notch at the plate center location displayed a higher axial strength reduction than those with vertical notches. A parametric study was performed to investigate the influences of concrete strengths, steel strengths, steel ratios, notch length to column width ratios, and notch angles on the compressive strengths of the rectangular CFST columns. A practical design formula was proposed based on the obtained results. The proposed formula could effectively predict the influences of different notches on the confinement effect in the notched CFST columns. Full article
(This article belongs to the Special Issue Confined Concrete and Its Application in Structural Engineering)
Show Figures

Figure 1

21 pages, 4311 KiB  
Article
An Investigation of Compression Bearing Capacity of Concrete-Filled Rectangular Stainless Steel Tubular Columns under Axial Load and Eccentric Axial Load
by Bing Cao, Longfei Zhu, Xintong Jiang and Changsheng Wang
Sustainability 2022, 14(14), 8946; https://doi.org/10.3390/su14148946 - 21 Jul 2022
Cited by 8 | Viewed by 2468
Abstract
In order to study the compression bearing capacity of concrete-filled rectangular stainless steel tubular columns, the influence of the stainless steel tube thickness, relative eccentricity, and slenderness ratio on the compression bearing capacity is analyzed, and then the calculation formula of compression bearing [...] Read more.
In order to study the compression bearing capacity of concrete-filled rectangular stainless steel tubular columns, the influence of the stainless steel tube thickness, relative eccentricity, and slenderness ratio on the compression bearing capacity is analyzed, and then the calculation formula of compression bearing capacity is proposed. The results show that the finite element model can effectively simulate the compression bearing capacity, the mean of finite element calculations Nufem to the test Nuexp is 0.985, and the variance is 0.000621. The slenderness ratio and relative eccentricity have a great influence on the load–displacement curves. The thickness of the stainless steel tube has little influence on the load–displacement curves. With the increase in slenderness ratio and relative eccentricity, the compression bearing capacity decreases. With the increase in the slenderness ratio, the failure model of the specimen gradually changes from plastic failure to elastoplastic failure and then elastic failure. When the slenderness ratio is the same, if the relative eccentricity is larger, increasing the thickness of the stainless steel tube will be more effective in improving the compression bearing capacity. When the relative eccentricity is the same, if the slenderness ratio is smaller, increasing the thickness of the stainless steel tube will be more effective for improving the compression bearing capacity. The slenderness ratio and relative eccentricity have a great influence on the longitudinal stress distribution in the cross-section. When the slenderness ratio and relative eccentricity are greater, the longitudinal compressive stress in parts of the cross-section gradually becomes longitudinal tensile stress. The proposed formula can effectively predict the compression bearing capacity of concrete-filled rectangular stainless steel tubular columns. The mean of theoretical calculations to the test and the finite element is 1.054, and the variance is 0.0247. Full article
(This article belongs to the Special Issue Sustainable Civil Engineering Structures and Construction Materials)
Show Figures

Figure 1

14 pages, 4341 KiB  
Article
Analysis of Buckling Deformation for the Side Plate of Rectangular CSFT Column Based on Plate Theory with Bi-Axial Loads
by Bing Xu, Lang Wang, Chunyan Xiang and Zhenyu Han
Buildings 2022, 12(5), 626; https://doi.org/10.3390/buildings12050626 - 9 May 2022
Cited by 5 | Viewed by 2559
Abstract
In this paper, under the condition of bidirectional stress, the buckling deformation of the side plate in a rectangular concrete-filled steel tube (CFST) column has been studied in detail. We have conducted a theocratical analysis, an experimental validation and a finite element simulation [...] Read more.
In this paper, under the condition of bidirectional stress, the buckling deformation of the side plate in a rectangular concrete-filled steel tube (CFST) column has been studied in detail. We have conducted a theocratical analysis, an experimental validation and a finite element simulation to investigate the influences of the height-width ratios and Nominal Poisson’s ratios on the buckling form of the side plate, and we also try to explain the change of buckling form between unidirectional and bidirectional stress, both of them can provide a good reference and basis for design and application of the CFST column. The specific work can be summarized as follows: Firstly, a theoretical analysis has been conducted to study the buckling coefficient solution method of the thin plate under the conditions of axial compress and transverse tension. Then, under the conditions of the unidirectional and the bidirectional stress, a comparative study is carried out to investigate the changing relationship of the buckling coefficient (k) of the side plate; the results indicate that the buckling characteristic is changed due to the bidirectional stress, meanwhile, the buckling coefficient and the number of buckling half-wave will increase. Furthermore, the existing outcomes and the numerical simulations are adopted to study the relevance between the number of the elastic buckling half-wave in the side plate and the corresponding height-width ratio of the component; the results indicate that the former is larger than the latter. Finally, based on the obtained, the buckling relationship curve, the conclusion can be drawn as follows: when the bidirectional stress has been applied to the side plate, there is an equal interval between the different buckling half-waves; meanwhile, the interval shows a quadratic function reduce trend with the increase of nominal Poisson’s ratio. Full article
Show Figures

Figure 1

19 pages, 7345 KiB  
Article
Strut-and-Tie Model and Numerical Simulation of Sleeve Grouting Connection for Concrete-Filled Steel Tube Column
by Wenpeng Che, Jianwei Chen, Jinglu Cao and Wenling Tian
J. Mar. Sci. Eng. 2022, 10(5), 629; https://doi.org/10.3390/jmse10050629 - 5 May 2022
Viewed by 3321
Abstract
To study the performance and failure mechanisms of concrete-filled steel tube (CFST) column sleeve grouting connections, theoretical analysis and finite element simulation were performed for the structure in the connection. In this paper, a theoretical strut-and-tie model suitable for calculation of the axial [...] Read more.
To study the performance and failure mechanisms of concrete-filled steel tube (CFST) column sleeve grouting connections, theoretical analysis and finite element simulation were performed for the structure in the connection. In this paper, a theoretical strut-and-tie model suitable for calculation of the axial compression capacity of sleeve grouting connections was proposed. High-precision numerical models were established to verify the applicability of the strut-and-tie model and the rationality of parameter selection in the sleeve grouting connection. The parameters include the shear key height, shear key shape, shear key distance, and grouting material strength. The results showed that the prediction values of the strut-and-tie model accorded well with the experimental values and simulated values. The average ratio of the calculated values based on the ACI and EC2 codes to experimental values were 1.07 and 1.09, respectively. An increase in the shear key height can improve the axial compression capacity of the sleeve grouting connection, and it was suggested that the range of the shear key height was reasonable at 2~3 mm. The shear key shapes of semicircular, rectangular vertical and trapezoidal were recommended, which can meet the requirements of sleeve grouting connections of CFST columns. The load-transmitting behavior of rectangular vertical shear keys was better due to the insignificant stress concentration. The rectangular horizontal form of shear keys is not recommended since it has the worst load transmission. The shear key height-to-distance ratios were recommended to be 0.044~0.1, the amplitude of the strength attenuation was different only after failure, and all models showed good ductility and compression capacity. With the increase in grouting material strength, the axial compression capacity of the sleeve grouting connection increased. It is reasonable to use grouting material strengths C50 to C90 for the sleeve grouting connection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 5994 KiB  
Article
Experimental Investigation on the Vertical Ductility of Rectangular CFST Columns Loaded Axially
by Bartosz Grzeszykowski and Elżbieta Danuta Szmigiera
Materials 2022, 15(6), 2231; https://doi.org/10.3390/ma15062231 - 17 Mar 2022
Cited by 9 | Viewed by 2748
Abstract
A total of 5 steel and 21 rectangular composite concrete-filled steel tube (CFST) columns of moderate slenderness were tested to investigate their ductility under axial compression. The importance of the vertical ductility of columns was discussed, and a novel ductility measure was proposed [...] Read more.
A total of 5 steel and 21 rectangular composite concrete-filled steel tube (CFST) columns of moderate slenderness were tested to investigate their ductility under axial compression. The importance of the vertical ductility of columns was discussed, and a novel ductility measure was proposed and utilized to examine the ductility of tested specimens. The analyses showed that the ductility of axially compressed CFST columns highly depends on their failure mode. The key feature influencing the ductility is their ability to dissipate the energy of imposed loads. The larger the volume of a material that may permanently deform and consequently dissipate the energy, the greater this ability. In consequence, the ductility of specimens exhibiting local failure mode was higher in comparison to the columns that underwent global or mixed global—local failure. It was found that both steel and composite columns were able to carry axial loads in the post-critical state; but due to the limitations of local buckling of the steel cross-section in the concrete core and concrete confinement, all tested composite columns showed greater ductility than their steel counterparts. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 47399 KiB  
Article
Effect of Tie Bars on Axial Compressive Behavior of Round-Ended Rectangular CFST Stub Columns
by Zhigang Ren, Qi Li and Chuang Liu
Materials 2022, 15(3), 1137; https://doi.org/10.3390/ma15031137 - 1 Feb 2022
Cited by 9 | Viewed by 2040
Abstract
Round-ended rectangular concrete-filled steel tube (RRCFST) columns are prone to local buckling that are close to straight steel plates when used as piers of a bridge and affect its long-term use. In order to solve this problem, tie bars were used in this [...] Read more.
Round-ended rectangular concrete-filled steel tube (RRCFST) columns are prone to local buckling that are close to straight steel plates when used as piers of a bridge and affect its long-term use. In order to solve this problem, tie bars were used in this research to stiffen RRCFST columns. Eleven specimens with tie bars and three specimens without tie bars were tested to analyze influences of cross-sectional aspect ratio, longitudinal spacing, limb numbers and diameter of the tie bar on failure model, confined effect, bearing capacity and ductility of RRCFST stub columns. Finite element models (FEM) with different concrete constitutive models for rectangular and circle parts were established and validated to reveal the mechanism of the constrained effect of tie bars. Experimental and FEM results show that the local buckling scope was decreased and gradually moved to middle height with decreased longitudinal spacings tie bars. The addition of tie bars in RRCFST columns with large aspect ratios slightly enhanced the ultimate bearing capacity, the diameter of tie bars changing from 8 mm to 12 mm greatly enhanced displacement and energy ductility by 58.4% and 85.1%, respectively. However, more tie bars (e.g., two or three limbs) utilization could not further improve the bearing capacity and failure mode. While, the tie bars had very limited contribution to bearing capacity and ductility for RRCFST columns with small aspect ratios, because the outer steel tubes already individually provided for enough confinement on inner concrete. By considering different concrete confined models for rectangular and round-ended parts, an analytical model was proposed and validated to predict the ultimate bearing load for RRCFST stub columns with tie bars. Full article
Show Figures

Figure 1

16 pages, 4830 KiB  
Article
Eccentric Compressive Behavior of Round-Ended Rectangular Concrete-Filled Steel Tubes with Different Central Angles
by Zhigang Ren, Qi Li, Gaoyu Wang, Wei Wei and Mohammed A. A. M. Abbas
Materials 2022, 15(2), 456; https://doi.org/10.3390/ma15020456 - 7 Jan 2022
Cited by 3 | Viewed by 1932
Abstract
The application of round-ended rectangular concrete-filled steel tubes (RRCFSTs) in high-rise buildings or bridge structures is increasing, improving structural performance and meeting aesthetic requirements. Researching this novel steel–concrete composite helps to fully utilize the properties of the materials. In this study, 15 specimens [...] Read more.
The application of round-ended rectangular concrete-filled steel tubes (RRCFSTs) in high-rise buildings or bridge structures is increasing, improving structural performance and meeting aesthetic requirements. Researching this novel steel–concrete composite helps to fully utilize the properties of the materials. In this study, 15 specimens were tested for analysis of the behaviors of RRCFSTs with different central angles under eccentric compression. Influences of central angles of round ends (θ), aspect ratios of rectangular parts (κ), steel strength and the eccentric ratio on failure modes, material utilization, confinement effect and eccentric bearing capacity are studied. Besides, the mechanism of confinement effects of steel tubes with different θ values was evaluated with the finite element method (FEM). The results show that local buckling usually occurs at the compression zone. When θ gradually changes from 0° to 180°, the local buckling position of straight steel plate changes from mid-length to both ends of the columns. Additionally, the interfacial stress between steel tube and concrete at round ends rises, but that at the corner, it decreases continuously, which results in an improved overall confinement effect and increased material utilization. In contrast, a larger κ leads to lower material efficiency because of the reduced overall confinement effect. The increases in both θ and κ enlarge the cross-sectional area and the eccentric ultimate bearing capacity, whereas θ has a better influence on the ductility than κ. A feasible simplified calculating approach for the eccentric ultimate bearing capacity of RRCFSTs is presented and validated. Full article
Show Figures

Figure 1

18 pages, 10661 KiB  
Article
Axial Load Behavior of Ultrahigh Strength Concrete-Filled Steel Tube Columns of Various Geometric and Reinforcement Configurations
by Khandaker M. A. Hossain, Katie Chu and Muhammed S. Anwar
Infrastructures 2021, 6(5), 66; https://doi.org/10.3390/infrastructures6050066 - 29 Apr 2021
Cited by 13 | Viewed by 3555
Abstract
This paper presents the behavior of concrete-filled steel tube (CFST) columns infilled with fiber-reinforced self-consolidating ultrahigh strength concrete (UHSC) subjected to axial concentric monotonic loading to failure. UHSC is expected to improve ease of fabrication, strength, and ductility of CFST columns. Seventeen columns [...] Read more.
This paper presents the behavior of concrete-filled steel tube (CFST) columns infilled with fiber-reinforced self-consolidating ultrahigh strength concrete (UHSC) subjected to axial concentric monotonic loading to failure. UHSC is expected to improve ease of fabrication, strength, and ductility of CFST columns. Seventeen columns having varying geometric properties such as tube wall thickness, cross-sectional shape (circular, rectangular, and square), and slenderness were constructed and tested by applying load through both steel tube and concrete core. Circular columns were further distinguished by the presence or absence of main and hoop steel reinforcing bars in the core concrete. Axial load-displacement response, axial/transverse strain development, and failure modes were recorded during the loading history to analyze the performance. Experimental confined concrete strength and axial strength of UHSC-filled CFST columns were compared with those obtained from three suggested analytical models and three code-based design procedures including Eurocode 4, Canadian CAN/CSA S16, and American AISC. Analytical models were found to over-predict the confined concrete strength and the axial strength of CFST columns. Canadian and American codes were found to be most applicable for predicting axial strength of UHSC-filled CFST columns while remaining conservative. Full article
Show Figures

Figure 1

26 pages, 5075 KiB  
Article
A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns
by Quang Hung Nguyen, Hai-Bang Ly, Van Quan Tran, Thuy-Anh Nguyen, Viet-Hung Phan, Tien-Thinh Le and Binh Thai Pham
Molecules 2020, 25(15), 3486; https://doi.org/10.3390/molecules25153486 - 31 Jul 2020
Cited by 37 | Viewed by 5321
Abstract
In this study, a novel hybrid surrogate machine learning model based on a feedforward neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize [...] Read more.
In this study, a novel hybrid surrogate machine learning model based on a feedforward neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize the weights and bias of the FNN for developing a hybrid model (FNN-OSS). For achieving this goal, an experimental database containing 422 instances was firstly gathered from the literature and used to develop the FNN-OSS algorithm. The input variables in the database contained the geometrical characteristics of CFST columns, and the mechanical properties of two CFST constituent materials, i.e., steel and concrete. Thereafter, the selection of the appropriate parameters of FNN-OSS was performed and evaluated by common statistical measurements, for instance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In the next step, the prediction capability of the best FNN-OSS structure was evaluated in both global and local analyses, showing an excellent agreement between actual and predicted values of the load-bearing capacity. Finally, an in-depth investigation of the performance and limitations of FNN-OSS was conducted from a structural engineering point of view. The results confirmed the effectiveness of the FNN-OSS as a robust algorithm for the prediction of the CFST load-bearing capacity. Full article
(This article belongs to the Special Issue Metallic and Composite Materials and Structures)
Show Figures

Figure 1

Back to TopTop