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Abstract: In this paper, under the condition of bidirectional stress, the buckling deformation of the
side plate in a rectangular concrete-filled steel tube (CFST) column has been studied in detail. We have
conducted a theocratical analysis, an experimental validation and a finite element simulation to in-
vestigate the influences of the height-width ratios and Nominal Poisson’s ratios on the buckling form
of the side plate, and we also try to explain the change of buckling form between unidirectional and
bidirectional stress, both of them can provide a good reference and basis for design and application
of the CFST column. The specific work can be summarized as follows: Firstly, a theoretical analysis
has been conducted to study the buckling coefficient solution method of the thin plate under the
conditions of axial compress and transverse tension. Then, under the conditions of the unidirectional
and the bidirectional stress, a comparative study is carried out to investigate the changing relationship
of the buckling coefficient (k) of the side plate; the results indicate that the buckling characteristic
is changed due to the bidirectional stress, meanwhile, the buckling coefficient and the number of
buckling half-wave will increase. Furthermore, the existing outcomes and the numerical simulations
are adopted to study the relevance between the number of the elastic buckling half-wave in the side
plate and the corresponding height-width ratio of the component; the results indicate that the former
is larger than the latter. Finally, based on the obtained, the buckling relationship curve, the conclusion
can be drawn as follows: when the bidirectional stress has been applied to the side plate, there is an
equal interval between the different buckling half-waves; meanwhile, the interval shows a quadratic
function reduce trend with the increase of nominal Poisson’s ratio.

Keywords: rectangular concrete-filled steel tube column; elastic buckling; buckling coefficient

1. Introduction

In several decades, concrete-filled steel tube (CFST) components have been widely
used due to the increasing construction of out-of-codes engineering and super high-rise
buildings. This type of component illustrates a good bearing capacity because the steel
tube can provide a forced constraint to the internal concrete and share the external loading
with concrete together. However, when columns are damaged, although the cross-sections
of each column are diverse, the buckling and voiding usually emerge in the steel tube [1–4].
Regarding this phenomenon, Yang et al. [5] conducted a quantified analysis to evaluate the
influence of the voiding in the steel tube on the bearing capacity of CFST, and the result
showed that the ultimate bearing capacity will be decreased by 20% when the sectional
voiding rate of the test CFST exceeds 2%. Thus, from the perspective of guaranteeing
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structural safety, it is more practical and valuable to study the voiding phenomenon
between steel tubes and concrete.

The voiding usually has occurred in CFST due to the buckling in the outer plane of the
steel tube. Based on the thin plate theory, the cause of the phenomenon can be analyzed
and explained as follows: During the service period or the mechanical test loading process,
the external deformation will emerge after the elastic buckling of the outer plane [6],
then, the steel plate has a weak constraint on the core concrete; further, the yielded steel
plate will cause a plastic deformation [7], which is the main reason for the voiding in
CFST [8]. Regarding this problem, there are numerous studies which have been done.
For example, Uy and Bradford [9] theoretically explained the elastic buckling problem
of the steel plate in the steel-concrete composite structure using the finite strip analysis,
and the computational method of the stable bearing capacity was proposed. Tao et al. [10]
implemented a theoretical analysis on the elastic buckling problem of steel tube side plate
under the axial load, then modified the equation of ultimate bearing capacity of side
plate under the condition of uniaxial load and the width-thickness ratio of the plate in
AS4100 [11]. Then, Liang et al. [12] experimentally evaluated the influences of the different
width-thickness ratios of the plate on the bearing capability of the component; after that,
the computational method of the steel tube bearing capability was proposed based on
the width-thickness ratio. After that, Yang et al. [13] presents an analytical study of local
buckling of steel plates in CFST columns. They get an approximate solution by Rayleigh–
Ritz method, and it is in good agreement with the real local buckling stress of the steel
plate. Long and Zeng [14] consider the influences of horizontal spacing and diameter of
binding bars to propose a refined model, which is exploited to study the local buckling of
rectangular CFST columns with binding bars under axial compression. Moreover, due to
the high ambient temperature, the steel tube will be softened, and the axial stress will cause
the buckling, further to threaten the bearing capacity of the structure. Lyu et al. [15] conduct
a comparative study to find out the axial compressive performance of six thin-walled CFST
square column specimens with steel bar stiffeners and two non-stiffened specimens in the
different temperature conditions. Kamil et al. [16] aim to the local and post-local buckling
of steel tube in the specific temperature condition, where a numerical research has been
used to explain the local buckling effects on the responses of rectangular thin-walled CFST
columns under the temperature influence.

Although it is a good guideline for the practical engineering design and application to
refer to the elastic bearing capability analysis of the plate under the condition of uniaxial
load, when the transverse deformation has occurred in the internal concrete, the steel tube
will enhance the bearing capability by applying the constraints. Meanwhile, due to the
reaction force, the concrete will cause the transverse deformation of the steel tube as well;
namely, the transverse stress also exists in the tube, which may cause the buckling further.
The study of Song et al. [17] pointed out that the buckling will transform the state of axial
compression into the transverse tension, which will influence the buckling form.

An important reason why the steel tube and concrete can work together is that coeffi-
cients of linear expansion of two materials are close. Furthermore, in the early loading stage,
the deformations of two materials are approximately equal. At the same time, referring
to the existing specifications and codes [11,18,19], the ultimate bearing capacity of the
rectangular CFST can be considered as a combination of the bearing capabilities of the
concrete and the steel tube; namely, on the prerequisite of deformation coordination, it can
be considered as each part undertakes the external load independently until the ultimate
state has been achieved.

Regarding the abovementioned statement and assumption, the adhesion effort be-
tween the steel tube and concrete is also ignored. In this paper, based on thin-plate stability
theory, aiming at the rectangular CFST under the bidirectional stress, the elastic buckling
behavior in the side plate will be investigated and studied. We consider the different
influences of height-width ratios and Nominal Poisson’s ratios to numbers of buckling
half-wave, and the experiments and finite element simulations are both used to verify the
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analytical results. The results and findings are of great significance to the study, design and
application of the similar and/or same component in the practical engineering application.

The remaining sections are organized as follows: Section 2 has introduced the theo-
retical analysis of the buckling in the side plate of steel tube in CFST. Section 3 introduces
experimental research on the buckling characteristics. Then, Section 4 utilizes finite element
method to investigate and verify the development of the buckling. After that, Section 5 has
discussed the influence of the height-width ratio on the buckling. Finally, we draw several
conclusions and outlooks in Section 6.

2. Buckling Theory Analysis of the Side Plate of the Rectangular Steel Tube

During the service period or loading process, the steel tube will be squeezed due to the
deformation of concrete, causing the transverse stress in the tube. Regarding this condition,
the stress state of the side plate is transformed into bidirectional stress (axial compression
and transverse tension) from unidirectional stress (axial compression) (Figure 1). However,
as the boundary condition of the component has not changed, the strength and stability of
the side plate will be varied with the stress state.
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Figure 1. Stress form of buckling of the side plate. (a) Axial compression. (b) Axial compression and
transverse compression. (c) Axial compression and transverse tension.

2.1. Elastic Buckling Behavior of the Side Plate of the Steel Tube under Unidirectional Load

For the state of the unidirectional loading, the stress has shown uniform distribution
in the cross-section of the steel tube, and the corner only provides simply supported
constraints. Regarding the one side of the rectangular steel tube, the constraint of the
plate can be assumed as simply supported. Then, assuming that the longitudinal uniform
loading Px has been applied to the surface, the corresponding deflection can be calculated
as follows:

w =
∞

∑
m=1

∞

∑
n=1

Amn sin
mπx

a
sin

nπy
b

(1)

where w is the deflection of the plate in the point of (x, y); Amn means the maximum
out-of-plane deformation of the half-wave of buckling; m and n are the numbers of the
buckling half-wave in the direction of x and y, respectively; a and b stand for the height
and width of the plate, respectively. In this paper, n can be defined as 1 and m is influenced
by the height-width ratio of the plate, namely, a/b.

Then the relationship of the load-deformation in the plate can be expressed as follows:

D∇4w + Px
∂2w
∂x2 = 0 (2)
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where D = Et3

12(1−µ2)
is the bending stiffness of a thin plate; then to substitute Equation (1),

the differential equation can be rewritten as follows:

∞

∑
m=1

∞

∑
n=1

Amn[D(
m2

a2 +
n2

b2 )
2

− Px
m2

π2a2 ] sin
mπx

a
sin

nπy
b

= 0 (3)

According to Equation (3), when Px has been defined as a small value, namely, the
axial load has been applied to the plate, thus, only the in-plane compression deformation
has occurred, and Amn = 0. While with the increase of Px, the plate is unstable and begins
to deform, for this situation, to satisfy Equation (3) and Amn 6= 0, we can deduce the
following equation:

D(
m2

a2 +
n2

b2 )
2

− Px
m2

π2a2 = 0 (4)

Considering this specific situation, the corresponding external load can be expressed
as follows:

Px =
π2a2D

m2 (
m2

a2 +
n2

b2 )
2

=
π2D

b2 (
mb
a

+
1

mb
a
)

2
(5)

Let

k = (
mb
a

+
1

mb
a
)

2
(6)

and substitute it into Equation (5) Thus, Equation (5) can be simplified as the standard
formula of stability bearing capacity in AS4100 [11]. Then, according to Equation (6), as
shown in Figure 2, the change curve can be obtained.
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Figure 2. The variation of the buckling coefficient of the side plate with different height-width ratios
and half-wave numbers in the direction of x (unidirectional stress).

As shown in Figure 2, for the plate under the unidirectional stress, the envelope curve
indicates that the number of buckling half-wave (m) and the height-width ratio of the plate
(a/b) have synergistic effects on the buckling coefficient (k). Meanwhile, with the increase
of a/b and m, the buckling coefficient (k) gradually decreases and then infinitely closes to 4.

2.2. Elastic Buckling Behavior of the Side Plate of the Steel Tube under Bidirectional Load

When the steel tube is squeezed due to the deformation of the internal concrete, the
transverse stress has gradually emerged in the side plate, meanwhile, the stress state of
the side plate is transformed into bidirectional stress from unidirectional stress. Assuming
that the transverse loading in the plate is Py, the longitudinal uniform loading keep Px
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(as shown in Figure 1c), then the relationship of the load-deformation in the plate can be
expressed as follows:

D∇4w + Px
∂2w
∂x2 + Py

∂2w
∂y2 = 0 (7)

then to substitute Equation (1), the differential equation can be rewritten as follows:

∞

∑
m=1

∞

∑
n=1

Amn[D(
m2

a2 +
n2

b2 )
2

− Px
m2

π2a2 − Py
m2

π2b2 ] sin
mπx

a
sin

nπy
b

= 0 (8)

Since there is already a deflection in the plate in this case, to satisfy the Equation (8)
and Amn 6= 0, we can deduce the following equation:

D∇4w + Px
∂2w
∂x2 + Py

∂2w
∂y2 = 0 (9)

Assuming that the constraints generated by the steel tube have been applied to the
component, the nominal Poisson’s ratio of rectangular CSFT can be represented as µ′, thus,
we can obtain the following equation:

εy = −µ′εx (10)

Then the nominal transverse stress of the steel tube can be calculated as follows:

σy = Esεy = −Esµ′εx = −µ′σx (11)

where εy and εx are the nominal transverse and longitudinal strains, respectively; σx
represents the nominal longitudinal stress. Furthermore, the relationship between Px and
Py can be described as follows:

Py = σyt = −µ′σxt = −µ′Px (12)

To substitute Equation (12) to Equation (9), for the state of the bidirectional loading, the
buckling bearing capacity calculation formula of the side plate can be rewritten as follows:

Px =
π2D

a2

(m2 + n2 a2

b2 )
2

m2 − µ′n2 a2

b2

=
π2D

b2

(m2 b
a + n2 a

b )
2

m2 − µ′n2 a2

b2

(13)

Let

k =
(m2 b

a + n2 a
b )

2

m2 − µ′n2 a2

b2

(14)

Then we can obtain the calculation formula of the buckling coefficient for the plate
under the bidirectional stress. Meanwhile, according to Equation (14), for the plate under
the bidirectional stress, not only the number of buckling half-wave (m) and the height-
width ratio of the plate (a/b), but also the nominal Poisson’s ratio (µ′) can make an effort
on the buckling coefficient (k). The experiment of Li et al. [20] also reported the nominal
Poisson’s ratio gradually rises from 0.264 to 0.5 with the increase of external loading, and
then keeps a constant value. Figure 3 illustrates the change curve of the buckling coefficient
(k) which varies with the nominal Poisson’s ratio (µ′). It can be seen from Figure 3 that
when the height-width ratio of the plate (a/b) is fixed, the number of buckling half-wave
(m) will increase with the rising of the nominal Poisson’s ratio (µ′), further to enhance the
corresponding maximum in the buckling coefficient curve (Figure 4). Compared to the
state of the unidirectional loading, the transverse stress makes the buckling coefficient of
the plate with the same size increase. Meanwhile, when the height-width ratios of the two
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plates (a/b) are consistent, the corresponding number of buckling half-wave has also risen
with the increase of the nominal Poisson ratio (µ′).
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Figure 3. (a–g) The variation of the buckling coefficient of the side plate with different height width
ratios, half-wave numbers, and nominal Poisson’s ratios (bidirectional stress).
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3. Buckling Characteristics of the Side Plate of the Steel Tube in Rectangular CSFT
3.1. Buckling Phenomenon of the Side Plate of the Steel Tube in Rectangular CSFT under the
Axial Compression

In the studies of Refs. [20–23], we can find that the unrecoverable buckling appeared
in the side plate as the damage has occurred in the component. Meanwhile, as shown in the
figures of buckling forms, except for the component of UCFT3-2, the numbers of buckling
half-wave (m) all exceed the designed height-width ratio of the side plate (Table 1). Based
on the elastic buckling theory of the plate in the unidirectional loading, the value of the
buckling half-wave number is equal to the designed height-width ratio, but the observed
buckling half-wave numbers are all larger than the designed height-width ratio, which
verifies that the number of the buckling half-wave is larger than the designed height-width
ratio when the dimensional size is fixed, and the loading has increased.

Table 1. Buckling characteristics of the side plate in rectangular CSTC under axial compression in
existing studies (unit: mm).

Item Number Width
(b)

Thickness
(t)

Height
(a)

Number of Half-Wave
(m)

Figure 5a CUS28 [21] 280 2.5 840 4
Figure 5b SCA-30-2 [22] 900 4 300 4
Figure 5c UCFT3-2 [20] 250 2.5 750 2
Figure 5d t2c2-316 [23] 202.64 4.62 + 1.32 600 4
Figure 5e t1c2-316 [23] 201.68 4.14 + 0.84 600 5
Figure 5f t3c2-316 [23] 203.76 5.18 + 1.88 600 4
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Figure 5. The buckling forms of the side plate of the steel tube in rectangular CSFT in existing studies.

3.2. The Axial Compression Experiment of Rectangular CSFT Short Column

To compare and research the relationship between the buckling half-wave and loading,
we have designed a rectangular CSFT short column with 300 × 300 × 900 mm, and the
thickness of the steel tube is 4 mm, then the axial compression test has been conducted.
The experimental results can be plotted in Figure 6. During the process of the experiment,
in the early stage, there is no obvious deformation which occurred in the component, the
nominal Poisson’s ratio shows linear change with the increasing loading (Figure 6b). Then,
when the experimental loading has achieved about 60% of the ultimate bearing capacity,
the longitudinal strain will decrease, the turning point has occurred in the curve, the
turning phenomenon can be owed to the elastic deformation of the plate, namely, the elastic
buckling has emerged in the plate. After that, when the experimental loading has achieved
about 80% of the ultimate bearing capacity, it is obvious that the buckling has occurred
in the surface at the concentrated position of the slip line, and the stress-strain curves of
different sides show a bifurcation phenomenon (Figure 6c,d), where the turning point has
occurred in the nominal strain curve (Figure 6b). This situation is caused by the dislocated
buckling in the side plate; meanwhile, the buckling half-wave in the surface shows a growth
trend with the increasing loading, as well as the more obvious buckling phenomenon.
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Figure 6. The stress of analysis of the rectangular CSFT short column. (a) Measuring point. (b) Load-
Nominal Poisson’s ratio curve. (c) Load-strain curve of SCA-1. (d) Load-strain curve of SCA-2.

4. Finite Element Verification of Elastic Buckling Development of the Side Plate of the
Steel Tube in Rectangular CSFT Short Column

To investigate the buckling behavior of steel tubes in detail, in this section, ABAQUS [3,24]
is utilized to simulate the components. Three rectangular CSFT short column models with
different height-width ratios (3:1, 4:1, and 5:1 [25]) have been simulated, and then, under the
condition of axial loading, we analyzed the changing relationship of buckling deformation
in the surface of the side plate. For the internal concrete, the material property of C30
concrete and the concrete damage plastic constitutive model are adopted; the steel is Q345
steel with the bilinear elastic-plastic constitutive model. Other parameters for the analysis
can be referred to Ref. [15]. Thus, the element of the concrete adopts the eight-node three-
dimensional solid Unit C3D8. The outer steel tube adopts the shell thermal analysis Unit
S4R. The contact type among the steel tube and core concrete is set to tangential behavior,
and the friction coefficient is 0.3. The buckling behavior of the side plate of the steel tube
has been illustrated in Figure 7.
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the change of buckling deformation in the loading process, D is the final form). (a) 300 × 300 × 900,
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As shown in Figure 7, for several different steel tubes with diverse height-width
ratios, in final, the corresponding buckling numbers all exceed their height-width ratios.
Meanwhile, from the results of three components, all of them observation showed the
changes of the buckling form. For three components, the phenomenon has occurred
between the form B and C (3:1), form A, B, and C (4:1), and form A, B, and C (5:1),
respectively, which means the bidirectional stress has occurred in the plate due to the
squeezing effect of the internal concrete, then to change the buckling form obviously with
the change of stress state. The right of Figure 7 illustrates the buckling deformation in the
different moments, according to the order of forms A, B, and C, it can be observed that the
deformation of the latter is always a sudden change based on the former. The form of the
sudden change shows growth in the number of the buckling half-wave, the distribution
tends to be uniform, and the wavelength is shorted. The sudden change can be owed to the
bidirectional stress that has occurred in the plate due to the squeezing effect of the internal
concrete; in this situation, the number of buckling half-wave is more than the situation of
the unidirectional stress. These phenomena also validate a principle, namely, for the fixed
height-width ratio, the higher Poisson’s ratio, the more buckling half-wave shown in the
curve of the buckling coefficient. Moreover, with the increase of the buckling number, the
peak value of the buckling deformation will decrease.
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5. Discussion

The intersection points of the adjacent m-curve (Figures 3 and 4) are picked and
listed in Table 2, and then to obtain the linear fitting of data (Figure 8. As shown in
Table 2 and Figure 8, the following conclusion can be summarized: When the value of m
has risen, the corresponding slope of a/b remains unchanged, which means for the same
condition, the value of a/b is the main factor to influence the number of buckling half-wave.
It can be summarized that when the value of b keeps unchanged, the more larger a, the
more larger m. In addition, the equidistant growth trend also verifies that the wavelengths
of elastic buckling half-waves in the plate should be equal, namely, the wavelengths are all
equal to the interval.

Table 2. Height-width ratios of the plate corresponding to different numbers of buckling half-wave.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

Unidirectional Stress 1.415 2.45 3.464 4.473 5.477 - -

Bidirectional
Stress

µ= 0.2 1.170 2.056 2.918 3.772 4.627 5.472 -
µ= 0.25 1.126 1.984 2.817 3.642 4.465 5.285 -
µ= 0.3 1.086 1.918 2.725 3.525 4.322 5.117 -

µ= 0.35 1.049 1.858 2.642 3.419 4.192 4.963 -
µ= 0.4 1.016 1.804 2.566 3.321 4.073 4.822 5.571

µ= 0.45 0.987 1.753 2.497 3.232 3.963 4.693 5.421
µ= 0.5 0.957 1.708 2.432 3.149 3.862 4.573 5.284

NOTE: “-”means the values of a/b for the intersection point in Figure 3 overlaps.

Figure 8 has shown the linear fittings of height-width ratio and buckling half-wave
number, which indicates a near growth. Then, under the condition of bidirectional stress,
the slopes of fitting lines are collected and plotted in Figure 9 with the nominal Poisson’s
ratio as X-axis. From Figure 9, it can be seen that: the slope of the fitting line has reduced
with increasing relative Poisson’s ratio of the component, and it also shows a characteristic
of the quadratic function. Thus, the nominal Poisson’s ratio also can be determined as a key
parameter to the number of buckling half-wave, namely, the larger nominal Poisson’s ratio,
the higher tensile stress in the side of the steel tube, then the more buckling half-waves,
and the corresponding wavelength of half-wave is smaller.
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6. Conclusions and Outlook

The buckling is the classical crack form of the rectangular CSFT short column, and the
study of the buckling is of great significance to the structural failure characteristics and
behavior. In this paper, first of all, we have conducted a theoretical analysis to research the
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buckling of the side plate in the rectangular CSFT short column. Then, the experimental
analysis and finite element verification are used to investigate the elastic buckling and its
development characteristic of the steel tube under the loading process. Several conclusions
can be summarized as follows:

(1) For the condition of bidirectional stress, the buckling coefficient of the side plate is
larger than the coefficient under the unidirectional stress, the corresponding value
of m will increase. It can be explained that under the state of bidirectional stress
when the buckling has occurred in the plate, the external loading and the number of
buckling half-wave are both larger than the corresponding values under the condition
of a unidirectional stress.

(2) For the condition of longitudinal loading, when the failure has emerged in the side
steel tube of the rectangular CSFT column, the number of buckling half-wave is larger
than the height-width ratio (a/b) of the plate.

(3) During the process of loading, for the side plate of the steel tube, the buckling form
change can be owed to the stress state change of the component (from unidirectional
stress to bidirectional stress). Meanwhile, with the increase of the transverse stress,
the wavelength of the buckling half-wave will reduce while the number of buckling
will rise.

(4) For the same loading condition, in the intersection points of m-curve in the buckling
coefficient curve, the interval between, adjacent of the height-width ratio (a/b) is
fixed, and for the condition of bidirectional stress, the interval will decrease with the
increasing Poisson’s ratio.

For future work, there are some outlooks which are listed as follows:

(1) Although the analytical study and experimental validation have been conducted in
this paper, we only consider the failure of rectangular CSFT column under the condi-
tion of the bidirectional stress; some other factors, such as high ambient temperature,
horizontal spacing and diameter of binding bars, etc., should be also investigated.

(2) Several specimens are used to verify the theocratical results, which can reflect the
main forming of the buckling deformation; in the future, we are going to design more
test specimens to obtain a more accurate result for the needs of practical applications.
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