Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = concrete self-healing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2735 KB  
Article
The Combined Effect of Magnetized Water and Bacillus megaterium on the Strength, Microstructure, and Self-Healing Efficiency of Sustainable Concrete Under Different Environmental Curing Regimes
by Seleem S. E. Ahmad, Esraa A. Nassar, Mahmoud A. Abdallah, El-Shikh M. Yousry, Ahmed A. Elshami and Yasmine Elmenshawy
Sustainability 2026, 18(2), 1021; https://doi.org/10.3390/su18021021 - 19 Jan 2026
Viewed by 45
Abstract
This study presents an innovative approach by combining magnetized water (MW) with Bacillus megaterium to improve the sustainability of concrete under various curing conditions. These enhancements contribute directly to reduced cement use and improved durability, both essential factors in sustainable construction. An experimental [...] Read more.
This study presents an innovative approach by combining magnetized water (MW) with Bacillus megaterium to improve the sustainability of concrete under various curing conditions. These enhancements contribute directly to reduced cement use and improved durability, both essential factors in sustainable construction. An experimental program with 27 distinct mixes analyzed variables such as the type of water (tap water/TW and two magnetization sequences/MW1 and MW2), bacterial dosage (0%, 2.5%, and 5% relative to cement weight), and curing methods (traditional water curing/C1, thermal shock/C2, freeze–thaw/C3). The primary discovery is a synergistic relationship between MW and bacteria: the MW1 treatment (1.5 T followed by 0.9 T) paired with a 2.5% bacterial dosage significantly improved the mechanical and self-healing properties of the concrete. This combination led to significant improvements in workability and compressive strength, achieving an increase of as much as 46.5% compared to the control. There was also an impressive recovery of strength in pre-cracked specimens, particularly under thermal shock curing (C2), where some healed cubes exceeded the strength of the uncracked ones. On the other hand, a 5% bacterial dosage was less effective, often resulting in reduced returns due to variations in microstructure. SEM and XRD analyses confirmed a more compact matrix and increased calcite precipitation with 2.5% bacteria, illustrating the combined effects of microbial activity and microwave treatment for sustainable concrete. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
21 pages, 3949 KB  
Article
Endogenous Curing Mechanism and Self-Healing Properties of an Epoxy Resin (E-51) in Alkaline Environments of Cement-Based Materials
by Qianjin Mao, Yuanlong Wang, Runfeng Li, Yuhuan Zhou, Shuqing Shi and Suping Cui
Polymers 2026, 18(2), 262; https://doi.org/10.3390/polym18020262 - 18 Jan 2026
Viewed by 106
Abstract
Regarding the issues arising from the addition of external curing agents in the application of epoxy resin in cement-based materials, this paper explores the feasibility of endogenous curing of epoxy resin in the alkaline environment of cement-based systems. It further analyzes and investigates [...] Read more.
Regarding the issues arising from the addition of external curing agents in the application of epoxy resin in cement-based materials, this paper explores the feasibility of endogenous curing of epoxy resin in the alkaline environment of cement-based systems. It further analyzes and investigates the curing characteristics of epoxy resin without external curing agents and their impact on the performance of cement-based materials. Differential scanning calorimetry, mechanical property testing, microstructural observation, and electrochemical impedance spectroscopy were used to study the mechanism of sodium hydroxide (NaOH) catalyzing the process of bisphenol-A epoxy resin (E-51)-based curing, the influence of moisture and temperature on curing kinetics, and the performance of epoxy resins in mortar and self-healing concrete. The results showed that E-51 achieved self-curing under alkaline conditions in the absence of an external hardener. However, moisture significantly inhibited the reaction process. Elevating the temperature and reducing environmental humidity effectively promoted the curing reaction. In cement-based materials, E-51 exhibited endogenous curing by the inherent alkalinity of the system, remarkably enhancing the compressive strength of mortar. At 60 °C, mortar containing 10% E-51 (by cement mass) exhibited a 1.5-fold higher compressive strength than that of the control group without E-51 at 14 days of curing. It demonstrated higher healing efficiency in a microencapsulated self-healing concrete system than the traditional curing agent systems. Concrete specimens with damage induced by loading at 60% of their compressive strength exhibited 100% recovery of ultrasonic pulse velocity after storing indoors for 28 d. The findings of this study can provide theoretical basis and technical support for the application of epoxy resins in cement-based materials without the need for curing agents. Full article
Show Figures

Figure 1

16 pages, 7013 KB  
Article
Performance of Bacterial Concrete with Agro-Waste Capsules
by Ivanka Netinger Grubeša, Dalibor Kramarić, Dunja Šamec and Anđelko Crnoja
Appl. Sci. 2026, 16(2), 755; https://doi.org/10.3390/app16020755 - 11 Jan 2026
Viewed by 224
Abstract
This study investigates the effects of agro-waste-based capsules made from grape seeds and cherry pits on the physical, mechanical, thermal and self-healing properties of concrete. Capsule-containing mixtures were compared with a reference concrete after 28 days of water curing using both standardized and [...] Read more.
This study investigates the effects of agro-waste-based capsules made from grape seeds and cherry pits on the physical, mechanical, thermal and self-healing properties of concrete. Capsule-containing mixtures were compared with a reference concrete after 28 days of water curing using both standardized and non-standardized testing methods. Capsule incorporation reduced workability by up to 91% and altered air content depending on capsule type, increasing it by 47% for grape seed capsules and decreasing it by 65% for cherry pit capsules. Fresh concrete density was reduced by 5.5% and 6.8% for grape seed and cherry pit capsules, respectively, while hardened concrete density decreased by 11% and 9%, implying lighter structures with improved seismic resistance. Compressive strength decreased by 49% for grape seed capsules and 27% for cherry pit capsules. Thermal conductivity was reduced by 32% and 22%, respectively, indicating improved energy efficiency. Concrete with grape seed capsules showed freeze–thaw performance comparable to the reference concrete after 112 cycles, whereas concrete with cherry pit capsules exhibited superior dynamic modulus behavior, suggesting continuous crack healing, despite significant mass loss due to poor capsule–matrix bonding. SEM analysis showed no significant crack reduction, while EDS revealed calcium-rich areas in grape seed capsule concrete, indicating possible crack healing. Overall, agro-waste capsule concrete shows potential for improving seismic resistance and energy efficiency, although further research is required to clarify the self-healing effect. Full article
(This article belongs to the Special Issue Innovative Building Materials: Design, Properties and Applications)
Show Figures

Figure 1

17 pages, 1005 KB  
Article
Microbial Community Profiling of Concrete
by Caroline Danner, Julien Charest, Carlijn Borghuis, Philipp Aschenbrenner, Jakob Lederer, Robert L. Mach and Astrid R. Mach-Aigner
Microorganisms 2026, 14(1), 131; https://doi.org/10.3390/microorganisms14010131 - 7 Jan 2026
Viewed by 170
Abstract
Concrete is the most widely used construction material worldwide, yet its production and disposal pose significant environmental challenges due to high carbon emissions and limited recyclability. While microbial colonization of concrete is often associated with structural deterioration, recent research has highlighted the potential [...] Read more.
Concrete is the most widely used construction material worldwide, yet its production and disposal pose significant environmental challenges due to high carbon emissions and limited recyclability. While microbial colonization of concrete is often associated with structural deterioration, recent research has highlighted the potential of microorganisms to contribute positively to concrete recycling and self-healing. In this study, we investigated the bacterial and fungal communities inhabiting urban concrete samples using amplicon-based taxonomic profiling targeting the 16S rRNA gene and internal transcribed spacer (ITS) region. Our analyses revealed a diverse assemblage of microbial taxa capable of surviving the extreme physicochemical conditions of concrete. Several taxa were associated with known metabolic functions relevant to concrete degradation, such as acid and sulphate production, as well as biomineralization processes that may support crack repair and surface sealing. These findings suggest that concrete-associated microbiomes may serve as a reservoir of biological functions with potential applications in sustainable construction, including targeted biodegradation for recycling and biogenic mineral formation for structural healing. This work provides a foundation for developing microbial solutions to reduce the environmental footprint of concrete infrastructure. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

22 pages, 2969 KB  
Article
Self-Healing Concrete Reinforced with Sisal Fibers and Based on Sustainable Bacillus subtilis Bacteria Calcium Lactate-Fortified
by Hebah Mohammad Al-Jabali, Walid Fouad Edris, Ahmed D. Almutairi, Abd Al-Kader A. Al Sayed and Shady Khairy
Buildings 2025, 15(24), 4495; https://doi.org/10.3390/buildings15244495 - 12 Dec 2025
Viewed by 769
Abstract
Self-healing concrete provides an eco-efficient approach for restoring cracks through autonomous repair, reducing maintenance demands and enhancing long-term durability. This study evaluates concrete incorporating Bacillus subtilis bacteria and sisal fibers to examine their individual and combined effects on mechanical performance and microstructural development. [...] Read more.
Self-healing concrete provides an eco-efficient approach for restoring cracks through autonomous repair, reducing maintenance demands and enhancing long-term durability. This study evaluates concrete incorporating Bacillus subtilis bacteria and sisal fibers to examine their individual and combined effects on mechanical performance and microstructural development. Bacterial cells at a concentration of 2 × 108 CFU/mL were introduced with calcium lactate as a nutrient source at varying dosages, while sisal fibers were added at a volume fraction of 0.9%. Concrete mixes containing 0%, 2.5%, and 5% bacterial content were tested under fresh-water curing. Compressive, splitting tensile, and flexural strengths were assessed at multiple ages, accompanied by SEM and EDS analyses to investigate healing products and microstructural alterations. Bacteria-enhanced mixes demonstrated improved long-term compressive behavior, with B5/5/1 reaching 50.1 MPa at 56 days, while higher bacterial content slightly reduced early-age strength but benefited later performance. Incorporating sisal fibers consistently improved mechanical resistance, notably in combination with bacteria. The SB5/5/1 mix achieved 55.2 MPa at 56 days, representing a 30% gain over the control. Tensile strength was particularly influenced by fibers, with SB10/5/1 recording 6.3 MPa at 56 days (≈70% increase). Flexural strength results similarly highlighted the superior behavior of hybrid systems, where SB10/5/1 attained 9.2 MPa (+67%), reflecting enhanced self-healing efficiency even under challenging curing conditions. Full article
Show Figures

Figure 1

15 pages, 3193 KB  
Article
Mechanical and Self-Healing Performance of Cement Composites Containing Bacteria Extracted from Waste Concrete
by Se-Jin Choi, Jeong-Yeon Park, Jung-Mi Kim, Ha-Yeon Song and Jae-In Lee
Materials 2025, 18(24), 5483; https://doi.org/10.3390/ma18245483 - 5 Dec 2025
Viewed by 499
Abstract
Cracks can reduce the durability of concrete structures. To mitigate the damage caused, self-healing technologies using bacteria and cement-based materials can be utilized. For self-healing, bacteria contained within the matrix are advantageous because they can heal cracks upon introducing oxygen and water under [...] Read more.
Cracks can reduce the durability of concrete structures. To mitigate the damage caused, self-healing technologies using bacteria and cement-based materials can be utilized. For self-healing, bacteria contained within the matrix are advantageous because they can heal cracks upon introducing oxygen and water under favorable conditions. To our knowledge, this is the first study showing that Lysinibacillus fusiformis isolated from waste concrete induces calcite precipitation in a cement-based material. Replacing 5–20% of the mixing water with the bacterial solution increased mortar flow, and the initial compressive strength increased with the bacterial content. After long-term aging, the compressive strength of the sample with 20% bacterial solution was ~45.6 MPa, the highest among all samples. In terms of durability, the bacterial solution reduced the carbonation depth compared with that of a control sample without added bacteria, and the 20% sample showed 53% higher carbonation resistance than the control. In terms of the self-healing performance, the bacteria-loaded samples showed higher compressive strength recovery rates than the control sample, with the 20% sample showing the highest rate of approximately 131%. Therefore, L. fusiformis derived from waste concrete is a promising candidate bacterium for enhancing the durability and self-healing efficiency of cement composites. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 9801 KB  
Article
Mechanical Properties of Self-Healing Concrete with Dawson Microcapsule
by Hossein Khosravi, Saeedeh Ghaemifard and Majid Movahedi Rad
Buildings 2025, 15(23), 4292; https://doi.org/10.3390/buildings15234292 - 27 Nov 2025
Viewed by 398
Abstract
Concrete structure integrity is significantly compromised by the primary problem of cracking. Typically, surface cracking (predominantly shrinkage-induced and thermal microcracking) is rectified using costly and time-consuming repair methods involving mortar and other techniques. Research efforts have recently shifted towards developing smart materials to [...] Read more.
Concrete structure integrity is significantly compromised by the primary problem of cracking. Typically, surface cracking (predominantly shrinkage-induced and thermal microcracking) is rectified using costly and time-consuming repair methods involving mortar and other techniques. Research efforts have recently shifted towards developing smart materials to reduce concrete’s propensity for cracking, enhance its structural stability, and prevent damage to its framework. Concrete designs with self-healing capabilities can safeguard against degradation and enhance long-term durability. Despite extensive research, a consensus on the optimal preparation and mechanical properties of self-healing concrete has yet to be reached. Within self-healing concrete that utilizes microcapsules, repair agents are dispersed throughout the matrix to form a bond and seal cracks as damage develops. From the viewpoint of a sustainable society, this approach appears to promote the use of construction materials. This study examined the impact of Dawson/urea–formaldehyde microcapsule-based self-healing concrete using strength tests, where the effectiveness of different microcapsule quantities (0.5–2% microcapsule by weight of cement) was assessed. Following the data and data analysis, it becomes evident that among all samples, the 1% microcapsule sample yields outstanding results for both 7-day and 28-day compressive strength. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 29381 KB  
Article
Evaluation of the Self-Healing Capacity of Asphalt Concrete with Polymer Capsules Containing Rejuvenator Under Various Cyclic Load Conditions
by Pei Wan, Zirong Ma, Zhiming Lin, Peixin Zhong, Xiaobin Zou, Yilun Shen, Niecheng Lin, Hang Chen, Jiazhu Wang, Shaopeng Wu, Quantao Liu, Lei Zhang and Xing Gong
Materials 2025, 18(22), 5201; https://doi.org/10.3390/ma18225201 - 17 Nov 2025
Viewed by 611
Abstract
Under the effect of cyclic load, calcium alginate (Ca-alginate) capsules can release the asphalt rejuvenator gradually, which provides asphalt concrete with a sustained healing ability during its service period. The rejuvenator release is significantly influenced by load cycles, pressure, and frequency, factors that [...] Read more.
Under the effect of cyclic load, calcium alginate (Ca-alginate) capsules can release the asphalt rejuvenator gradually, which provides asphalt concrete with a sustained healing ability during its service period. The rejuvenator release is significantly influenced by load cycles, pressure, and frequency, factors that have been overlooked in previous studies. To address this gap, this study investigates the self-healing performance of capsule-modified asphalt concrete under various cyclic load conditions. Calcium alginate capsules with rejuvenator are fabricated and characterized. The healing efficiency of concrete beams with capsules under different load patterns is evaluated. Additionally, the rejuvenator release rate from capsules after cyclic load is measured. The rheological behavior and the chemical composition of the extracted asphalt binder are also examined. Results show that the prepared capsules exhibit a multi-chamber structure and satisfy mechanical and thermal requirements. The healing ratio of specimen beams improves with increasing load cycles and pressure but decreases with higher load frequency. Under fixed load pressure (0.7 MPa) and frequency (1 Hz), the healing ratio of beams with capsules after 128,000 cycles of load can reach 75%. The rejuvenator is released gradually from the capsules. Under constant load cycles, the release ratio rises with greater load pressure but declines as load frequency increases. Under 64,000 cycles of load and 1 Hz of load frequency, the rejuvenator release ratio of capsules increases from 49.5% to 61.5% when the load pressure increases from 0.7 MPa to 1.40 MPa. The released rejuvenator enhances the flow ability of asphalt. Furthermore, it helps rebalance the chemical composition of asphalt by increasing the content of light components, thereby contributing to asphalt regeneration. This paper provides theoretical support for the service life of capsules under various traffic load conditions, facilitating their practical application and promotion in road engineering projects. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Figure 1

22 pages, 4600 KB  
Review
Progress in Self-Repair Technology for Concrete Cracks via Biomineralization
by Meirong Zong, Wenhao Wang, Haozhe Ma, Nshuti Cedrick, Yuting Sun, Xiancui Yan, Hui Liu, Pinghua Zhu and Minqi Hua
Materials 2025, 18(21), 5004; https://doi.org/10.3390/ma18215004 - 1 Nov 2025
Viewed by 1429
Abstract
Biomineralized self-healing concrete is a type of concrete that, during its service life, induces the generation of calcium carbonate through the participation of microorganisms or active enzymes, thereby achieving self-repair of cracks at different times. Self-healing concrete based on biomineralization can achieve sustainable [...] Read more.
Biomineralized self-healing concrete is a type of concrete that, during its service life, induces the generation of calcium carbonate through the participation of microorganisms or active enzymes, thereby achieving self-repair of cracks at different times. Self-healing concrete based on biomineralization can achieve sustainable crack repair and could enhance the strength and extend the service life of buildings. This article comprehensively analyzes the latest progress in bio-self-healing concrete, including microbial-based self-healing, enzyme-induced calcium carbonate precipitation (EICP), microcapsule-loaded microbial in situ remediation, and bio-inorganic mineral synergist self-healing technology. The maximum repairable width of the crack is 2.0 mm, and concrete strength can be increased by 135%. These methods offer new insights and strategies for the repair of concrete cracks, providing fundamental knowledge for the later application of intelligent engineering of bio-self-healing concrete and the analysis of micro-interface mechanisms. At the same time, they clarify the practical possibility of microbial technology in building materials science and engineering and offer key theoretical support for the long-term development of China’s construction industry. Full article
(This article belongs to the Topic Advances in Biomaterials—2nd Edition)
Show Figures

Figure 1

29 pages, 1284 KB  
Review
Efficacy of Self-Healing Concrete for Mitigating Reinforcement Corrosion: A Critical Review of Transport Properties and Electrochemical Performance
by Segun J. Osibodu, Daniel D. Akerele and Gideon O. Bamigboye
Buildings 2025, 15(21), 3875; https://doi.org/10.3390/buildings15213875 - 27 Oct 2025
Viewed by 1611
Abstract
Reinforced concrete durability depends on a passive oxide film protecting embedded steel, sustained by high-alkalinity pore solutions. Cracking fundamentally alters transport, allowing rapid chloride and carbon dioxide ingress, which undermines passivity and accelerates corrosion. Self-healing concrete technologies aim to autonomously restore transport barriers [...] Read more.
Reinforced concrete durability depends on a passive oxide film protecting embedded steel, sustained by high-alkalinity pore solutions. Cracking fundamentally alters transport, allowing rapid chloride and carbon dioxide ingress, which undermines passivity and accelerates corrosion. Self-healing concrete technologies aim to autonomously restore transport barriers and reestablish electrochemical stability. This review critically synthesizes evidence on healing effectiveness for corrosion mitigation through a dual framework of barrier restoration and interface stabilization, integrating depth-resolved chloride profiles with electrochemical performance indices. Critically, visual crack closure proves an unreliable indicator of corrosion protection. Healing mechanisms exhibit characteristic spatial signatures: autogenous and microbial approaches preferentially seal surface zones with diminishing effectiveness at reinforcement depth, while encapsulated low-viscosity polymers achieve greater depth continuity. However, electrochemical recovery consistently lags transport recovery, with healed specimens achieving only partial restoration of intact corrosion resistance. Recovery effectiveness depends on crack geometry, moisture conditions, and healing mechanism characteristics, with systems performing effectively only within narrow, condition-specific windows. Effective corrosion protection requires coordinated barrier and interface strategies targeting both bulk transport and steel surface chemistry. The path forward demands rigorous field validation emphasizing electrochemical outcomes over appearance metrics, long-term durability assessment, and performance-based verification frameworks to enable predictable service life extension. Full article
(This article belongs to the Special Issue Advances in Cementitious Materials)
Show Figures

Figure 1

18 pages, 8027 KB  
Article
Effect of Cementitious Capillary Crystalline Waterproof Material on the Resistance of Concrete to Sulfate Erosion
by Guangchuan Fu, Ke Tang, Dan Zheng, Bin Zhao, Pengfei Li, Guoyou Yao and Xinxin Li
Materials 2025, 18(20), 4659; https://doi.org/10.3390/ma18204659 - 10 Oct 2025
Viewed by 772
Abstract
Concrete structures are vulnerable to sulfate attacks during their service life, as sulfate ions react with cement hydration products to form expansive phases, generating internal stresses that cause mechanical degradation. In this study, a cementitious capillary crystalline waterproofing material (CCCW) was incorporated into [...] Read more.
Concrete structures are vulnerable to sulfate attacks during their service life, as sulfate ions react with cement hydration products to form expansive phases, generating internal stresses that cause mechanical degradation. In this study, a cementitious capillary crystalline waterproofing material (CCCW) was incorporated into concrete to mitigate sulfate ingress and enhance sulfate resistance. The evolution of compressive strength, ultrasonic pulse velocity, dynamic elastic modulus, and the microstructure of concrete was investigated in sulfate-exposed concretes with varying CCCW dosages and strength grades; the sulfate ion concentration profiles were also analyzed. The results indicate that the enhancement effect of CCCW on sulfate resistance declines progressively with increasing concrete strength. The formation of calcium silicate hydrate and calcium carbonate fills the pores of concrete, hindering the intrusion of sulfate solution. Moreover, the self-healing effect of concrete further inhibits the diffusion of sulfate ions through cracks, improving the sulfate resistance of concrete. These findings provide critical insights and practical guidance for improving concrete resistance to sulfate-induced deterioration. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 5006 KB  
Article
Optimisation of Glass and Carbon Fibre-Reinforced Concrete with External Enzymatic Self-Healing: An Experimental and Environmental Impact Study
by Mohamed Rabie, Ali Bahadori-Jahromi and Ibrahim G. Shaaban
Buildings 2025, 15(19), 3455; https://doi.org/10.3390/buildings15193455 - 24 Sep 2025
Cited by 1 | Viewed by 1532
Abstract
This study evaluates glass and carbon fibre-reinforced concrete in terms of performance, durability, environmental impact, and a novel enzymatic self-healing method. An experimental program was conducted on seven concrete mixes, including a plain control and mixes with varying dosages of glass and carbon [...] Read more.
This study evaluates glass and carbon fibre-reinforced concrete in terms of performance, durability, environmental impact, and a novel enzymatic self-healing method. An experimental program was conducted on seven concrete mixes, including a plain control and mixes with varying dosages of glass and carbon fibres. Glass and carbon fibres were incorporated at identical dosages of 0.12%, 0.22%, and 0.43% fibre volume fraction (Vf) to enable direct comparison of their performance. The experimental investigation involved a comprehensive characterization of the concrete mixes. Fresh properties were evaluated via slump tests, while hardened properties were determined through compressive and split tensile strength testing. Durability was subsequently assessed by measuring the rate of water absorption, bulk density, and moisture content. Following this material characterization, a cradle-to-gate Life Cycle Assessment (LCA) was conducted to quantify the embodied carbon and energy. Finally, an evaluation of a novel Carbonic Anhydrase (CA)-based self-healing treatment on pre-cracked, optimised fibre-reinforced specimens was conducted. The findings highlight key performance trade-offs associated with fibre reinforcement. Although both fibre types reduced compressive strength, they markedly improved split tensile strength for glass fibres by up to 70% and carbon fibres by up to 35%. Durability responses diverged: glass fibres increased water absorption, while carbon fibres reduced water absorption at low doses, indicating reduced permeability. LCA showed a significant rise in environmental impact, particularly for carbon fibres, which increased embodied energy by up to 141%. The CA enzymatic solution enhanced crack closure in fibre-reinforced specimens, achieving up to 30% healing in carbon fibre composites. These findings suggest that fibre-reinforced enzymatic self-healing concrete offers potential for targeted high-durability applications but requires careful life-cycle optimisation. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

54 pages, 5072 KB  
Review
Comparative Analysis of Autogenous and Microbial-Based Calcite Precipitation in Concrete: State-of-the-Art Review
by David O. Owolabi, Mehdi Shokouhian, Izhar Ahmad, Marshell Jenkins and Gabrielle Lynn McLemore
Buildings 2025, 15(18), 3289; https://doi.org/10.3390/buildings15183289 - 11 Sep 2025
Cited by 3 | Viewed by 2130
Abstract
Cracks in concrete are a persistent issue that compromises structural durability, increases maintenance costs, and poses environmental challenges. Self-healing concrete has emerged as a promising innovation to address these concerns by autonomously sealing cracks and restoring integrity. This review focuses on two primary [...] Read more.
Cracks in concrete are a persistent issue that compromises structural durability, increases maintenance costs, and poses environmental challenges. Self-healing concrete has emerged as a promising innovation to address these concerns by autonomously sealing cracks and restoring integrity. This review focuses on two primary healing mechanisms: autogenous healing and microbial-induced calcite precipitation (MICP), the latter involving the biomineralization activity of bacteria, such as Bacillus subtilis and Sporosarcina pasteurii (formerly known as B. pasteurii). This review explores the selection, survivability, and activity of these microbes within the alkaline concrete environment. Additionally, the review highlights the role of fiber-reinforced cementitious composites (FRCCs), including high-performance fiber-reinforced cement composites (HPFRCCs) and engineered cement composites (ECCs), in enhancing crack control and enabling more effective microbial healing. The hybridization of natural and synthetic fibers contributes to both improved mechanical properties and crack width regulation, key factors in facilitating bacterial calcite precipitation. This review synthesizes current findings on self-healing efficiency, fiber compatibility, and the scalability of bacterial healing in concrete. It also evaluates critical parameters, such as healing agent integration, long-term performance, and testing methodologies, including both destructive and non-destructive techniques. By identifying existing knowledge gaps and performance barriers, this review offers insights for advancing sustainable, fiber-assisted microbial self-healing concrete for resilient infrastructure applications. Full article
Show Figures

Figure 1

29 pages, 8264 KB  
Review
Construction Biotechnology: Integrating Bacterial Systems into Civil Engineering Practices
by Olja Šovljanski, Ana Tomić, Tiana Milović, Vesna Bulatović, Aleksandra Ranitović, Dragoljub Cvetković and Siniša Markov
Microorganisms 2025, 13(9), 2051; https://doi.org/10.3390/microorganisms13092051 - 3 Sep 2025
Viewed by 2491
Abstract
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 [...] Read more.
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 and a five-fold increase in annual output since 2020. Beyond bibliometric growth, technical studies have demonstrated the remarkable performance of bacterial systems: for example, microbial-induced calcium carbonate precipitation (MICP) can increase the compressive strength of treated soils by 60–70% and reduce permeability by more than 90% in field-scale trials. In concrete applications, bacterial self-healing has been shown to seal cracks up to 0.8 mm wide and improve water tightness by 70–90%. Similarly, biofilm-mediated corrosion barriers can extend the durability of reinforced steel by significantly reducing chloride ingress, while bacterial biopolymers such as xanthan gum and curdlan enhance soil cohesion and water retention in eco-grouting and erosion control. The novelty of this review lies in its interdisciplinary scope, integrating microbiological mechanisms, materials science, and engineering practice to highlight how bacterial processes can transition from laboratory models to real-world applications. By combining quantitative evidence with critical assessment of scalability, biosafety, and regulatory challenges, this paper provides a comprehensive framework that positions construction biotechnology as a transformative pathway towards low-carbon, adaptive, and resilient infrastructure systems. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

43 pages, 15193 KB  
Article
Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria
by Ibrahim AbdElFattah, Seleem S. E. Ahmad, Ahmed A. Elakhras, Ahmed A. Elshami, Mohamed A. R. Elmahdy and Attitou Aboubakr
Infrastructures 2025, 10(8), 205; https://doi.org/10.3390/infrastructures10080205 - 7 Aug 2025
Viewed by 2736
Abstract
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance [...] Read more.
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance of concrete to sulfate attacks and improving its mechanical properties. Bacterial suspensions (1% and 2.5% of cement weight) were mixed with concrete containing silica fume or fly ash (10% of cement weight) and cured in freshwater or sulfate solutions (2%, 5%, and 10% concentrations). Specimens were tested for compressive strength, flexural strength, and microstructure using a Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and X-ray diffraction (XRD) at various ages. The results indicate that a 2.5% bacterial content yielded the best performance, with BM surpassing BS, enhancing compressive strength by up to 41.3% and flexural strength by 52.3% in freshwater-cured samples. Although sulfate exposure initially improved early-age strength by 1.97% at 7 days, it led to an 8.5% loss at 120 days. Bacterial inclusion mitigated sulfate damage through microbially induced calcium carbonate precipitation (MICP), sealing cracks, and bolstering durability. Cracked specimens treated with BM recovered up to 93.1% of their original compressive strength, promoting sustainable, sulfate-resistant, self-healing concrete for more resilient infrastructure. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

Back to TopTop