Self-Healing Concrete Reinforced with Sisal Fibers and Based on Sustainable Bacillus subtilis Bacteria Calcium Lactate-Fortified
Abstract
1. Introduction
Research Significance
2. Materials and Methodology
2.1. Bacillus subtilis and Calcium Lactate
2.2. Sisal Fibers Properties
2.3. Cement
2.4. Natural Aggregate (Coarse and Fine)
2.5. Components of a Concrete Mix, Mix Proportion, Casting, and Curing
2.6. Test Procedure
3. Results
3.1. Compressive Strength
3.2. Splitting Tensile Strength
3.3. Flexural Strength
3.4. SEM and EDAX Analysis
4. Conclusions
- Related to synergistic enhancement of tensile performance, both bacteria and sisal fibers individually improved tensile strength; however, their combination produced a significant synergistic effect. Mix SB10/5/1 consistently achieved the highest splitting tensile strengths at all ages, reaching 6.3 MPa at 56 days, highlighting the mutual enhancement between fiber bridging and bacterial calcite precipitation.
- According to mechanical and flexural strength improvement, sisal fibers effectively enhanced flexural strength through mechanical crack bridging, while bacterial incorporation contributed additional gains through MICP. The combined system (SB-series) showed the most pronounced improvement, with SB10/5/1 exhibiting a 67% increase in flexural strength at 56 days compared to the control.
- The microstructural analysis at 56 days confirmed that incorporating raw, untreated sisal fibers alongside Bacillus subtilis and calcium lactate significantly enhanced the self-healing efficiency of the concrete. Fiber bridging-maintained crack widths within the optimal MICP range, while the natural micro-roughness of sisal provided nucleation sites that promoted denser CaCO3 precipitation. This synergistic mechanism—validated by higher Ca content (24.39%) and Ca/Si ratios in SB10/5/1—resulted in superior microstructural densification and improved compressive strength recovery compared to bacterial healing alone.
- For future development, while untreated sisal fibers performed adequately in this phase, future work will explore fiber surface treatments to improve durability, reduce water absorption, and strengthen fiber–matrix interaction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Kumar, T.U.; Kumar, M.V. Investigation on mechanical properties of geopolymer aggregate concrete. Mater. Today Proc. 2020, 43, 1220–1225. [Google Scholar] [CrossRef]
- Xue, Q.; Feng, X.; Sun, Y.; Si, Z.; Zhang, L.; Zhou, Z.; Zhong, Y.; Mai, K.; Lin, G.; Zhao, H. A systematic review of concrete self-healing mechanism and analysis of new research directions. J. Environ. Chem. Eng. 2025, 13, 119009. [Google Scholar] [CrossRef]
- Ojha, A.; Kumar, A.; Das, D.; Bandyopadhyay, T.K. Bio-concrete and its self-healing capacity to next-generation sustainable architecture: A comprehensive review. Exon 2025, 2, 224–242. [Google Scholar] [CrossRef]
- Algaifi, H.A.; Bakar, S.A.; Alyousef, R.; Sam, A.R.M.; Ibrahim, M.W.; Shahidan, S.; Ibrahim, M.; Salami, B.A. Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species. J. Mater. Res. Technol. 2021, 12, 967–981. [Google Scholar] [CrossRef]
- Jia, Y.; Xue, C.; Zhang, W. Influence of calcium concentration and pH value on the efficacy of MICP in self-healing cementitious materials. Case Stud. Constr. Mater. 2025, 23, e05507. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, J. Application of microbial precipitation in self-healing concrete: A review on the protection strategies for bacteria. Constr. Build. Mater. 2021, 306, 124950. [Google Scholar] [CrossRef]
- Ahmad, S.; Elmenshawy, Y.; El Gammal, Y.O.; El-Sheikh, H.M.; Moawad, M.; Elshami, A.A.; Elmahdy, M.A. Investigating the repair of cracks through bacterial self-healing for sustainable concrete in aggressive sulfate attack environments. Fract. Struct. Integr. 2025, 19, 194–210. [Google Scholar] [CrossRef]
- Helal, Z.; Salim, H.; Ahmad, S.S.; Elemam, H.; Mohamed, A.I.; Elmahdy, M.A. Sustainable bacteria-based self-healing steel fiber reinforced concrete. Case Stud. Constr. Mater. 2024, 20, e03389. [Google Scholar] [CrossRef]
- Su, Y.; Tsang, D.C.W.; Qu, F.; Zhang, C.; Meng, Y. Chapter 7—Performance of concrete using bacteria and bio-fibers. In Advances in Bio-Based Materials for Construction and Energy Efficiency; Pacheco-Torgal, F., Tsang, D.C.W., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2025; pp. 171–198. [Google Scholar] [CrossRef]
- Hammad, N.; ElNemr, A.; Shaaban, I. Enhancing durability in bacteria-based AAS composites at varied alkali environments. Prog. Eng. Sci. 2025, 2, 100047. [Google Scholar] [CrossRef]
- Hammad, N.; El-Nemr, A.; Shaaban, I.G. Bacillus subtilis as a Novel Biological Repair Technique for Alkali-Activated Slag Towards Sustainable Buildings. Sustainability 2025, 17, 48. [Google Scholar] [CrossRef]
- Pourfallahi, M.; Nohegoo-Shahvari, A.; Salimizadeh, M. Effect of direct addition of two different bacteria in concrete as self-healing agent. Structures 2020, 28, 2646–2660. [Google Scholar] [CrossRef]
- Tie, Y.; Ji, Y.; Zhang, H.; Jing, B.; Zeng, X.; Yang, P. Investigation on the mechanical properties of Bacillus subtilis self-healing concrete. Heliyon 2024, 10, e34131. [Google Scholar] [CrossRef]
- Salmasi, F.; Mostofinejad, D. Investigating the effects of bacterial activity on compressive strength and durability of natural lightweight aggregate concrete reinforced with steel fibers. Constr. Build. Mater. 2020, 251, 119032. [Google Scholar] [CrossRef]
- Durga, C.S.S.; Ruben, N.; Chand, M.S.R.; Indira, M.; Venkatesh, C. Comprehensive microbiological studies on screening bacteria for self-healing concrete. Materialia 2021, 15, 101051. [Google Scholar] [CrossRef]
- Zhang, L.V.; Nehdi, M.L.; Suleiman, A.R.; Allaf, M.M.; Gan, M.; Marani, A.; Tuyan, M. Crack self-healing in bio-green concrete. Compos. Part B Eng. 2021, 227, 109397. [Google Scholar] [CrossRef]
- Amieghemen, G.E.; Morris, J.J.; Sherif, M.M. Compressive response of bio-strengthened engineered cementitious composites (ECC) with self-healing characteristics. Compos. Struct. 2026, 375, 119802. [Google Scholar] [CrossRef]
- Vafaeva, K.M.; Vatin, N.I.; Kordas, G. Self-healing building materials: The future of construction. AlfaBuild 2023, 29, 2912. [Google Scholar]
- Sowmya, S.; Pannem, R.M.R. Integrating Bacteria and Fibres for Self-Healing Concrete: A Comprehensive Review of Synergistic Effects. Results Eng. 2025, 28, 107071. [Google Scholar] [CrossRef]
- Cappellesso, V.G.; Van Mullem, T.; Gruyaert, E.; Van Tittelboom, K.; De Belie, N. Self-healing concrete with a bacteria-based or crystalline admixture as healing agent to prevent chloride ingress and corrosion in a marine environment. Dev. Built Environ. 2024, 19, 100486. [Google Scholar] [CrossRef]
- Sutradhar, U.; Spearing, L.; Derrible, S. Depopulation and associated challenges for US cities by 2100. Nat. Cities 2024, 1, 51–61. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Abd Majid, M.Z. A Review of Self-healing Concrete Research Development. J. Environ. Treat. Tech. 2014, 2, 1–11. [Google Scholar]
- Boruah, R.P.; Mohanadhas, B.; Kamalanathan, J. A comparative study of the shear strength of a poorly graded soil using Bacillus subtilis, vetiver fibre and bamboo fibre. Adv. Bamboo Sci. 2025, 11, 100146. [Google Scholar] [CrossRef]
- Hou, F.; Shen, D.; Diao, Y.; Guo, H.; Wang, J. Preliminary study on in-situ spore germination at different crack depths in bacteria-based self-healing concrete. Cem. Concr. Compos. 2025, 162, 106140. [Google Scholar] [CrossRef]
- Nair, P.S.; Khan, R.A.; Gupta, R.; Agrawal, V.; Somani, P.; Thomas, B.S. Enhanced durability and strength of bio-wollastonite fiber-reinforced concrete using MICP technique. Constr. Build. Mater. 2025, 479, 141533. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A.D. Spore-forming Bacillus subtilis vis-à-vis non-spore-forming Deinococcus radiodurans, a novel bacterium for self-healing of concrete structures: A comparative study. Constr. Build. Mater. 2021, 266, 121122. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, M.; Zhao, D.; Feng, Y. A review of novel self-healing concrete technologies. J. Build. Eng. 2024, 89, 109331. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Z.; Li, M.; Qian, C. Effects of carrier on the performance of bacteria-based self-healing concrete. Constr. Build. Mater. 2021, 305, 124771. [Google Scholar] [CrossRef]
- Monfared, N.D.; Alirezarashnou. Investigating the effects of bacteria and heat on the compressive strength of lightweight concrete. J. Mater. Sci. Eng. 2023, 12, 622. [Google Scholar]
- Tumwiine, H.; Chala, T.; Ssenyonjo, H.; Kirigoola, D.; Al-Fakih, A. On the use of self-healing materials in concrete technology: A comprehensive review of materials, mechanisms, and field applications. Mater. Today Chem. 2025, 48, 103001. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. Bioconcrete: Next generation of self-healing concrete. Appl. Microbiol. Biotechnol. 2016, 100, 2591–2602. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Raniolo, S.; da Ros, L.; Maretto, L.; Gianelle, D.; Camin, F.; Bontempo, L.; Stevanato, P.; Sturaro, E.; Squartini, A.; Rodeghiero, M. Grazing Intensity Accelerates Surface Soil C and N Cycling in Alpine Pastures as Revealed by Soil Genes and δ15N Ratio. Sustainability 2025, 17, 2165. [Google Scholar]
- Prayuda, H. Repairing of flexural cracks on reinforced self-healing concrete beam using bacillus subtillis bacteria. Int. J. Integr. Eng. 2020, 12, 300–309. [Google Scholar]
- Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S. Remediation of concrete using microorganisms. Mater. J. 2001, 98, 3–9. [Google Scholar]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B. A comprehensive review on the strength, durability, and microstructural analysis of bacterial concrete. Structures 2024, 68, 107078. [Google Scholar] [CrossRef]
- Chandramouli, K.; Rao, S.S.; Pannirselvam, N.; Sekhar, S.T.; Sravana, P. Strength Properties of Glass Fibre Concrete. J. Eng. Appl. Sci. 2010, 5, 1–6. [Google Scholar]
- Xu, J.-M.; Chen, Z.-T.; Cheng, F.; Liu, Z.-Q.; Zheng, Y.-G. Exploring a cellulose-immobilized bacteria for self-healing concrete via microbe-induced calcium carbonate precipitation. J. Build. Eng. 2024, 95, 110248. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Paktiawal, A.; Alam, M. Alkali-resistant glass fiber high strength concrete and its durability parameters. Mater. Today Proc. 2021, 47, 4758–4766. [Google Scholar] [CrossRef]
- Gokulnath, V.; Ramesh, B.; Sivashankar, S. Study on M-sand in self compacting concrete with addition of steel fiber in M-25 grade-a review. Mater. Today Proc. 2020, 22, 966–969. [Google Scholar] [CrossRef]
- Raju, R.A.; Lim, S.; Akiyama, M.; Kageyama, T. Effects of concrete flow on the distribution and orientation of fibers and flexural behavior of steel fiber-reinforced self-compacting concrete beams. Constr. Build. Mater. 2020, 262, 119963. [Google Scholar] [CrossRef]
- Edris, W.F.; Elbialy, S.; El-zohairy, A.; Soliman, A.M. Examining Mechanical Property Differences in Concrete with Natural and Synthetic Fiber Additives. J. Compos. Sci. 2024, 8, 167. [Google Scholar] [CrossRef]
- Naraganti, S.R.; Pannem, R.M.R.; Putta, J. Impact resistance of hybrid fibre reinforced concrete containing sisal fibres. Ain Shams Eng. J. 2019, 10, 297–305. [Google Scholar] [CrossRef]
- Ren, G.; Yao, B.; Huang, H.; Gao, X. Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Constr. Build. Mater. 2021, 286, 122958. [Google Scholar] [CrossRef]
- Padanattil, A.; Karingamanna, J. Novel hybrid composites based on glass and sisal fiber for retrofitting of reinforced concrete structures. Constr. Build. Mater. 2017, 133, 146–153. [Google Scholar] [CrossRef]
- El-azim, A.; Abd El-Aziz, M.; Hasan, F. Mechanical Behavior of Concrete Containing One Type and Hybrid Fibers. Egypt. Int. J. Eng. Sci. Technol. 2018, 24, 27–33. [Google Scholar] [CrossRef]
- Sabarish, K.V.; Paul, P.; Jones, J. Materials Today: Proceedings An experimental investigation on properties of sisal fiber used in the concrete. Mater. Today Proc. 2020, 22, 439–443. [Google Scholar] [CrossRef]
- Lima, P.R.L.; Roque, A.B.; Fontes, C.M.A.; Lima, J.M.F.; Barros, J.A. Potentialities of cement-based recycled materials reinforced with sisal fibers as a filler component of precast concrete slabs. In Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites; Woodhead Publishing: Cambridge, UK, 2017; pp. 399–428. [Google Scholar] [CrossRef]
- Thomas, B.C.; Jose, Y.S. Materials Today: Proceedings A study on characteristics of sisal fiber and its performance in fiber reinforced concrete. Mater. Today Proc. 2022, 51, 1238–1242. [Google Scholar] [CrossRef]
- De Klerk, M.D.; Kayondo, M.; Moelich, G.M.; de Villiers, W.I.; Combrinck, R.; Boshoff, W.P. Durability of chemically modified sisal fibre in cement-based composites. Constr. Build. Mater. 2020, 241, 117835. [Google Scholar] [CrossRef]
- De Souza, R.; Maria, L.; De Souza, S.; De Andrade, F. Comparative study on the mechanical behavior and durability of polypropylene and sisal fiber reinforced concretes. Constr. Build. Mater. 2019, 211, 617–628. [Google Scholar] [CrossRef]
- Lima, P.R.L.; Barros, J.A.O.; Roque, A.B.; Fontes, C.M.A.; Lima, J.M.F. Short sisal fiber reinforced recycled concrete block for one-way precast concrete slabs. Constr. Build. Mater. 2018, 187, 620–634. [Google Scholar] [CrossRef]
- Izquierdo, I.S.; Izquierdo, O.S.; Ramalho, M.A.; Taliercio, A. Sisal fiber reinforced hollow concrete blocks for structural applications: Testing and modeling. Constr. Build. Mater. 2017, 151, 98–112. [Google Scholar] [CrossRef]
- Attia, M.M.; Al Sayed, A.A.K.A.; Tayeh, B.A.; Shawky, S.M.M. Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study. Adv. Concr. Constr. 2022, 14, 355–368. [Google Scholar] [CrossRef]
- Ahmad, J.; Abid, S.R.; Arbili, M.M.; Majdi, A.; Hakamy, A.; Deifalla, A.F. A review on sustainable concrete with the partially substitutions of silica fume as a cementitious material. Sustainability 2022, 14, 12075. [Google Scholar] [CrossRef]
- Jamshaid, H.; Ali, H.; Mishra, R.K.; Nazari, S. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material. Materials 2023, 16, 6905. [Google Scholar] [CrossRef] [PubMed]
- Setiyarto, Y.D.; Fira, H.Y. Behavior of Concrete Burned with High Temperature. IOP Conf. Ser. Mater. Sci. Eng. 2019, 662, 062002. [Google Scholar] [CrossRef]
- Abdelmonem, R.; Bakr, A.; Badawy, I.; Abd El Maksoud, A.I.; Attia, R.T. Quality by Design Approach for the Formulation and Evaluation of Stem Cells Derived Rosmarinic Acid-Loaded Nanofibers as an Anti-Wrinkle Patch: In Vitro and In Vivo Characterizations. Pharmaceutics 2024, 16, 1598. [Google Scholar] [CrossRef]
- ES 4756/1-2013; The Egyptian Code for Design and Construction of Concrete Structures. Housing and Building Research Center: Giza, Egypt, 2020.
- EN 197:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements Ciment. European Standard: Brussels, Belgium, 1992.
- Mittal, M.; Basu, S.; Sofi, A. Effect of Sika viscocrete on properties of concrete. Int. J. Civ. Eng. (IJCE) 2013, 2, 61–66. [Google Scholar]
- ASTM C494; Standard Specification for Chemical Admixtures for Concrete. ASTM Standards: West Conshohocken, PA, USA, 2001.
- ASTM C33/C33M-18; Concrete Aggregates 1. ASTM Standards: West Conshohocken, PA, USA, 2001.
- BS EN 12390-3; Testing Hardened Concrete-Part 3: Compressive Strength of Test Specimens. BSI Standard: London, UK, 2009.
- Kett, I. Making and Curing Concrete Test Specimens in the Laboratory (C 192). Eng. Concr. 2009, 4, 107–108. [Google Scholar]
- ASTM C192/C192M-14; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2014.
- BS EN 12390-6; Testing Hardened Concrete Part 6: Tensile Splitting Strength of Test Specimens. British Standards Institution: London, UK, 2010.
- BS EN 12390-5; Testing Hardened Concrete Part 5: Flexural Strength of Test Specimens. British Standards Institution: London, UK, 2010.












| General Sisal Fiber “SLF” | |||
|---|---|---|---|
| Mechanical Properties | |||
| Tensile Strength | Young’s Modulus | Elongation Break | * L/D |
| MPa | GPa | % | ratio |
| 380 | 5.24 | 15.9 | 160 |
| Physical Properties | |||
| Density | Moisture content | Water absorption | Width or Diameter |
| kg/m3 | — | % | µm |
| 1450 | 10.47 | 80.5 | 250–650 |
| Chemical Properties | |||
| Cellulose | Hemicellulose | Waxes | Lignin |
| 65 | 12 | 2 | 9.9 |
| Cement | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | LOI * |
|---|---|---|---|---|---|---|---|---|---|
| OPC—I 42.5N | 21.7 | 4.8 | 3.8 | 63.9 | 1.7 | 2.5 | 0.46 | 0.17 | 3.2 |
| Aggregate Properties | Type | |
|---|---|---|
| Coarse Aggregate | Fine Aggregate | |
| Specific gravity | 2.63 | 2.56 |
| Crushing value % | 17.81 | — |
| Soundness | — | 11.27% |
| Volume density | 1422 | 1661 |
| Los Angeles abrasion % | 17.42 | — |
| Clay content | — | 1.15 |
| Water absorption% | 0.88 | 1.86 |
| Mix Designation | Cement | W/C | Water | Coarse | Sand | SLF | B/W * | Nutrient/C * | SP * |
|---|---|---|---|---|---|---|---|---|---|
| kg/m3 | Ratio | kg/m3 | kg/m3 | kg/m3 | % Fiber by Vol. | % | % | kg/m3 | |
| Without SLF | |||||||||
| C/0/0 | 450 | 0.4 | 135 | 1145 | 800 | — | — | — | 7 |
| B5/2.5/0.5 | 450 | 0.4 | 135 | 1145 | 800 | — | 2.5 | 0.5 | 7 |
| B5/5/1 | 450 | 0.4 | 135 | 1145 | 800 | — | 5 | 1 | 7 |
| B10/2.5/0.5 | 450 | 0.4 | 135 | 1145 | 800 | — | 2.5 | 0.5 | 7 |
| B10/5/1 | 450 | 0.4 | 135 | 1145 | 800 | — | 5 | 1 | 7 |
| With SLF | |||||||||
| SC0/0 | 450 | 0.4 | 135 | 1145 | 800 | 0.90 | — | — | 8.5 |
| SB5/2.5/0.5 | 450 | 0.4 | 135 | 1145 | 800 | 0.90 | 2.5 | 0.5 | 8.5 |
| SB5/5/1 | 450 | 0.4 | 135 | 1145 | 800 | 0.90 | 5 | 1 | 8.5 |
| SB10/2.5/0.5 | 450 | 0.4 | 135 | 1145 | 800 | 0.90 | 2.5 | 0.5 | 8.5 |
| SB10/5/1 | 450 | 0.4 | 135 | 1145 | 800 | 0.90 | 5 | 1 | 8.5 |
| Mix | Compressive Strength | Splitting Tensile Strength | Flexural Strength | |||||
|---|---|---|---|---|---|---|---|---|
| 7 Days | 28 Days | 56 Days | 7 Days | 28 Days | 56 Days | 28 Days | 56 Days | |
| Without SLF | ||||||||
| C/0/0 | 25.5 | 40.8 | 42.5 | 2.95 | 3.5 | 3.7 | 5.2 | 5.5 |
| B5/2.5/0.5 | 25.8 | 42.1 | 46.3 | 2.6 | 3.8 | 4.1 | 5.5 | 5.9 |
| B5/5/1 | 27.5 | 44.5 | 50.1 | 2.5 | 4 | 4.4 | 5.7 | 6.2 |
| B10/2.5/0.5 | 23.1 | 38.2 | 45.7 | 2.4 | 4.2 | 4.6 | 5.8 | 6.4 |
| B10/5/1 | 22 | 36.5 | 44.9 | 2.7 | 4.5 | 5 | 6 | 6.8 |
| With SLF | ||||||||
| SC0/0 | 27.56 | 41.68 | 45.0 | 3.6 | 4.27 | 4.4 | 6.8 | 7.1 |
| SB5/2.5/0.5 | 28.5 | 46.8 | 51.5 | 3.6 | 4.8 | 5.2 | 7.2 | 7.8 |
| SB5/5/1 | 30.1 | 49.5 | 55.2 | 3.5 | 5.1 | 5.6 | 7.5 | 8.3 |
| SB10/2.5/0.5 | 25.3 | 41.8 | 49.6 | 3.4 | 5.3 | 5.9 | 7.7 | 8.6 |
| SB10/5/1 | 24.2 | 40.1 | 48.3 | 3.3 | 5.7 | 6.3 | 8 | 9.2 |
| Mix | Compressive Strength | Splitting Tensile Strength | Flexural Strength | |||||
|---|---|---|---|---|---|---|---|---|
| 7 Days | 28 Days | 56 Days | 7 Days | 28 Days | 56 Days | 28 Days | 56 Days | |
| Without SLF—Percentage change relative control mix C/0/0 | ||||||||
| B5/2.5/0.5 | 1.20% | 3.20% | 8.90% | −11.90% | 8.60% | 10.80% | 5.80% | 7.30% |
| B5/5/1 | 7.80% | 9.10% | 17.90% | −15.30% | 14.30% | 18.90% | 9.60% | 12.70% |
| B10/2.5/0.5 | −9.40% | −6.40% | 7.50% | −18.60% | 20.00% | 24.30% | 11.50% | 16.40% |
| B10/5/1 | −13.70% | −10.50% | 5.60% | −8.50% | 28.60% | 35.10% | 15.40% | 23.60% |
| With SLF—Percentage change relative control mix SC/0/0 | ||||||||
| SB5/2.5/0.5 | 3.40% | 12.30% | 14.40% | 0.00% | 12.40% | 18.20% | 5.90% | 9.90% |
| SB5/5/1 | 9.20% | 18.70% | 22.70% | −2.80% | 19.40% | 27.30% | 10.30% | 16.90% |
| SB10/2.5/0.5 | −8.20% | 0.30% | 10.20% | −5.60% | 24.10% | 34.10% | 13.20% | 21.10% |
| SB10/5/1 | −12.20% | −3.80% | 7.30% | −8.30% | 33.50% | 43.20% | 17.60% | 29.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jabali, H.M.; Edris, W.F.; Almutairi, A.D.; Al Sayed, A.A.-K.A.; Khairy, S. Self-Healing Concrete Reinforced with Sisal Fibers and Based on Sustainable Bacillus subtilis Bacteria Calcium Lactate-Fortified. Buildings 2025, 15, 4495. https://doi.org/10.3390/buildings15244495
Al-Jabali HM, Edris WF, Almutairi AD, Al Sayed AA-KA, Khairy S. Self-Healing Concrete Reinforced with Sisal Fibers and Based on Sustainable Bacillus subtilis Bacteria Calcium Lactate-Fortified. Buildings. 2025; 15(24):4495. https://doi.org/10.3390/buildings15244495
Chicago/Turabian StyleAl-Jabali, Hebah Mohammad, Walid Fouad Edris, Ahmed D. Almutairi, Abd Al-Kader A. Al Sayed, and Shady Khairy. 2025. "Self-Healing Concrete Reinforced with Sisal Fibers and Based on Sustainable Bacillus subtilis Bacteria Calcium Lactate-Fortified" Buildings 15, no. 24: 4495. https://doi.org/10.3390/buildings15244495
APA StyleAl-Jabali, H. M., Edris, W. F., Almutairi, A. D., Al Sayed, A. A.-K. A., & Khairy, S. (2025). Self-Healing Concrete Reinforced with Sisal Fibers and Based on Sustainable Bacillus subtilis Bacteria Calcium Lactate-Fortified. Buildings, 15(24), 4495. https://doi.org/10.3390/buildings15244495

