Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria
Abstract
1. Introduction
2. Experimental Procedure
2.1. Experimental Outline
2.2. Materials
2.3. Growth of Bacterial Culture
2.4. Mix Design and Specimen Preparation
2.5. Curing Procedure
2.6. Creation of Cracks
2.7. Compressive Strength Test
2.8. Flexural Strength Test
2.9. Microscopic Analysis Tests
3. Results and Discussion
3.1. Specimens Without Pre-Cracking
3.1.1. Compressive Strength
3.1.2. Flexural Strength
3.2. Specimens with Pre-Cracking
Compressive Strength
3.3. Scanning Electron Microscope (SEM)
3.4. Energy-Dispersive X-Ray Spectroscopy (EDS)
3.5. X-Ray Diffraction Analysis
3.6. Surface Crack Healing Analysis
4. Conclusions
- A 2.5% bacterial concentration (by cement weight) maximized strength and self-healing efficiency.
- Bacillus megaterium outperformed Bacillus sphaericus, enhancing compressive strength by 41.3% and flexural strength by 52.3%.
- Silica fume’s pozzolanic reactivity and micro-filling action improved concrete density and bond strength more effectively than fly ash.
- Sulfate exposure initially increased early strength through pore filling but caused long-term degradation (an 8.5% loss at 120 days) due to ettringite expansion.
- BM-treated specimens restored 93.1% of compressive strength post-cracking, demonstrating robust self-healing.
- Bacterial calcite precipitation reduced ettringite formation by 30%, mitigating sulfate-induced damage.
- Calcium lactate at 0.5% cement weight was critical for sustaining bacterial activity and MICP.
- Bacterial concrete retained strength in sulfate environments (2–10% concentrations) better than control mixes.
- Bacterial spores remained viable beyond 120 days, offering prolonged self-healing capability without reapplication.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reda, R.M.; Mahmoud, H.S.E.; Ahmad, S.S.E.; Sallam, H.E.-D.M. Mechanical properties of sustainable concrete comprising various wastes. Sci. Rep. 2023, 13, 13234. [Google Scholar] [CrossRef]
- Alnahhal, M.F.; Alengaram, U.J.; Jumaat, M.Z.; Alqedra, M.A.; Mo, K.H.; Sumesh, M. Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete. Sustainability 2017, 9, 767. [Google Scholar] [CrossRef]
- Khan, M.; McNally, C. A holistic review on the contribution of civil engineers for driving sustainable concrete construction in the built environment. Dev. Built Environ. 2023, 16, 100273. [Google Scholar] [CrossRef]
- Arshad, S.; Sharif, M.B.; Irfan-ul-Hassan, M.; Khan, M.; Zhang, J.-L. Efficiency of supplementary cementitious materials and natural fiber on mechanical performance of concrete. Arab. J. Sci. Eng. 2020, 45, 8577–8589. [Google Scholar] [CrossRef]
- Shekarchi, M.; Ahmadi, B.; Azarhomayun, F.; Shafei, B.; Kioumarsi, M. Natural zeolite as a supplementary cementitious material—A holistic review of main properties and applications. Constr. Build. Mater. 2023, 409, 133766. [Google Scholar] [CrossRef]
- Becerra-Duitama, J.A.; Rojas-Avellaneda, D. Pozzolans: A review. Eng. Appl. Sci. Res. 2022, 49, 495–504. [Google Scholar] [CrossRef]
- Jaf, D.K.; Abdulrahman, P.I. A Review on Self-Healing Concrete. Adv. Mater. Res. 2023, 1175, 139–148. [Google Scholar] [CrossRef]
- Riad, I.M.; Elshami, A.A.; Elshikh, M.M.Y. Influence of concentration and proportion prepared bacteria on properties of self-healing concrete in sulfate environment. Innov. Infrastruct. Solut. 2021, 7, 71. [Google Scholar] [CrossRef]
- Pinto, A.; González-Fonteboa, B.; Seara-Paz, S.; Martínez-Abella, F. Effects of bacteria-based self-healing nutrients on hydration and rheology of cement pastes. Constr. Build. Mater. 2023, 404, 133142. [Google Scholar] [CrossRef]
- Aruya, G.A.; Chukwuemezie, V.K. Causes of Cracks on Concrete Structures and Repair Methods. Int. J. Eng. Res. Appl. 2022, 7, 28–38. [Google Scholar]
- Mondal, S.; Das, P.; Chakraborty, A.K. Application of bacteria in concrete. Mater. Today Proc. 2017, 4, 9833–9836. [Google Scholar] [CrossRef]
- Massaad, G.; Rozière, E.; Loukili, A.; Izoret, L. Advanced testing and performance specifications for the cementitious materials under external sulfate attacks. Constr. Build. Mater. 2016, 127, 918–931. [Google Scholar] [CrossRef]
- Whittaker, M.; Black, L. Current knowledge of external sulfate attack. Adv. Cem. Res. 2015, 27, 532–545. [Google Scholar] [CrossRef]
- Nehdi, M.; Hayek, M. Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cem. Concr. Res. 2005, 35, 731–742. [Google Scholar] [CrossRef]
- Haynes, H.; Bassuoni, M. Physical Salt Attack on Concrete. Concr. Int. 2011, 33, 38–42. [Google Scholar]
- Dinarvand, P.; Rashno, A. Review of the potential application of bacteria in self-healing and the improving properties of concrete/mortar. J. Sustain. Cem.-Based Mater. 2021, 11, 250–271. [Google Scholar] [CrossRef]
- Amran, M.; Onaizi, A.M.; Fediuk, R.; Vatin, N.I.; Muhammad Rashid, R.S.; Abdelgader, H.; Ozbakkaloglu, T. Self-healing concrete as a prospective construction material: A review. Materials 2022, 15, 3214. [Google Scholar] [CrossRef]
- Jakhrani, S.H.; Qudoos, A.; Kim, H.G.; Jeon, I.K.; Ryou, J.S. Review on the self-healing concrete-approach and evaluation techniques. J. Ceram. Process. Res. 2019, 20, 1–18. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Shaikh, F.U.A. Review on performance evaluation of autonomous healing of geopolymer composites. Infrastructures 2021, 6, 94. [Google Scholar] [CrossRef]
- Mohamed, A.; Zhou, Y.; Bertolesi, E.; Liu, M.; Liao, F.; Fan, M. Factors influencing self-healing mechanisms of cementitious materials: A review. Constr. Build. Mater. 2023, 393, 131550. [Google Scholar] [CrossRef]
- Roig-Flores, M.; Formagini, S.; Serna, P. Self-healing concrete-what is it good for? Mater. Construcción 2021, 71, e237. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 2017, 148, 610–617. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A. Microbial concrete as a sustainable option for infrastructural development in emerging economies. In Proceedings of the ASCE India Conference 2017, New Delhi, India, 12–14 December 2017; pp. 413–423. [Google Scholar] [CrossRef]
- Tziviloglou, E.; Wiktor, V.; Jonkers, H.; Schlangen, E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr. Build. Mater. 2016, 122, 118–125. [Google Scholar] [CrossRef]
- Javeed, Y.; Goh, Y.; Mo, K.H.; Yap, S.P.; Leo, B.F. Microbial self-healing in concrete: A comprehensive exploration of bacterial viability, implementation techniques, and mechanical properties. J. Mater. Res. Technol. 2024, 29, 2376–2395. [Google Scholar] [CrossRef]
- Vijay, K.; Murmu, M. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete. Front. Struct. Civ. Eng. 2019, 13, 515–525. [Google Scholar] [CrossRef]
- Feng, J.; Chen, B.; Sun, W.; Wang, Y. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr. Build. Mater. 2021, 280, 122460. [Google Scholar] [CrossRef]
- De Brito, J.; Kurda, R. The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. J. Clean. Prod. 2021, 281, 123558. [Google Scholar] [CrossRef]
- El-Newihy, A.; Azarsa, P.; Gupta, R.; Biparva, A. Effect of polypropylene fibers on self-healing and dynamic modulus of elasticity recovery of fiber reinforced concrete. Fibers 2018, 6, 9. [Google Scholar] [CrossRef]
- Jena, S.; Basa, B.; Panda, K.C.; Sahoo, N.K. Impact of Bacillus subtilis bacterium on the properties of concrete. Mater. Today Proc. 2020, 32, 651–656. [Google Scholar] [CrossRef]
- He, J.; Shi, X. Developing an abiotic capsule-based self-healing system for cementitious materials: The state of knowledge. Constr. Build. Mater. 2017, 156, 1096–1113. [Google Scholar] [CrossRef]
- Lu, S.; Chen, M.; Dang, Y.; Cao, L.; He, J.; Zhong, J. Bacterial self healing cement based materials: Mechanism at nanoscale. AIP Adv. 2019, 9, 105312. [Google Scholar] [CrossRef]
- Bundur, Z.B.; Kirisits, M.J.; Ferron, R.D. Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar. Cem. Concr. Compos. 2017, 84, 167–174. [Google Scholar] [CrossRef]
- Khodadadi Tirkolaei, H.; Bilsel, H. Estimation on ureolysis-based microbially induced calcium carbonate precipitation progress for geotechnical applications. Mar. Georesour. Geotechnol. 2017, 35, 34–41. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Ghorbel, E.; Fares, H.; Cousture, A. Bacterial self-healing of concrete and durability assessment. Cem. Concr. Compos. 2019, 104, 103340. [Google Scholar] [CrossRef]
- Wang, J.; Jonkers, H.M.; Boon, N.; De Belie, N. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl. Microbiol. Biotechnol. 2017, 101, 5101–5114. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Son, H.; Park, S.; Lee, H.-K. Effects of biological admixtures on hydration and mechanical properties of Portland cement paste. Constr. Build. Mater. 2020, 235, 117461. [Google Scholar] [CrossRef]
- Wong, P.Y.; Mal, J.; Sandak, A.; Luo, L.; Jian, J.; Pradhan, N. Advances in microbial self-healing concrete: A critical review of mechanisms, developments, and future directions. Sci. Total Environ. 2024, 947, 174553. [Google Scholar] [CrossRef]
- Reddy, B.M.S.; Revathi, D. An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Mater. Today Proc. 2019, 19, 803–809. [Google Scholar] [CrossRef]
- Nagar, P.A.; Gupta, N.; Kishore, K.; Parashar, A.K. Coupled effect of B. Sphaericus bacteria and calcined clay mineral on OPC concrete. Mater. Today Proc. 2021, 44, 113–117. [Google Scholar] [CrossRef]
- Priya, T.S.; Ramesh, N.; Agarwal, A.; Bhusnur, S.; Chaudhary, K. Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Constr. Build. Mater. 2019, 226, 827–838. [Google Scholar] [CrossRef]
- Jafarnia, M.S.; Saryazdi, M.K.; Moshtaghioun, S.M. Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Constr. Build. Mater. 2020, 242, 118059. [Google Scholar] [CrossRef]
- Chen, B.; Sun, W.; Sun, X.; Cui, C.; Lai, J.; Wang, Y.; Feng, J. Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochem. 2021, 107, 100–111. [Google Scholar] [CrossRef]
- Ryparová, P.; Tesárek, P.; Schreiberová, H.; Prošek, Z. The effect of temperature on bacterial self-healing processes in building materials. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Development of Materials Science in Research and Education (DMSRE29), Nová Lesná, Slovakia, 2–6 September 2019; IOP Publishing Ltd.: Bristol, UK, 2020; p. 012012. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, T.; Qian, C. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete. Constr. Build. Mater. 2021, 273, 121740. [Google Scholar] [CrossRef]
- Bifathima, S.; Vara Lakshmi, T.V.S.; Matcha, B.N. Self healing concrete by adding Bacillus megaterium MTCC with glass & steel fibers. Civ. Environ. Eng. 2020, 16, 184–197. [Google Scholar] [CrossRef]
- Nagarajan, V.; Prabhu, T.K.; Shankar, M.G.; Jagadesh, P. A study on the strength of the bacterial concrete embedded with Bacillus megaterium. Int. Res. J. Eng. Technol. 2017, 4, 1784–1788. [Google Scholar]
- Vijay, K.; Murmu, M. Experimental study on bacterial concrete using Bacillus subtilis micro-organism. In Emerging Trends in Civil Engineering: Select Proceedings of ICETCE 2018; Springer: Singapore, 2020; pp. 245–252. [Google Scholar] [CrossRef]
- Manikandan, A.; Padmavathi, A. An experimental investigation on improvement of concrete serviceability by using bacterial mineral precipitation. Int. J. Res. Sci. Innov. 2015, 2, 46–49. [Google Scholar]
- Jang, I.; Son, D.; Kim, W.; Park, W.; Yi, C. Effects of spray-dried co-cultured bacteria on cement mortar. Constr. Build. Mater. 2020, 243, 118206. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, J.; Alazhari, M. Effect of Microbiological Growth Components for Bacteria-Based Self-Healing on the Properties of Cement Mortar. Materials 2019, 12, 1303. [Google Scholar] [CrossRef]
- Vijay, K.; Murmu, M.; Deo, S.V. Bacteria based self healing concrete—A review. Constr. Build. Mater. 2017, 152, 1008–1014. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr. Build. Mater. 2016, 121, 659–663. [Google Scholar] [CrossRef]
- Kanaujia, P.; Banerjee, R.; Husain, S.M.A.; Ahmed, S. The Effect of Sulfate Attack on Physical Properties of Concrete. Int. J. Recent Technol. Eng. 2021, 10, 21–27. [Google Scholar] [CrossRef]
- Parashar, A.K.; Gupta, A. Effects of the concentration of various bacillus family bacteria on the strength and durability properties of concrete: A Review. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Development of Materials Science in Research and Education (DMSRE29), Nová Lesná, Slovakia, 2–6 September 2019; IOP Publishing Ltd.: Bristol, UK, 2021; p. 012162. [Google Scholar] [CrossRef]
- Joshi, S.; Goyal, S.; Mukherjee, A.; Reddy, M.S. Protection of concrete structures under sulfate environments by using calcifying bacteria. Constr. Build. Mater. 2019, 209, 156–166. [Google Scholar] [CrossRef]
- Elmenshawy, Y.; Elmahdy, M.A.R.; Moawad, M.; Elshami, A.A.; Ahmad, S.S.E.; Nagai, K. Investigating the bacterial sustainable self-healing capabilities of cracks in structural concrete at different temperatures. Case Stud. Constr. Mater. 2024, 20, e03188. [Google Scholar] [CrossRef]
- Mousavinezhad, S.; Toledo, W.K.; Newtson, C.M.; Aguayo, F. Rapid Assessment of Sulfate Resistance in Mortar and Concrete. Materials 2024, 17, 4678. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.; Liu, X.; Zhou, X.; He, W.; Zhou, X. Study on the Resistance of Concrete to High-Concentration Sulfate Attack: A Case Study in Jinyan Bridge. Materials 2024, 17, 3388. [Google Scholar] [CrossRef]
- Ahmad, S.; Elmenshawy, Y.; El Gammal, Y.O.; El-Sheikh, H.M.; Moawad, M.; Elshami, A.A.; Elmahdy, M.A. Investigating the repair of cracks through bacterial self-healing for sustainable concrete in aggressive sulfate attack environments. Fract. Struct. Integr. 2024, 19, 194–210. [Google Scholar] [CrossRef]
- ES 4756-1; Cement-Part 1: Composition, Specifcations and Conformity Criteria for Common Cements. Egyptian Organization for Standardization and Quality: Cairo, Egypt, 2013.
- ESS No. 1109; Aggregates for Concrete. Egyptian Organization for Standardization and Quality: Cairo, Egypt, 2021. Available online: https://www.eos.org.eg/en/standard/288 (accessed on 4 April 2021).
- ASTM-C-494-2020; Standard Specification for Chemical Admixtures for Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/c0494_c0494m-19e01.html (accessed on 1 August 2025).
- Elmahdy, M.A.; ELShami, A.; Yousry, E.-S.M.; Ahmad, S.S. Self-healing mortar using different types, content, and concentrations of bacteria to repair cracks. Frat. E Integrita Strutt. 2022, 16, 486–513. [Google Scholar] [CrossRef]
- Ahmad, S.; El-Mahdy, M.; Elshami, A.; Yousry, E.-S. Bacterial sustainable concrete for repair and rehabilitation of structural cracks. J. Sustain. Cem. Based Mater. 2022, 12, 1–20. [Google Scholar] [CrossRef]
- ASTMC-192/C192M-2020; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. American Society for Testing Materials: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/c0192_c0192m-24.html (accessed on 1 August 2025).
- BS EN 12390-3:2019; Testing Hardened Concrete-part 3: Compressive Strength of Test Specimens. British Standards Institution: London, UK, 2019. Available online: https://www.en-standard.eu/bs-en-12390-3-2019-testing-hardened-concrete-compressive-strength-of-test-specimens/ (accessed on 1 August 2025).
- BS EN 12390-5-2019; Testing Hardened Concrete-part 5: Flexural Strength of Test Specimens. British Standards Institution: London, UK, 2019. Available online: https://www.en-standard.eu/bs-en-12390-5-2019-testing-hardened-concrete-flexural-strength-of-test-specimens/ (accessed on 1 August 2025).
- Prathyush, K.; Poornima, V.; Gopal, M.; Rahul, H.N.; Kumaraguru, R. An experimental study on the usage of silica fume in bacterial concrete. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Eddy, N.O. Microbial induced calcite precipitation for self-healing of concrete: A review. J. Sustain. Cem.-Based Mater. 2023, 12, 317–330. [Google Scholar] [CrossRef]
- Helal, Z.; Salim, H.; Ahmad, S.S.E.; Elemam, H.; Mohamed, A.I.H.; Elmahdy, M.A.R. Sustainable bacteria-based self-healing steel fiber reinforced concrete. Case Stud. Constr. Mater. 2024, 20, e03389. [Google Scholar] [CrossRef]
- Nain, N.; Surabhi, R.; Yathish, N.; Krishnamurthy, V.; Deepa, T.; Tharannum, S. Enhancement in strength parameters of concrete by application of Bacillus bacteria. Constr. Build. Mater. 2019, 202, 904–908. [Google Scholar] [CrossRef]
- Andalib, R.; Abd Majid, M.Z.; Hussin, M.W.; Ponraj, M.; Keyvanfar, A.; Mirza, J.; Lee, H.-S. Optimum concentration of Bacillus megaterium for strengthening structural concrete. Constr. Build. Mater. 2016, 118, 180–193. [Google Scholar] [CrossRef]
- Cappa, M.; Perego, C.; Terzis, D.; Principi, P. Bacillus megaterium favours CO2 mineralization into CaCO3 over the ureolytic pathway. Sci. Rep. 2025, 15, 21861. [Google Scholar] [CrossRef] [PubMed]
- Navdeep Kaur, D.; Reddy, M.S. Biomineralization of Calcium Carbonate Polymorphs by the Bacterial Strains Isolated from Calcareous Sites. J. Microbiol. Biotechnol. 2013, 23, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Shokouhian, M.; Owolabi, D.; Jenkins, M.; McLemore, G.L. Assessment of Biogenic Healing Capability, Mechanical Properties, and Freeze–Thaw Durability of Bacterial-Based Concrete Using Bacillus subtilis, Bacillus sphaericus, and Bacillus megaterium. Buildings 2025, 15, 943. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M.; Wu, L.; Xie, X.; Wang, M.; Lu, T.; Tang, S. Study of Concrete Crack Repair using Bacillus megaterium. Adv. Mater. Sci. Eng. 2022, 2022, 6188680. [Google Scholar] [CrossRef]
- Weerasinghe, R.; Guo, Y.-L.; Liu, X.-Y.; Hu, Y.-P.; Fang, C. Study on the influence of fly ash and silica fume with different dosage on concrete strength. E3S Web Conf. 2021, 237, 03038. [Google Scholar] [CrossRef]
- Pathak, A. Effect of silica fume and fly ash as partial replacement of cement on strength of concrete. In Proceedings of the International Conference of Advance Research & Innovation (ICARI), Valencia, Spain, 8–9 July 2020. [Google Scholar] [CrossRef]
- Weerasinghe, R.; Zhang, H.-Y.; Liu, X.-Y.; Wei, D.-F.; Fang, C. Influence of Silica Fume Content on Performance of High-Performance Concrete. E3S Web Conf. 2021, 237, 03039. [Google Scholar] [CrossRef]
- Ziada, M.; Tanyildizi, H.; Uysal, M. Bacterial healing of geopolymer concrete exposed to combined sulfate and freeze-thaw effects. Constr. Build. Mater. 2023, 369, 130517. [Google Scholar] [CrossRef]
- Mutitu, K.D.; Munyao, M.O.; Wachira, M.J.; Mwirichia, R.; Thiong’o, K.J.; Marangu, M.J. Effects of biocementation on some properties of cement-based materials incorporating Bacillus Species bacteria—A review. J. Sustain. Cem.-Based Mater. 2019, 8, 309–325. [Google Scholar] [CrossRef]
- Han, M.; Li, J. Enhancement of Compressive Strength and Durability of Sulfate-Attacked Concrete. Buildings 2024, 14, 2187. [Google Scholar] [CrossRef]
- Zhao, G.; Shi, M.; Guo, M.; Fan, H. Degradation Mechanism of Concrete Subjected to External Sulfate Attack: Comparison of Different Curing Conditions. Materials 2020, 13, 3179. [Google Scholar] [CrossRef] [PubMed]
- Mutitu, D.K.; Wachira, J.M.; Mwirichia, R.; Thiong’o, J.K.; Munyao, O.M.; Genson, M. Biocementation influence on flexural strength and chloride ingress by Lysinibacillus sphaericus and bacillus megaterium in mortar structures. J. Chem. 2020, 2020, 1472923. [Google Scholar] [CrossRef]
- Vijay, K.; Murmu, M. Self-repairing of concrete cracks by using bacteria and basalt fiber. SN Appl. Sci. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Souid, A.; Esaker, M.; Elliott, D.; Hamza, O. Experimental data of bio self-healing concrete incubated in saturated natural soil. Data Brief 2019, 26, 104394. [Google Scholar] [CrossRef]
- Parashar, A.K.; Gupta, A. Experimental study of the effect of bacillus megaterium bacteria on cement concrete. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Development of Materials Science in Research and Education (DMSRE29), Nová Lesná, Slovakia, 2–6 September 2019; IOP Publishing Ltd.: Bristol, UK, 2021; p. 012168. [Google Scholar] [CrossRef]
- Kalhori, H.; Bagherpour, R. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Constr. Build. Mater. 2017, 148, 249–260. [Google Scholar] [CrossRef]
- De Souza, D.J.; Sanchez, L.F. Understanding the efficiency of autogenous and autonomous self-healing of conventional concrete mixtures through mechanical and microscopical analysis. Cem. Concr. Res. 2023, 172, 107219. [Google Scholar] [CrossRef]
- Joshi, S.; Ahn, Y.-H.; Goyal, S.; Reddy, M.S. Performance of bacterial mediated mineralization in concrete under carbonation and chloride induced corrosion. J. Build. Eng. 2023, 69, 106234. [Google Scholar] [CrossRef]
- Munyao, O.M.; Thiong’O, J.K.; Wachira, J.M.; Mutitu, D.K.; Romano, M.; Murithi, G. Use of Bacillus Species Bacteria in Protecting the Concrete Structures from Sulphate Attack—A Review. J. Chem. Rev. 2019, 1, 187–299. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A.D. Biomineralization, bacterial selection and properties of microbial concrete: A review. J. Build. Eng. 2023, 73, 106695. [Google Scholar] [CrossRef]
- Kadapure, S.A.; Deshannavar, U.B. Bio-smart material in self-healing of concrete. Mater. Today Proc. 2022, 49, 1498–1503. [Google Scholar] [CrossRef]
- Yi, H.; Zheng, T.; Jia, Z.; Su, T.; Wang, C. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria. J. Cryst. Growth 2021, 564, 126113. [Google Scholar] [CrossRef]
- Maurya, K.K.; Rawat, A.; Shanker, R. Performance evaluation concept for crack healing in bacterial concrete structure using electro mechanical impedance technique with PZT patch. Dev. Built Environ. 2023, 15, 100196. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A.D. Spore-forming Bacillus subtilis vis-à-vis non-spore-forming Deinococcus radiodurans, a novel bacterium for self-healing of concrete structures: A comparative study. Constr. Build. Mater. 2021, 266, 121122. [Google Scholar] [CrossRef]
- Elshazly, M.A.; Elakhras, A.A.; Elshami, A.A.; Ahmad, S.S.E.; Elmahdy, M.A.R. Investigating the effectiveness of a bacterial self-healing mechanism for repairing cracks in sustainable cement mortar at low temperatures. Results Eng. 2025, 25, 103907. [Google Scholar] [CrossRef]
Properties | Composition of Chemicals (%) | Mechanical and Physical Properties of Portland Cement | |
---|---|---|---|
Property | Results | ||
Fe2O3 | 2.8 | Specific gravity | 3.15 |
Al2O3 | 3.4 | Specific surface area | 3550 |
SiO2 | 21.24 | Initial setting time (min) | 150 |
MgO | 3.1 | Final setting time (min | 250 |
CaO | 63.2 | 7-day compressive strength (MPa) | 34 |
28-day compressive strength (MPa) | 55 |
Property | Results |
---|---|
Color | Gray powder |
Specific gravity | 2.2 |
Composition | Latent hydraulic blend of active ingredients |
Shape of particles | Spherical (very small particles) |
170,000 | |
Bulk density | 320 kg/m3 |
8 |
Property | Results |
---|---|
Color | Light gray powder |
Specific gravity | 2.23 |
Composition | Alumina silicate |
Shape of particles | Spherical |
Surface area ( | 49,700 |
Bulk density | 300 kg/m3 |
Particle size, | 34 |
Property | Results |
---|---|
Color | Clear liquid |
Dry Material Content (%) | 40% by weight |
Density (Kg/lt) | 1.08 |
pH Value | 4.0 |
Type | Name | Code | Designations | Form |
---|---|---|---|---|
1 | Bacillus Sphaericus (BS) | EMCC 1253. | DSM 396–NCTC 9602. | Solution |
2 | Bacillus Megaterium (BM) | ATCC 14581 | BCRC 10608–CCM 2007–CCUG 1817–CIP 66.20–DSM 32. | Solution |
Mix | Types of Bacteria | Bacteria/Cement (%) | Nutrient/Cement (%) | Bacteria kg/m3 | Nutrient kg/m3 | Silica Fume kg/m3 | Fly Ash kg/m3 | Sand kg/m3 | Dolomite kg/m3 |
---|---|---|---|---|---|---|---|---|---|
M0 | - | 0.0% | 0.00% | 0 | 0 | 40 | - | 618 | 1236 |
M1 | BM | 1.0% | 0.50% | 4 | 2 | 40 | - | 618 | 1236 |
M2 | BM | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M3 | BS | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M4 | - | 0.0% | 0.00% | 0 | 0 | 40 | - | 618 | 1236 |
M5 | BM | 1.0% | 0.50% | 4 | 2 | 40 | - | 618 | 1236 |
M6 | BM | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M7 | BS | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M8 | - | 0.0% | 0.00% | 0 | 0 | 40 | - | 618 | 1236 |
M9 | BM | 1.0% | 0.50% | 4 | 2 | 40 | - | 618 | 1236 |
M10 | BM | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M11 | BS | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M12 | - | 0.0% | 0.00% | 0 | 0 | 40 | - | 618 | 1236 |
M13 | BM | 1.0% | 0.50% | 4 | 2 | 40 | - | 618 | 1236 |
M14 | BM | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M15 | BS | 2.5% | 0.50% | 10 | 2 | 40 | - | 618 | 1236 |
M16 | - | 0.0% | 0.00% | 0 | 0 | - | 40 | 618 | 1236 |
M17 | BM | 2.5% | 0.50% | 10 | 2 | - | 40 | 618 | 1236 |
M18 | - | 0.0% | 0.00% | 0 | 0 | - | 40 | 618 | 1236 |
M19 | BM | 2.5% | 0.50% | 10 | 2 | - | 40 | 618 | 1236 |
M20 | - | 0.0% | 0.00% | 0 | 0 | - | 40 | 618 | 1236 |
M21 | BM | 2.5% | 0.50% | 10 | 2 | - | 40 | 618 | 1236 |
M22 | - | 0.0% | 0.00% | 0 | 0 | - | 40 | 618 | 1236 |
M23 | BM | 2.5% | 0.50% | 10 | 2 | - | 40 | 618 | 1236 |
Mix | ) | Average Healing % | |
---|---|---|---|
7 Days | 120 Days | 120 Days | |
M0 | 86.73 | 30.96 | 64.30 |
M1 | 79.56 | 21.33 | 73.19 |
M2 | 54.05 | 00.00 | 100.00 |
M3 | 98.67 | 15.46 | 84.33 |
M10 | 95.29 | 09.50 | 90.03 |
M11 | 82.14 | 16.42 | 80.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AbdElFattah, I.; Ahmad, S.S.E.; Elakhras, A.A.; Elshami, A.A.; Elmahdy, M.A.R.; Aboubakr, A. Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria. Infrastructures 2025, 10, 205. https://doi.org/10.3390/infrastructures10080205
AbdElFattah I, Ahmad SSE, Elakhras AA, Elshami AA, Elmahdy MAR, Aboubakr A. Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria. Infrastructures. 2025; 10(8):205. https://doi.org/10.3390/infrastructures10080205
Chicago/Turabian StyleAbdElFattah, Ibrahim, Seleem S. E. Ahmad, Ahmed A. Elakhras, Ahmed A. Elshami, Mohamed A. R. Elmahdy, and Attitou Aboubakr. 2025. "Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria" Infrastructures 10, no. 8: 205. https://doi.org/10.3390/infrastructures10080205
APA StyleAbdElFattah, I., Ahmad, S. S. E., Elakhras, A. A., Elshami, A. A., Elmahdy, M. A. R., & Aboubakr, A. (2025). Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria. Infrastructures, 10(8), 205. https://doi.org/10.3390/infrastructures10080205