Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,140)

Search Parameters:
Keywords = commercial activated carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10870 KiB  
Review
Recent Advances in Improving the Alkaline Oxygen Reduction Performance of Atomically Dispersed Metal–Nitrogen–Carbon Catalysts
by Jian Chen, Zheng Li, Xiong Du, Mengran Wang, Simin Li, Qiyu Wang, Yangen Zhou and Yanqing Lai
Nanomaterials 2025, 15(16), 1257; https://doi.org/10.3390/nano15161257 - 15 Aug 2025
Viewed by 50
Abstract
Atomically dispersed metal–nitrogen–carbon (M-N-C) catalysts are regarded as ideal catalytic materials for the oxygen reduction reaction (ORR) under alkaline conditions. Compared with other ORR catalysts, M-N-C catalysts exhibit notable advantages, including low cost, high atomic utilization efficiency, and considerable catalytic potential. We provide [...] Read more.
Atomically dispersed metal–nitrogen–carbon (M-N-C) catalysts are regarded as ideal catalytic materials for the oxygen reduction reaction (ORR) under alkaline conditions. Compared with other ORR catalysts, M-N-C catalysts exhibit notable advantages, including low cost, high atomic utilization efficiency, and considerable catalytic potential. We provide a systematic review of recent research advances in enhancing the ORR performance of M-N-C catalysts, focusing on catalytic activity and stability. First, the reaction mechanism of the ORR on the surfaces of the M-N-C catalysts is elucidated. Second, the primary strategies employed in recent years to improve their catalytic activity and stability are summarized. Finally, critical research directions that should be prioritized to expedite the commercialization of M-N-C catalysts are outlined. Full article
Show Figures

Figure 1

19 pages, 5196 KiB  
Article
Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating
by David Petrushenko, Thomas Burns, Paul Ziehl, Ralph E. White and Paul T. Coman
Energies 2025, 18(16), 4354; https://doi.org/10.3390/en18164354 - 15 Aug 2025
Viewed by 51
Abstract
In this study, a selection of active materials were coated onto commercially available intermediate modulus carbon fibers to form and analyze the performance of novel composite cathodes for structural power composites. Various slurries containing polyvinylidene fluoride (PVDF), active material powders, 1-methyl-2-pyrrolidone (NMP) and [...] Read more.
In this study, a selection of active materials were coated onto commercially available intermediate modulus carbon fibers to form and analyze the performance of novel composite cathodes for structural power composites. Various slurries containing polyvinylidene fluoride (PVDF), active material powders, 1-methyl-2-pyrrolidone (NMP) and carbon black (CB) were used to coat carbon fiber tows by immersion. Four active materials—lithium cobalt oxide (LCO), lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC), and lithium nickel cobalt aluminum oxide (NCA)—were individually tested to assess their electrochemical reversibility. The cells were prepared with a polymer separator and liquid electrolytes and assembled in 2025-coin cells. Electrochemical analysis of the cathode materials showed that at C/5 and room temperature the measured capacities ranged from 39.8 Ah kg−1 to 64.7 Ah kg−1 for the LFP and NCA active materials, respectively. The full cells exhibited capacities of 18.1, 23.5, 27.2, and 28.2 Ah kg−1 after 55 cycles for LFP, LCO, NCA, and NMC811, respectively. Finally, visual and elemental analysis were performed via scanning electron microscope (SEM) and energy-dispersive x-ray (EDX) confirming desirable surface coverage and successful transfer of the active materials onto the carbon fiber tows. Full article
Show Figures

Figure 1

31 pages, 8890 KiB  
Review
Advancements in Non-Precious Metal Catalysts for High-Temperature Proton-Exchange Membrane Fuel Cells: A Comprehensive Review
by Naresh Narayanan, Balamurali Ravichandran, Indubala Emayavaramban, Huiyuan Liu and Huaneng Su
Catalysts 2025, 15(8), 775; https://doi.org/10.3390/catal15080775 - 14 Aug 2025
Viewed by 242
Abstract
High-Temperature Proton-Exchange Membrane Fuel Cells (HT-PEMFCs) represent a promising clean energy technology and are valued for their fuel flexibility and simplified balance of plant. Their commercialization, however, is critically hindered by the prohibitive cost and resource scarcity of platinum-group metal (PGM) catalysts. The [...] Read more.
High-Temperature Proton-Exchange Membrane Fuel Cells (HT-PEMFCs) represent a promising clean energy technology and are valued for their fuel flexibility and simplified balance of plant. Their commercialization, however, is critically hindered by the prohibitive cost and resource scarcity of platinum-group metal (PGM) catalysts. The challenge is amplified in the phosphoric acid (PA) electrolyte of HT-PEMFCs, where the severe anion poisoning of PGM active sites necessitates impractically high catalyst loadings. This review addresses the urgent need for cost-effective alternatives by providing a comprehensive assessment of recent advancements in non-precious metal (NPM) catalysts for the oxygen reduction reaction (ORR) in HT-PEMFCs. It systematically explores synthesis strategies and structure–performance relationships for emerging catalyst classes, including transition metal compounds, metal–nitrogen–carbon (M-N-C) materials, and metal-free heteroatom-doped carbons. A significant focus is placed on M-N-C catalysts, particularly those with atomically dispersed Fe-Nx active sites, which have emerged as the most viable replacements for platinum due to their high intrinsic activity and notable tolerance to phosphate poisoning. This review critically analyzes key challenges that impede practical application, such as the trade-off between catalyst activity and stability, mass transport limitations in thick electrodes, and long-term degradation in the harsh PA environment. Finally, it outlines future research directions, emphasizing the need for a synergistic approach that integrates computational modeling with advanced operando characterization to guide the rational design of durable, high-performance catalysts and electrode architectures, thereby accelerating the path to commercial viability for HT-PEMFC technology. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

19 pages, 1610 KiB  
Article
Utilization of Iron Foam as Structured Catalyst for Fischer–Tropsch Synthesis
by Yira Victoria Hurtado, Ghazal Azadi, Eduardo Lins de Barros Neto and Jean-Michel Lavoie
Fuels 2025, 6(3), 60; https://doi.org/10.3390/fuels6030060 - 14 Aug 2025
Viewed by 228
Abstract
This work focuses on the fabrication, characterization, and performance of a structured iron catalyst to produce hydrocarbons by the Fischer–Tropsch synthesis (FTS). The structured catalyst enhances the heat and mass transfer and provides a larger surface area and lower pressure drop. Iron-based structured [...] Read more.
This work focuses on the fabrication, characterization, and performance of a structured iron catalyst to produce hydrocarbons by the Fischer–Tropsch synthesis (FTS). The structured catalyst enhances the heat and mass transfer and provides a larger surface area and lower pressure drop. Iron-based structured catalysts indicate more activity in lower H2/CO ratios and improve carbon conversion as compared to other metals. These catalysts were manufactured using the sponge replication method (powder metallurgy). The performance of the structured iron catalyst was assessed in a fixed-bed reactor under industrially relevant conditions (250 °C and 20 bar). The feed gas was a synthetic syngas with a H2/CO ratio of 1.2, simulating a bio-syngas derived from lignocellulosic biomass gasification. Notably, the best result was reached under these conditions, obtaining a CO conversion of 84.8% and a CH4 selectivity of 10.4%, where the catalyst exhibited a superior catalytic activity and selectivity toward desired hydrocarbon products, including light olefins and long-chain paraffins. The resulting structured catalyst reached a one-pass CO conversion of 84.8% with a 10.4% selectivity to CH4 compared to a traditionally produced catalyst, for which the conversion was 18% and the selectivity was 19%, respectively. The results indicate that the developed structured iron catalyst holds considerable potential for efficient and sustainable hydrocarbon production, mainly C10–C20 (diesel-range hydrocarbons), via Fischer–Tropsch synthesis. The catalyst’s excellent performance and improved stability and selectivity offer promising prospects for its application in commercial-scale hydrocarbon synthesis processes. Full article
Show Figures

Figure 1

34 pages, 10992 KiB  
Article
Graphene-like Carbon Materials from King Grass Biomass via Catalytic Pyrolysis Using K3[Fe(CN)6] as a Dual Catalyst and Activator
by Alba N. Ardila Arias, Erasmo Arriola-Villaseñor, Madelyn Ortiz-Quiceno, Lucas Blandón-Naranjo and José Alfredo Hernández-Maldonado
C 2025, 11(3), 62; https://doi.org/10.3390/c11030062 - 14 Aug 2025
Viewed by 185
Abstract
The potential of king grass biomass as a precursor for carbon-based materials was evaluated through comprehensive physicochemical characterization. The biomass showed high fixed carbon content, reactive oxygenated groups, and favorable atomic ratios, supporting its suitability for conversion into porous carbon structures. This study [...] Read more.
The potential of king grass biomass as a precursor for carbon-based materials was evaluated through comprehensive physicochemical characterization. The biomass showed high fixed carbon content, reactive oxygenated groups, and favorable atomic ratios, supporting its suitability for conversion into porous carbon structures. This study focused on the synthesis of graphene-like materials via high-temperature pyrolysis (~1000 °C), employing FeCl3 and potassium ferricyanide (K3[Fe(CN)6]) as catalytic agents. Although FeCl3 is widely studied, it showed limited capacity to promote graphitic ordering. In contrast, K3[Fe(CN)6] exhibited a synergistic effect, combining iron-based catalytic species (Fe, Fe3C) and potassium-derived activating compounds (K2CO3), which significantly enhanced graphitization and porosity. Characterization by Raman spectroscopy, XRD, and SEM confirmed that materials synthesized with K3[Fe(CN)6] presented improved crystallinity, lower defect densities (ID/IG = 0.37–1.11), and distinct 2D bands (I2D/IG = 0.32–0.80), indicating the formation of few-layer graphene domains. The most promising structure was obtained from cellulose treated with alkaline peroxide and deoxygenated prior to pyrolysis with K3[Fe(CN)6], showing properties comparable to commercial graphene. BET analysis revealed surface areas up to 714.50 m2/g. While non-catalyzed samples yielded higher mass, the catalytic approach with K3[Fe(CN)6] demonstrates a sustainable and efficient pathway for producing graphene-like carbon materials from lignocellulosic biomass. Full article
Show Figures

Graphical abstract

16 pages, 1049 KiB  
Article
Cobalt Ion Removal by Activated Carbon and Biochar Derived from Sargassum sp.
by Julie Mallouhi, Emőke Sikora, Kitti Gráczer, Olivér Bánhidi, Sarra Gaspard, Marckens Francoeur, Yeray Alvarez-Galvan, Francesca Goudou, Béla Viskolcz, Emma Szőri-Dorogházi and Béla Fiser
Int. J. Mol. Sci. 2025, 26(16), 7666; https://doi.org/10.3390/ijms26167666 - 8 Aug 2025
Viewed by 164
Abstract
Activated carbon (AC) and biochar (BC) are porous substances derived from any carbonous material known to be highly effective adsorbents, making them valuable for removing pollutants like heavy metals. This study evaluated and compared the potential of AC and BC produced from Sargassum [...] Read more.
Activated carbon (AC) and biochar (BC) are porous substances derived from any carbonous material known to be highly effective adsorbents, making them valuable for removing pollutants like heavy metals. This study evaluated and compared the potential of AC and BC produced from Sargassum sp. by chemical activation and pyrolysis process for heavy metal removal, specifically Co2+ ions, to commercial AC (COMAC). Various techniques were employed to characterize these samples including FTIR, zeta potential, and surface area. Additionally, considering parameters such as pH, initial solution concentration, and the effect of AC/BC dose were investigated. The adsorption isotherm was also assessed. The results showed that a strong dependence of the adsorption capacity on pH was observed with optimal performance at ~6.8. Additionally, the optimal initial solution concentration was determined to be ~2 mmol/L. According to the Langmuir isotherm model, AC derived-Sargassum sp. exhibited maximum uptakes of 468.97 mg/g, higher than COMAC and BC. The experiment at different adsorbent dosages revealed that AC from Sargassum sp. outperformed other samples, with adsorption capacity observed at 94.94% as the dosage increased. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 1448 KiB  
Article
In Vitro Evaluation of Chemical and Microhardness Alterations in Human Enamel Induced by Three Commercial In-Office Bleaching Agents
by Berivan Laura Rebeca Buzatu, Atena Galuscan, Ramona Dumitrescu, Roxana Buzatu, Magda Mihaela Luca, Octavia Balean, Gabriela Vlase, Titus Vlase, Iasmina-Mădălina Anghel, Carmen Opris, Bianca Ioana Todor, Mihaela Adina Dumitrache and Daniela Jumanca
Dent. J. 2025, 13(8), 357; https://doi.org/10.3390/dj13080357 - 6 Aug 2025
Viewed by 266
Abstract
Background/Objectives: In-office bleaching commonly employs high concentrations of hydrogen peroxide (HP) or carbamide peroxide (CP), which may compromise enamel integrity. This in vitro paired-design study aimed to compare the chemical and mechanical effects of three commercial bleaching agents—Opalescence Boost (40% HP), Opalescence [...] Read more.
Background/Objectives: In-office bleaching commonly employs high concentrations of hydrogen peroxide (HP) or carbamide peroxide (CP), which may compromise enamel integrity. This in vitro paired-design study aimed to compare the chemical and mechanical effects of three commercial bleaching agents—Opalescence Boost (40% HP), Opalescence Quick (45% CP), and BlancOne Ultra+ (35% HP)—on human enamel. The null hypothesis assumed no significant differences between the control and treated samples. Given the ongoing debate over pH, active ingredients, and enamel impact, comparing whitening systems remains clinically important. Methods: Forty-two extracted teeth were assigned to three experimental groups (n = 14) with matched controls. Each underwent a single bleaching session per manufacturer protocol: Opalescence Boost (≤60 min), Opalescence Quick (15–30 min), and BlancOne Ultra+ (three light-activated cycles of 8–10 min). Enamel chemical changes were analyzed by Fourier transform infrared (FTIR) spectroscopy (phosphate and carbonate bands), and surface hardness by Vickers microhardness testing. Paired t-tests (α = 0.05) assessed statistical significance. Results: FTIR analysis revealed alterations in phosphate and carbonate bands for all agents, most notably for Opalescence Boost and BlancOne Ultra+. Microhardness testing showed significant reductions in enamel hardness for Opalescence Boost (control: 37.21 ± 1.74 Hv; treated: 34.63 ± 1.70 Hv; p = 0.00) and Opalescence Quick (control: 45.82 ± 1.71 Hv; treated: 39.34 ± 1.94 Hv; p < 0.0001), whereas BlancOne Ultra+ showed no significant difference (control: 51.64 ± 1.59 HV; treated: 51.60 ± 2.34 Hv; p = 0.95). Conclusions: HP-based agents, particularly at higher concentrations, caused greater enamel alterations than CP-based products. While clinically relevant, the results should be interpreted cautiously due to in vitro limitations and natural enamel variability. Full article
(This article belongs to the Special Issue Advances in Esthetic Dentistry)
Show Figures

Graphical abstract

18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Viewed by 373
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 1807 KiB  
Article
Influence of Pyrolysis Temperature on the Properties and Electrochemical Performance of Cedar Wood-Derived Biochar for Supercapacitor Electrodes
by Layal Abdallah, Chantal Gondran, Virginie Monnier, Christian Vollaire and Naoufel Haddour
Bioengineering 2025, 12(8), 841; https://doi.org/10.3390/bioengineering12080841 - 4 Aug 2025
Viewed by 297
Abstract
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 [...] Read more.
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 °C and fully characterized in terms of their structural, physicochemical and electrochemical properties, including specific surface area, hydrophobicity, electrical conductivity, and surface functional groups. The results indicated that the cedar wood biochar obtained through pyrolysis at 900 °C (BC900) provided optimal electrical conductivity, hydrophobicity, and porosity characteristics relative to the other cedar wood biochars produced by pyrolysis at 800 °C to 1100 °C. Specifically, when compared to commercial activated carbon (AC), BC900 provided half the specific capacitance at a current density of 1 A g−1 and indicated that there is more potential for improvement with further activation and doping. The influence of the binder (either polyvinylidene fluoride (PVDF) or chitosan) in combination with conductive carbon black (CB) was also examined. Electrodes fabricated with PVDF binder showed higher specific capacitance, while biochar electrodes made from CB and chitosan (BC900/CB/chitosan) showed better electrical conductivity, wettability, and good electrochemical stability with >95% capacity retention even after 10,000 cycles. Full article
Show Figures

Figure 1

8 pages, 2685 KiB  
Proceeding Paper
Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate
by Kentaro Yamauchi, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 5; https://doi.org/10.3390/chemproc2025017005 - 4 Aug 2025
Viewed by 164
Abstract
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B [...] Read more.
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B (RhB) under visible light irradiation. The absorbance at 554 nm gradually decreased over time and disappeared completely within 80 min. The crystal structure, morphology, and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The improved photocatalytic activity of the treated catalysts was attributed to partial carbonate removal and the formation of Bi5+ species. Scavenger experiments indicated that superoxide radicals (·O2) and photogenerated holes (h+) played significant roles in the photocatalytic decolorization of RhB. Full article
Show Figures

Figure 1

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 - 2 Aug 2025
Viewed by 500
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 - 1 Aug 2025
Viewed by 296
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

12 pages, 866 KiB  
Article
Reuse of Activated Carbon Filter Waste as Filler in Vulcanized Rubber Composites
by Viviane Chaves de Souza, Henrique Pina Cardim, Carlos Toshiyuki Hiranobe, Guilherme Pina Cardim, Iago William Zapelini, Leonardo Lataro Paim, Gleyson Tadeu Almeida Santos, Silvio Rainho Teixeira, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Flávio Camargo Cabrera
J. Compos. Sci. 2025, 9(8), 406; https://doi.org/10.3390/jcs9080406 - 1 Aug 2025
Viewed by 364
Abstract
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as [...] Read more.
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as a reinforcing filler in vulcanized natural rubber composites. Samples were prepared with 5, 10, 15, and 20 phr (per hundred rubber) of residue and compared to unfilled natural rubber. Stress vs. strain tests reached 13.9 MPa of tension at rupture for composites containing 10 phr of carbon-activated residues, representing a 21.9% increase compared to natural rubber. Interestingly, the tension at rupture for NR/AC10phr reached values close to those of NR/CB5phr (with carbon black N330) attaining 14.4 MPa. These results indicate that, even at relatively low concentrations, the carbon filter can offer partial substitution for commercial fillers. Moreover, the use of activated carbon from filter cartridges as filler in rubber composites provides an environmentally favorable alternative to energy-intensive regeneration processes for activated carbon. Full article
Show Figures

Graphical abstract

11 pages, 2295 KiB  
Article
Toward Green Substitutes: Electrochemical Properties of Conductive Inks Containing Biochar
by Gordana Stevanović, Jovan Parlić, Marija Ajduković, Nataša Jović-Jovičić, Vojkan Radonjić and Zorica Mojović
Sustain. Chem. 2025, 6(3), 21; https://doi.org/10.3390/suschem6030021 - 31 Jul 2025
Viewed by 224
Abstract
Dry Turkish oak (Quercus cerris) sawdust, untreated and treated with three activators, (H3PO4, NaOH and H2O2) was pyrolyzed under limited-oxygen conditions to obtain biochar samples. The electrochemical properties of these samples were tested [...] Read more.
Dry Turkish oak (Quercus cerris) sawdust, untreated and treated with three activators, (H3PO4, NaOH and H2O2) was pyrolyzed under limited-oxygen conditions to obtain biochar samples. The electrochemical properties of these samples were tested and compared to the properties of several commercial carbon blacks. The electrochemical characterization was performed via cyclic voltammetry, analyzing the response toward two commonly used redox probes, [Fe(CN)6]3−/−4− and [Ru(NH3)6]2+/3+. The influence of the scan rate on this response was investigated, and the resulting data were used to obtain the values of the heterogenous charge transfer constant, k0. Higher k0 values were observed for carbon blacks than for investigated biochar samples. The detection of 4-nitrophenol and heavy metal ions was used to assess the applicability of biochars for electroanalytical purposes. The response of untreated biochar was comparable with the response of Vulcan carbon black, which showed the best response of all analyzed carbon blacks. Full article
Show Figures

Figure 1

17 pages, 1710 KiB  
Article
Physiological, Genetic, and Fermentative Traits of Oenococcus oeni Isolates from Spontaneous Malolactic Fermentation in Koshu Wine
by Misa Otoguro, Sayaka Inui, Taichi Aoyanagi, Ayana Misawa, Hiromi Nakano, Yoshimi Shimazu and Shigekazu Misawa
Fermentation 2025, 11(8), 440; https://doi.org/10.3390/fermentation11080440 - 31 Jul 2025
Viewed by 392
Abstract
Koshu wine, produced from the indigenous Japanese grape Vitis vinifera L. cv. Koshu exhibits a lower pH than other white wines, hindering malolactic fermentation (MLF) by lactic acid bacteria (LAB). Here, we aimed to isolate LAB strains capable of performing MLF under these [...] Read more.
Koshu wine, produced from the indigenous Japanese grape Vitis vinifera L. cv. Koshu exhibits a lower pH than other white wines, hindering malolactic fermentation (MLF) by lactic acid bacteria (LAB). Here, we aimed to isolate LAB strains capable of performing MLF under these challenging conditions to improve wine quality. Sixty-four Oenococcus oeni and one Lactobacillus hilgardii strain were isolated from Koshu grapes and wines that had undergone spontaneous MLF. MLF activity was assessed under varying pH, SO2, and ethanol conditions in modified basal medium (BM) and Koshu model wine media. Expression of stress-related genes was analyzed using real-time PCR. Carbon source utilization was evaluated via API 50CH assays. All isolates degraded malic acid and produced lactic acid at 15 °C and pH 3.2 in BM without reducing sugars. Seven strains, all identified as O. oeni, demonstrated MLF activity at pH 3.0 in modified BM lacking added reducing sugars or tomato juice. Six wine-derived strains tolerated up to 12% ethanol, whereas the grape-derived strain was inhibited at 10%. In a synthetic Koshu wine model (13% ethanol, pH 3.0), wine-derived isolates exhibited higher MLF activity than commercial starter strains. In high-performing strains, mleA was upregulated, and most isolates preferred fructose, arabinose, and ribose over glucose. These findings suggest that indigenous O. oeni strains from Koshu wine possess unique stress tolerance and metabolic traits, making them promising candidates for region-specific MLF starter cultures that could enhance Koshu wine quality and terroir expression. Full article
(This article belongs to the Special Issue Fermentation and Biotechnology in Wine Making)
Show Figures

Figure 1

Back to TopTop