Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate †
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BOC Pretreatment Method
2.3. Characterizations
2.4. Photocatalytic Experiment
3. Results and Discussion
3.1. Crystal Structure and Morphology
3.2. Optical Properties
3.3. Photocatalytic Activity
3.4. Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deshmukh, S.A.; Suresh, S.; Bhuse, D.V.; Raut, S.U.; Reddy, M.V.B.; Ravichandran, S. Review On Strategies For the Design and Synthesis of Flower-Like Bi2WO6 and BiOX (X = F, Cl, Br, I) Composites for Photocatalytic Environmental Remediation. ChemistrySelect 2024, 9, e202401038. [Google Scholar] [CrossRef]
- Plubphon, N.; Thongtem, S.; Phuruangrat, A.; Randorn, C.; Kaowphong, S.; Thongtem, T. Rapid Preparation of G-C3N4/Bi2O2CO3 Composites and Their Enhanced Photocatalytic Performance. Diam. Relat. Mater. 2022, 130, 109488. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, T.; Nie, Z.; Wu, Q.; Huang, Y.; Zheng, M. In-Situ Construction of 3D Hollow Bi0/Bi2O2CO3 Heterojunction with Rich Oxygen Vacancies for Photocatalytic Degradation of Two Typical Pollutants in Mineral Processing Wastewater. J. Alloys Compd. 2025, 1011, 178405. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Pan, L.; Wen, Z.; Yao, S. Designing Manganese-Doped Bi/Bi2O2CO3 Microspheres for Improved Visible-Light-Induced Degradation. J. Phys. Chem. Solids 2025, 200, 112625. [Google Scholar] [CrossRef]
- Li, Y.; Ai, L.; Sheng, R.; Tan, C.; Zha, M.; Jia, D.; Guo, N.; Wang, L. In Situ Constructing 2D/2D Layered BiOBr/Bi2O2CO3 Heterostructure for Efficient Photocatalytic Reduction CO2 to CO. J. Mol. Liq. 2024, 413, 125960. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, Z.; Wang, F.; Cao, K.; Doronkin, D.E.; Dong, F.; Grunwaldt, J.-D. Facile Synthesis of Surface N-Doped Bi2O2CO3: Origin of Visible Light Photocatalytic Activity and in Situ DRIFTS Studies. J. Hazard. Mater. 2016, 307, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Ma, Y.; Shang, Y.; Tan, P.; Pan, J. Self-Integrated β-Bi2O3/Bi2O2.33@Bi2O2CO3 Ternary Composites: Formation Mechanism and Visible Light Photocatalytic Activity. Appl. Surf. Sci. 2018, 430, 613–624. [Google Scholar] [CrossRef]
- Bi, F.; Zheng, Z.; Li, R.; Du, R.; Zhao, L.; Xiao, S.; Wang, L.; Dong, X. Design and Performance Investigation of Novel Efficient Photocatalysts PVP-Modified PVDF/BiOBr Photocatalytic Membranes for Wastewater Treatment. Chem. Eng. J. 2025, 507, 160781. [Google Scholar] [CrossRef]
- Sun, D.; Huang, L.; Li, L.; Yu, Y.; Du, G.; Xu, B. Plasma Enhanced Bi/Bi2O2CO3 Heterojunction Photocatalyst via a Novel in-Situ Method. J. Colloid. Interface Sci. 2020, 571, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cai, L.; Zhang, Y.; Wei, Y. Bi5+, Bi(3−x)+, and Oxygen Vacancy Induced BiOClx I1−x Solid Solution toward Promoting Visible-Light Driven Photocatalytic Activity. Chem. A Eur. J. 2018, 24, 7434–7444. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Cao, J.; Lin, H.; Zhang, M.; Guo, X.; Chen, S. Transforming Type-I to Type-II Heterostructure Photocatalyst via Energy Band Engineering: A Case Study of I-BiOCl/I-BiOBr. Appl. Catal. B 2017, 204, 505–514. [Google Scholar] [CrossRef]
- Lei, X.; Hu, S.; Liu, K.; Lv, X.; Chen, Y.; Zhang, Q.; Jia, Y.; Zhong, K.; Wang, B.; Xu, T. Electrochemical Oxidation of Rhodamine B in Dye Wastewater by a Novel Boron-Doped Diamond Electrode: Parameter Optimization and Degradation Mechanism. Desalination Water Treat. 2024, 317, 100243. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Qin, Q.; Huang, C.; Niu, Y.; Li, M.; Song, B.; Fan, B.; Shao, G.; Lu, H.; et al. Significantly Improvement of the Photocatalytic Performance of Vermiculite/g-C3N4 Composite by the Modification of BiOBr. Mater. Chem. Phys. 2024, 322, 129550. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamauchi, K.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate. Chem. Proc. 2025, 17, 5. https://doi.org/10.3390/chemproc2025017005
Yamauchi K, Furukawa M, Tateishi I, Katsumata H, Kaneco S. Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate. Chemistry Proceedings. 2025; 17(1):5. https://doi.org/10.3390/chemproc2025017005
Chicago/Turabian StyleYamauchi, Kentaro, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata, and Satoshi Kaneco. 2025. "Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate" Chemistry Proceedings 17, no. 1: 5. https://doi.org/10.3390/chemproc2025017005
APA StyleYamauchi, K., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2025). Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate. Chemistry Proceedings, 17(1), 5. https://doi.org/10.3390/chemproc2025017005