Toward Green Substitutes: Electrochemical Properties of Conductive Inks Containing Biochar
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar Poduction and Treatment
2.2. Ink Formulation
2.3. Electrochemical Investigation
3. Results
3.1. Electrochemical Characterization: Response Toward Redox Probes [Fe(CN)6]3−/−4− and [Ru(NH3)6]2+/3+
3.2. The Application of 4-Nitrophenol Oxidation
3.3. The Application for Heavy Metal Ion Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CV | Cyclic Voltammetry |
SWV | Square Wave Voltammetry |
References
- Leppänen, E.; Etula, J.; Engelhardt, P.; Sainiod, S.; Jiang, H.; Mikladal, B.; Peltonen, A.; Varjos, I.; Lauril, T. Rapid industrial scale synthesis of robust carbon nanotube network electrodes for electroanalysis. J. Electroanal. Chem. 2021, 896, 115255. [Google Scholar] [CrossRef]
- Tapia, M.A.; Pérez-Ràfols, C.; Oliveira, F.M.; Sofer, Z.; Díaz-Cru, J.M.; Gusmão, R.; Serrano, N. Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions. Chemosensors 2023, 11, 219. [Google Scholar] [CrossRef]
- Ye, K.; Li, Y.; Yang, H.; Li, M.; Huang, Y.; Zhang, S.; Ji, H. An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Appl. Catal. B Environ. 2019, 259, 118085. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Y.; Liu, K.; Ye, K.; Wang, Q.; Zhang, S.; Huang, Y.; Hong, L. Constructing Fe-MOF-Derived Z-Scheme Photocatalysts with Enhanced Charge Transport: Nanointerface and Carbon Sheath Synergistic Effect. ACS Appl. Mater. Interfaces 2020, 12, 25494–25502. [Google Scholar] [CrossRef]
- Muzyka, K.; Xu, G. Laser-induced Graphene in Facts, Numbers, and Notes in View of Electroanalytical Applications: A Review. Electroanalysis 2022, 34, 574–589. [Google Scholar] [CrossRef]
- Fronczak, M.; Karoly, Z.; Bankovic, P.; Mojovic, Z. The influence of precursor selection on electrochemical properties of radiofrequency thermal plasma synthesized graphene. Microchem. J. 2024, 199, 110079. [Google Scholar] [CrossRef]
- Chauhan, R.; Fogel, R.; Purcarea, C.; Necula-Petrareanu, G.; Fanjul-Bolado, P.; Ibanez, D.; Vasilescu, A.; Maria Banciu, R.; Limson, J. Electrochemical characterization of carbon black in different redox probes and their application in electro-chemical sensing. Carbon Trends 2024, 17, 100408. [Google Scholar] [CrossRef]
- Vicentini, F.C.; Raymundo-Pereira, P.A.; Janegitz, B.C.; Machado, S.A.S.; Fatibello-Filho, O. Nanostructured carbon black for simultaneous sensing in biological fluids. Sens. Actuators B 2016, 227, 610–618. [Google Scholar] [CrossRef]
- Vicentini, F.C.; Silva, T.A.; Fatibello-Filho, O. Carbon black electrodes applied in electroanalysis. Curr. Opin. Electrochem. 2024, 43, 101415. [Google Scholar] [CrossRef]
- Lubura, J.; Kojić, P.; Ikonić, B.; Pavličević, J.; Govedarica, D.; Bera, O. Influence of biochar and carbon black on natural rubber mixture properties. Polym. Int. 2022, 71, 1347–1353. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Iwuozor, K.O.; Emenike, E.C.; Amoloye, M.A.; Aransiola, E.S.; Motolani, F.O.; Kayode, S.H. Prospects and problems in the development of biochar-filled plastic composites: A review. Funct. Compos. Struct. 2023, 5, 012002. [Google Scholar] [CrossRef]
- Seroka, N.S.; Luo, H.; Khotseng, L. Biochar-Derived Anode Materials for Lithium-Ion Batteries: A Review. Batteries 2024, 10, 144. [Google Scholar] [CrossRef]
- Kalinke, C.; de Oliveira, P.R.; Bonacin, J.A.; Janegitz, B.C.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications. Green Chem. 2021, 23, 5272. [Google Scholar] [CrossRef]
- Ding, W.; Dong, X.; Ime, I.M.; Gao, B.; Ma, L.Q. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 2014, 105, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Aguiar, E.; Gascó, G.; Paz-Ferreiro, J.; Méndez, A. The effect of biochar and compost from urban organic waste on plant biomass and properties of an artificially copper polluted soil. Int. Biodeterior. Biodegrad. 2017, 124, 223–232. [Google Scholar] [CrossRef]
- Chu, M.; Tian, W.; Zhao, J.; Zou, M.; Lu, Z.; Zhang, D.; Jiang, J. A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications. Chemosphere 2022, 307, 136024. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Sajjadi, B.; Zubatiuk, T.; Leszczynska, D.; Leszczynski, J.; Chen, W.Y. Chemical activation of biochar for energy and environmental applications: A comprehensive review. Rev. Chem. Eng. 2019, 35, 777–815. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Freitas, M.; da Silva, L.P.; Rodrigues, P.M.S.M.; Esteves da Silva, J. Sustainable Technological Applications of Green Carbon Materials. Sustain. Chem. 2024, 5, 81–97. [Google Scholar] [CrossRef]
- Santos, D.C.B.D.; Evaristo, R.B.W.; Dutra, R.C.; Suarez, P.A.Z.; Silveira, E.A.; Ghesti, G.F. Advancing Biochar Applications: A Review of Production Processes, Analytical Methods, Decision Criteria, and Pathways for Scalability and Certification. Sustainability 2025, 17, 2685. [Google Scholar] [CrossRef]
- Abu El Haija, K.; Santos, R.M. Rethinking Biochar’s MRV Systems: A Perspective on Incorporating Agronomic and Organic Chemistry Indicators. Sustain. Chem. 2024, 5, 287–307. [Google Scholar] [CrossRef]
- Rosner, F.; Bhagde, T.; Slaughter, D.S.; Zorba, V.; Stokes-Draut, J. Techno-economic and carbon dioxide emission assessment of carbon black production. J. Clean. Prod. 2024, 436, 140224. [Google Scholar] [CrossRef]
- Deng, X.; Teng, F.; Chen, M.; Du, Z.; Wang, B.; Li, R.; Wang, P. Exploring negative emission potential of biochar to achieve carbon neutrality goal in China. Nat. Commun. 2024, 15, 1085. [Google Scholar] [CrossRef]
- Qin, Y.; Ouyang, X.; Lv, Y.; Liu, W.; Liu, Q.; Wang, S. A Review of Carbon-Based Conductive Inks and Their Printing Technologies for Integrated Circuits. Coatings 2023, 13, 1769. [Google Scholar] [CrossRef]
- Phillips, C.; Al-Ahmadi, A.; Potts, S.J.; Claypole, T.; Deganello, D. The effect of graphite and carbon black ratios on conductive ink performance. J. Mater. Sci. 2017, 52, 9520–9530. [Google Scholar] [CrossRef]
- Cândido, T.C.d.O.; Pereira, A.C.; da Silva, D.N. Development and Characterization of Conductive Ink Composed of Graphite and Carbon Black for Application in Printed Electrodes. Analytica 2023, 4, 513–526. [Google Scholar] [CrossRef]
- Trachioti, M.G.; Lazanas, A.C.; Prodromidis, M.I. Shedding light on the calculation of electrode electroactive area and heterogeneous electron transfer rate constants at graphite screen-printed electrode. Microchim. Acta 2023, 7, 251. [Google Scholar] [CrossRef]
- Lavagnini, I.; Antiochia, R.; Magno, F. An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanalysis 2004, 16, 505–506. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.J.; Hyde, M.E.; Compton, R.G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 2005, 44, 5121–5126. [Google Scholar] [CrossRef]
- Cassidy, J.F.; de Carvalho, R.C.; Betts, A.J. Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study. Electrochem 2023, 4, 313–349. [Google Scholar] [CrossRef]
- Yakout, S.M. Monitoring the Changes of Chemical Properties of Rice Straw–Derived Biochars Modified by Different Oxidizing Agents and Their Adsorptive Performance for Organics. Bioremediation J. 2015, 19, 171–182. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Fan, S. Preparation of KOH and H3PO4 Modified Biochar and Its Application in Methylene Blue Removal from Aqueous Solution. Processes 2019, 7, 891. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, C.; Xing, X.; Chen, L.; Yao, B.; Chao, L.; Zhang, Y.; Wang, J.; Dong, J.; Liu, C.; et al. Interconnected pyrolysis and activation with in-situ H3PO4 activation of biochar from pear wood chips in a pilot scale dual fluidized bed. Chem. Eng. J. 2024, 495, 153579. [Google Scholar] [CrossRef]
- Žunić, M.J.; Milutinović-Nikolić, A.D.; Stanković, D.M.; Manojlović, D.D.; Jović-Jovičić, N.P.; Banković, P.T.; Mojović, Z.D.; Jovanović, D.M. Electrooxidation of p-nitrophenol using a composite organo-smectite clay glassy carbon electrode. Appl. Surf. Sci. 2014, 313, 440–448. [Google Scholar] [CrossRef]
- Franz, M.; Arafat, H.A.; Pinto, N.G. Effect of chemical heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 2000, 38, 1807–1819. [Google Scholar] [CrossRef]
- Li, Y.; Xuan, F.; Guo, Z.; Wang, M.; Zhang, H.; Li, X.; Wu, L. Rapid and efficient adsorption of p-nitrophenol over biomass-derived vertically aligned graphene nanosheets fabricated by hydrothermal/molten salt-assisted pyrolysis method. Sep. Purif. Technol. 2025, 354, 129368. [Google Scholar] [CrossRef]
- Zhao, Z.; Gou, X.; Fanga, S.; Chang, C.; Li, H.; Han, X. Adsorption of p-nitrophenol on activated carbon derived from the lignin of cellulosic ethanol by-product. Rev. Roum. de Chim. 2018, 63, 1135–1147. [Google Scholar]
- Haydar, S.; Ferro-García, M.A.; Rivera-Utrilla, J.; Joly, J.P. Adsorption of p-nitrophenol on an activated carbon with dif-ferent oxidations. Carbon 2003, 41, 387–395. [Google Scholar] [CrossRef]
- Supong, A.; Bhomick, P.C.; Sinha, U.B.; Sinha, D. A combined experimental and theo-retical investigation of the adsorption of 4-Nitrophenol on activated biocarbon using DFT method. Korean J. Chem. Eng. 2019, 36, 2023–2034. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, Z.; Chen, B. Proton uptake behaviors of organic and inorganic matters in biochars prepared under different pyrolytic temperatures. Sci. Total Environ. 2020, 746, 140853. [Google Scholar] [CrossRef]
- Smith, C.P.; White, H.S. Voltammetry of molecular films containing acid/base groups. Langmuir 1993, 9, 1–3. [Google Scholar] [CrossRef]
- Burgess, I.; Seivewright, B.; Bruce Lennox, R. Electric field driven protonation/deproton ation of self-assembled monolay-ers of acid-terminated thiols. Langmuir 2006, 22, 4420–4428. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Ali, A.; Jamal, R.; Simayi, R.; Xiang, L.; Ding, S.; Abdiryim, T. Poly(EDOT-pyri dine-EDOT) and poly(EDOT-pyridazine-EDOT) hollow nanosphere materials for the electrochemical detection of Pb2+ and Cu2+. J. Electroanal. Chem. 2018, 822, 112–122. [Google Scholar] [CrossRef]
[Fe(CN)6]3−/−4- | [Ru(NH3)6]2+/3+ | |||||||
---|---|---|---|---|---|---|---|---|
Electrode | Ia/Ic Ratio | ECSA (cm2) | ΔEp (mV) | k0 (cm2 s−1) | Ia/Ic Ratio | ECSA (cm2) | ΔEp (mV) | k0 (cm2 s−1) |
Pearls | 1.42 | 0.44 | 363 | 1.6 × 10−5 | 2.84 | 0.93 | 110 | 2.2 × 10−3 |
Regal | 1.15 | 0.25 | 503 | 1.4 × 10−5 | 1.26 | 0.59 | 100 | 1.7 × 10−3 |
Vulcan | 1.23 | 0.34 | 413 | 3.8 × 10−5 | 1.26 | 0.62 | 100 | 1.3 × 10−3 |
BC | 1.21 | 0.31 | 654 | 0.9 × 10−5 | 1.20 | 0.61 | 111 | 1.1 × 10−3 |
BC-H | 1.19 | 0.25 | 633 | 0.9 × 10−5 | 1.29 | 0.59 | 101 | 1.4 × 10−3 |
BC-N | 1.06 | 0.16 | 775 | 0.8 × 10−5 | 1.24 | 0.24 | 251 | 0.4 × 10−3 |
BC-P | 1.12 | 0.20 | 523 | 0.1 × 10−5 | 2.60 | 0.22 | 151 | 0.8 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevanović, G.; Parlić, J.; Ajduković, M.; Jović-Jovičić, N.; Radonjić, V.; Mojović, Z. Toward Green Substitutes: Electrochemical Properties of Conductive Inks Containing Biochar. Sustain. Chem. 2025, 6, 21. https://doi.org/10.3390/suschem6030021
Stevanović G, Parlić J, Ajduković M, Jović-Jovičić N, Radonjić V, Mojović Z. Toward Green Substitutes: Electrochemical Properties of Conductive Inks Containing Biochar. Sustainable Chemistry. 2025; 6(3):21. https://doi.org/10.3390/suschem6030021
Chicago/Turabian StyleStevanović, Gordana, Jovan Parlić, Marija Ajduković, Nataša Jović-Jovičić, Vojkan Radonjić, and Zorica Mojović. 2025. "Toward Green Substitutes: Electrochemical Properties of Conductive Inks Containing Biochar" Sustainable Chemistry 6, no. 3: 21. https://doi.org/10.3390/suschem6030021
APA StyleStevanović, G., Parlić, J., Ajduković, M., Jović-Jovičić, N., Radonjić, V., & Mojović, Z. (2025). Toward Green Substitutes: Electrochemical Properties of Conductive Inks Containing Biochar. Sustainable Chemistry, 6(3), 21. https://doi.org/10.3390/suschem6030021