Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation and Characteristics of Car Shampoos
2.3. Application Tests of Prepared Car Shampoos
2.4. Characterization of Physicochemical Properties of Car Shampoos
2.4.1. pH
2.4.2. Density
2.4.3. Viscosity
2.4.4. Foamability
2.4.5. Foam Stability
2.4.6. Microbiological Tests
2.4.7. Contact Angle
3. Results and Discussion
3.1. Application Tests and Optimization of Final Formulations
3.2. Analysis of Basic Physicochemical Parameters
3.3. Foamability of the Developed Car Shampoos
3.4. Stability Characteristics of Foams in Prepared Car Shampoos
3.5. Microbiological Analysis of the Developed Products
3.6. Contact Angle of Car Shampoos
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef]
- Chin, J.; Jiang, B.C.; Mufidah, I.; Persada, S.F.; Noer, B.A. The Investigation of Consumers’ Behavior Intention in Using Green Skincare Products: A Pro-Environmental Behavior Model Approach. Sustainability 2018, 10, 3922. [Google Scholar] [CrossRef]
- Krzyżostan, M.; Wawrzyńczak, A.; Nowak, I. Use of Waste from the Food Industry and Applications of the Fermentation Process to Create Sustainable Cosmetic Products: A Review. Sustainability 2024, 16, 2757. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef]
- Edser, C. Surfactant innovations push the boundaries in home care formulations. Focus Surfactants 2014, 2014, 1–3. [Google Scholar] [CrossRef]
- Cortez, D.M.; Bekke, M.T.; Liang, Z.; Stamminger, R. The impact of detergent performance on sustainable consumer laundry behavior: A socio-technical challenge. Tenside Surfactants Deterg. 2024, 61, 203–215. [Google Scholar] [CrossRef]
- Fabozzi, A.; Krauss, I.R.; Vitiello, R.; Fornasier, M.; Sicignano, L.; King, S.; Guido, S.; Jones, C.; Paduano, L.; Murgia, S.; et al. Branched alkyldimethylamine oxide surfactants: An effective strategy for the design of high concentration/low viscosity surfactant formulations. J. Colloid Interface Sci. 2019, 552, 448–463. [Google Scholar] [CrossRef] [PubMed]
- Petkova, B.; Tcholakova, S.; Chenkova, M.; Golemanov, K.; Denkov, N.; Thorley, D.; Stoyanov, S. Foamability of aqueous solutions: Role of surfactant type and concentration. Adv. Colloid Interface Sci. 2020, 276, 102084. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, H.; Song, X.; Wang, Z.; Wang, X.; Li, Y. Comparative study on foaming and foam stability of multiple mixed systems of fluorocarbon, hydrocarbon, and amino acid surfactants. J. Surfactants Deterg. 2023, 26, 683–691. [Google Scholar] [CrossRef]
- Savignano, L.; Fabozzi, A.; Vitiello, R.; Fornasier, M.; Murgia, S.; Guido, S.; Guida, V.; Paduano, L.; D’Errico, G. Effect of tail branching on the phase behavior and the rheological properties of amine oxide/ethoxysulfate surfactant mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126091. [Google Scholar] [CrossRef]
- Cornwell, P.A. A review of shampoo surfactant technology: Consumer benefits, raw materials and recent developments. Int. J. Cosmet. Sci. 2018, 40, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Rakshit, A.; Acharjee, A.; Saha, B. Biodegradability and biocompatibility: Advancements in synthetic surfactants. J. Mol. Liq. 2021, 324, 115105. [Google Scholar] [CrossRef]
- Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V.J. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. [Google Scholar] [CrossRef] [PubMed]
- Hybská, H.; Mordáčová, M.; Gregušová, M. Biodegradation of the Personal Care Products. Eng. Proc. 2023, 57, 35. [Google Scholar] [CrossRef]
- Nasser, M.; Sharma, M.; Kaur, G. Advances in the production of biosurfactants as green ingredients in home and personal care products. Front. Chem. 2024, 12, 1382547. [Google Scholar] [CrossRef]
- Woźniak, B.; Garstka, A.; Wawrzyńczak, A.; Nowak, I. Nowoczesne biosurfaktanty. Czym są oraz co je wyróżnia? Przemysł Chem. 2024, 103, 1000–1005. [Google Scholar] [CrossRef]
- Karnwal, A.; Shrivastava, S.; Al-Tawaha, A.R.M.S.; Kumar, G.; Singh, R.; Kumar, A.; Mohan, A.; Yogita; Malik, T. Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review. BioMed Res. Int. 2023, 2023, 2375223. [Google Scholar] [CrossRef]
- Qamar, S.A.; Pacifico, S. Cleaner production of biosurfactants via bio-waste valorization: A comprehensive review of characteristics, challenges, and opportunities in bio-sector applications. J. Environ. Chem. Eng. 2023, 11, 111555. [Google Scholar] [CrossRef]
- Markande, A.R.; Patel, D.; Varjani, S. A review on biosurfactants: Properties, applications and current developments. Bioresour. Technol. 2021, 330, 124963. [Google Scholar] [CrossRef]
- Petkova, B.; Tcholakova, S.; Denkov, N. Foamability of surfactant solutions: Interplay between adsorption and hydrodynamic conditions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127009. [Google Scholar] [CrossRef]
- Alexander, S.; Barron, A.R.; Denkov, N.; Grassia, P.; Kiani, S.; Sagisaka, M.; Shojaei, M.J.; Shokri, N. Foam Generation and Stability: Role of the Surfactant Structure and Asphaltene Aggregates. Ind. Eng. Chem. Res. 2022, 61, 372–381. [Google Scholar] [CrossRef]
- Chen, S.; Hou, Q.; Zhu, Y.; Wang, D.; Li, W. On the Origin of Foam Stability: Understanding from Viscoelasticity of Foaming Solutions and Liquid Films. J. Dispers. Sci. Technol. 2014, 35, 1214–1221. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wang, Z.; Wang, D.; Zhan, H. Experimental Investigation of the Mechanism of Foaming Agent Concentration Affecting Foam Stability. J. Surfactants Deterg. 2017, 20, 1443–1451. [Google Scholar] [CrossRef]
- Schad, T.; Preisig, N.; Blunk, D.; Piening, H.; Drenckhan, W.; Stubenrauch, C. Less is more: Unstable foams clean better than stable foams. J. Colloid Interface Sci. 2021, 590, 311–320. [Google Scholar] [CrossRef]
- Carey, E.; Stubenrauch, C. Properties of aqueous foams stabilized by dodecyltrimethylammonium bromide. J. Colloid Interface Sci. 2009, 333, 619–627. [Google Scholar] [CrossRef]
- Emami, H.; Tanha, A.A.; Manshad, A.K.; Mohammadi, A.H. Experimental Investigation of Foam Flooding Using Anionic and Nonionic Surfactants: A Screening Scenario to Assess the Effects of Salinity and pH on Foam Stability and Foam Height. ACS Omega 2022, 7, 14832–14847. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.J.; Ainger, N.; Starck, P.; Mykhaylyk, O.O.; Ryan, A.J. Shampoo Science: A Review of the Physiochemical Processes behind the Function of a Shampoo. Macromol. Chem. Phys. 2023, 224, 2200420. [Google Scholar] [CrossRef]
- Rincón-Romero, J.F.; Ríos, F.; Reyes-Requena, A.; Luzón-González, G.; García-López, A.I. Surface and thermodynamics properties of commercial fatty-alcohol ethoxylate surfactants. J. Mol. Liq. 2023, 376, 121396. [Google Scholar] [CrossRef]
- Alfalah, M.; Loranger, C.; Sasseville, D. Alkyl Glucosides. Dermatitis 2017, 28, 3–4. [Google Scholar] [CrossRef]
- Pantelic, I.; Cuckovic, B. 1-Alkyl Polyglucosides: An emerging class of sugar surfactants. In Alkyl Polyglucosides; Woodhead: Cambridge, UK, 2014; pp. 1–19. [Google Scholar] [CrossRef]
- OECD. Test No. 301: Ready Biodegradability, OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 1992. [Google Scholar] [CrossRef]
- Wilde, P.J.; Clark, D.C. Foam formation and stability. In Methods of Testing Protein Functionality; Hall, G.M., Ed.; Blackie Academic & Professional: London, UK, 1996. [Google Scholar]
- Application Note 0217_F_TURBISCAN “Foamability and Foam Stability with TURBISCAN”. Available online: https://www.microtrac.com/files/325711/foamability-and-foam-stability-with-turbiscan.pdf (accessed on 26 June 2025).
- PN-EN ISO 22718:2016-01/A1:2023-01; Cosmetics—Microbiology—Detection of Staphylococcus aureus. PKN: Warsaw, Poland, 2023.
- PN-EN ISO 21150:2016-01/A1:2023-03; Cosmetics—Microbiology—Detection of Escherichia coli. PKN: Warsaw, Poland, 2023.
- PN-EN ISO 22717:2016-01/A1:2023-03; Cosmetics—Microbiology—Detection of the presence of Pseudomonas aeruginosa. PKN: Warsaw, Poland, 2023.
- PN-EN ISO 18416:2016-01/A1:2023-03; Cosmetics—Microbiology—Detection of Candida albicans. PKN: Warsaw, Poland, 2023.
- PN-EN ISO 21149:2017-07/A1:2023-01; Cosmetics—Microbiology—Enumeration and Detection of Mesophilic Aerobic Bacteria. PKN: Warsaw, Poland, 2023.
- PN-EN ISO 16212:2017-08/A1:2023-01; Cosmetics—Microbiology—Enumeration of Yeasts and Molds. PKN: Warsaw, Poland, 2023.
- Vakh, C.; Koronkiewicz, S. Surfactants application in sample preparation techniques: Insights, trends, and perspectives. TrAC Trends Anal. Chem. 2023, 165, 117143. [Google Scholar] [CrossRef]
- Yamashita, Y.; Sakamoto, K. Hydrophilic–Lipophilic Balance (HLB): Classical Indexation and Novel Indexation of Surfactant. In Encyclopedia of Biocolloid and Biointerface Science 2V Set; Wiley: Hoboken, NJ, USA, 2016; pp. 570–574. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Dehghani, R.; Bayat, A.E.; Sarvestani, M.T.; Behnood, M. A comprehensive review on key mechanisms and parameters affecting foam stability. J. Mol. Liq. 2024, 416, 126477. [Google Scholar] [CrossRef]
- Wierenga, P.A.; Basheva, E.S.; Delahaije, R.J.B.M. Variations in foam collapse and thin film stability with constant interfacial and bulk properties. Adv. Colloid Interface Sci. 2023, 312, 102845. [Google Scholar] [CrossRef]
- Kang, W.; He, Y.; Li, Z.; Yang, H.; Ye, Z.; Li, W.; Jiang, H.; Liu, D.; Ding, H.; Turtabayev, S. Stability mechanisms of viscoelastic zwitterionic-anionic surfactants enhanced foam system for low-permeability reservoirs. J. Mol. Liq. 2023, 369, 120883. [Google Scholar] [CrossRef]
- Delgado-Sánchez, C.; Fierro, V.; Li, S.; Pasc, A.; Pizzi, A.; Celzard, A. Stability analysis of tannin-based foams using multiple light-scattering measurements. Eur. Polym. J. 2017, 87, 318–330. [Google Scholar] [CrossRef]
- Kalak, T.; Cierpiszewski, R. Correlation analysis between particulate soil removal and surface properties of laundry detergent solutions. Text. Res. J. 2015, 85, 1884–1906. [Google Scholar] [CrossRef]
- Basso, M.; Simonato, M.; Furlanetto, R.; Nardo, L.D. Study of chemical environments for washing and descaling of food processing appliances: An insight in commercial cleaning products. J. Ind. Eng. Chem. 2017, 53, 23–36. [Google Scholar] [CrossRef]
Reagent | Composition | Concentration [%] | Supplier |
---|---|---|---|
Mixture 1 | D-pentose and D-glucose, oligomeric, C8-10-alkyl glycosides; D-pentose, oligomeric C10 and C12 alkylglycosides | 18.0–30.0 12.0–24.0 | WHEATOLEO, Pomacle, France |
Mixture 2 | D-pentose and D-glucose, oligomeric, C8-10-alkyl glycosides | 40.0–44.0 | WHEATOLEO, Pomacle, France |
Mixture 3 | D-pentose and D-glucose, oligomeric, C8-10-alkyl glycosides | 58.0–62.0 | WHEATOLEO, Pomacle, France |
Mixture 4 | D-pentose and D-glucose, oligomeric, C8-10-alkyl glycosides; glycine betaine ester | >45.0 >3.0 | WHEATOLEO, Pomacle, France |
Mixture 5 | ethoxylated octyl alcohol; ethoxylated octan-1-ol | 70.0–90.0 10.0–20.0 | Croda Poland Sp z o.o., Krakow, Poland |
Supporting substance 1 | 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-(C12-18(even numbered) acyl) derivatives, hydroxides, inner salts | 30.0–60.0 | Innospec, Cheshire, United Kingdom |
Supporting substance 2 | 3-Methoxy-3-methylbutan-1-ol | ≥98.0 | Kuraray Co., Hattersheim am Main, Germany |
Supporting substance a 3 | Glycerol | >99.5 | Brenntag Polska Sp. z o.o., Kedzierzyn-Kozle, Poland |
Supporting substance 4 | Reaction mass of trisodium salts of N,N-bis(carboxylmethyl)-(2S)-alanine and N,N-bis(carboxymethyl)-(2R)-alanine | *** | BASF, Warszawa, Poland |
Supporting substance 5 | 2-Phenoxyethanol | 100.0 | HSH Chemie, Warszawa, Poland |
Supporting substance 6 | Water | - | |
Supporting substance 7 | Parfum | Dullberg, Hamburg, Germany | |
Supporting substance 8 | Parfum | Iberchem S.A., Murcia, Alcantarilla, Spain | |
Supporting substance 9 | C.I. Acid Violet 126 dye | 70.0–90.0 | Heubach GmbH, Frankfurt, Germany |
Supporting substance 10 | Sanolin Lave Green G liquid VP 5225 dye | Heubach GmbH, Frankfurt, Germany |
Formulation | Mixtures of Surfactants * | ||||
---|---|---|---|---|---|
Mixture 1 | Mixture 2 | Mixture 3 | Mixture 4 | Mixture 5 | |
Shampoo 1 | + | - | - | + | - |
Shampoo 2 | + | + | - | - | - |
Shampoo 3 | - | + | - | + | - |
Shampoo 4 | - | - | + | + | - |
Shampoo 5 | - | - | + | - | + |
Shampoo 6 | - | + | - | - | + |
Shampoo 7 | + | - | - | - | + |
Test | Standardized Method |
---|---|
Presence of Staphylococcus aureus in 1 g | [34] |
Presence of Escherichia coli in 1 g | [35] |
Presence of Pseudomonas aeruginosa in 1 g | [36] |
Presence of Candida albicans in 1 g | [37] |
Count of aerobic mesophilic bacteria at 32.5 °C | [38] |
Count of yeasts and molds at 25.0 °C | [39] |
Formulation | Dilution Factor | Properties Tested | ||||
---|---|---|---|---|---|---|
Ease of Application | Foamability | Foam Stability | Ability to Form Water Spots | Washing Abilities | ||
1 | 1:250 | - | - | - | + | + |
2 | - | - | - | + | - | |
3 | + | + | - | + | + | |
4 | - | + | - | + | - | |
5 | + | + | + | - | + | |
6 | + | + | + | - | + | |
7 | + | - | - | - | + | |
1 | 1:125 | - | - | - | + | + |
2 | - | - | - | + | - | |
3 | + | + | + | + | + | |
4 | - | + | - | + | - | |
5 | + | + | + | - | + | |
6 | + | + | + | - | + | |
7 | + | - | - | - | + |
Sample | Parameter | ||
---|---|---|---|
pH (±SD) | Density (±SD) [g/cm3] | Viscosity (±SD) [mPa·s] | |
Shampoo S01 | 7.00 ± 0.01 | 1.0081 ± 0.0054 | 26.5 ± 0.00 |
Mixture of surfactants S01 | 5.89 ± 0.00 | 1.0476 ± 0.0229 | 135.4 ± 0.00 |
Shampoo S02 | 7.24 ± 0.01 | 1.0142 ± 0.0133 | 22.3 ± 0.14 |
Mixture of surfactants S02 | 5.77 ± 0.01 | 1.0301 ± 0.0080 | 139.5 ± 0.00 |
S03 | 7.35 ± 0.08 | 0.9340 ± 0.0047 | 54.7 ± 0.00 |
S04 | 6.65 ± 0.13 | 0.9259 ± 0.0053 | 22.3 ± 0.14 |
S05 | 5.03 ± 0.03 | 1.0080 ± 0.0004 | 496.5 ± 6.18 |
S06 | 8.66 ± 0.06 | 0.9729 ± 0.0047 | 50.4 ± 0.63 |
S07 | 6.23 ± 0.07 | 0.9973 ± 0.0037 | - |
S08 | 4.00 ± 0.01 | 0.9968 ± 0.0066 | 90.1 ± 0.07 |
S09 | 7.94 ± 0.04 | 0.9721 ± 0.0061 | 210.8 ± 0.00 |
S10 | 7.05 ± 0.09 | 0.9432 ± 0.0056 | 243.0 ± 8.70 |
S11 | 9.64 ± 0.04 | 1.0277 ± 0.0049 | - |
S12 | 3.82 ± 0.05 | 0.9634 ± 0.0024 | 266.2 ± 94.30 |
S13 | 4.39 ± 0.06 | 1.0390 ± 0.0000 | 8194.0 ± 178.20 |
S14 | 4.87 ± 0.07 | 0.9898 ± 0.0069 | 82.3 ± 11.10 |
S15 | 6.75 ± 0.10 | 1.0070 ± 0.0007 | 243.9 ± 45.00 |
S16 | 7.43 ± 0.04 | 1.0122 ± 0.0073 | 440.0 ± 15.84 |
S17 | 3.42 ± 0.03 | 0.9537 ± 0.0062 | 491.2 ± 33.94 |
S18 | 6.82 ± 0.04 | 0.9694 ± 0.0064 | 77.3 ± 17.11 |
S19 | 6.79 ± 0.05 | 0.9911 ± 0.0087 | 104.9 ± 1.77 |
S20 | 6.66 ± 0.05 | 1.0433 ± 0.0021 | - |
S21 | 4.24 ± 0.03 | 0.9709 ± 0.0038 | 22.4 ± 0.14 |
S22 | 7.46 ± 0.03 | 1.0037 ± 0.0013 | - |
S23 | 6.58 ± 0.04 | 1.0054 ± 0.0015 | - |
S24 | 7.30 ± 0.04 | 1.0278 ± 0.0003 | 1751.0 ± 1.41 |
S25 | 7.12 ± 0.03 | 1.0071 ± 0.0009 | - |
Sample/Measurement | Height of Foam Measured at the Specified Time Period [cm] | Foam Stability Index [%] | |||
---|---|---|---|---|---|
0 min | 5 min | 10 min | 15 min | ||
S01/1 | 19.0 | 8.0 | 6.0 | 5.0 | |
S01/2 | 21.0 | 12.0 | 7.5 | 6.0 | |
S01/3 | 19.0 | 9.0 | 6.0 | 5.0 | |
Average value (±SD) | 19.7 ± 1.16 | 9.7 ± 2.08 | 6.5 ± 0.87 | 5.3 ± 0.58 | 26.9 |
S02/1 | 20.5 | 11.5 | 9.0 | 6.5 | |
S02/2 | 19.0 | 10.5 | 8.0 | 5.5 | |
S02/3 | 19.0 | 11.0 | 8.5 | 5.0 | |
Average value (±SD) | 19.5 ± 0.87 | 11.0 ± 0.50 | 8.5 ± 0.50 | 5.7 ± 0.76 | 29.2 |
Sample/Measurement | Height of Foam Measured at the Specified Time Period [cm] | Foam Stability Index [%] | |||
---|---|---|---|---|---|
0 min | 5 min | 10 min | 15 min | ||
S01/1 | 21.0 | 15.0 | 6.0 | 5.5 | |
S01/2 | 22.0 | 15.0 | 7.0 | 5.5 | |
S01/3 | 21.5 | 13.0 | 6.0 | 5.0 | |
Average value (±SD) | 21.5 ± 0.41 | 14.3 ± 0.94 | 6.3 ± 0.47 | 5.3 ± 0.24 | 24.8 |
S02/1 | 20.0 | 12.0 | 6.0 | 5.0 | |
S02/2 | 22.0 | 15.0 | 7.0 | 4.5 | |
S02/3 | 23.0 | 14.0 | 6.5 | 5.0 | |
Average value (± SD) | 21.7 ± 1.25 | 13.7 ± 1.25 | 6.5 ± 0.41 | 4.8 ± 0.24 | 22.3 |
Test | Result |
---|---|
Presence of Staphylococcus aureus in 1 g | Absent |
Presence of Escherichia coli in 1 g | Absent |
Presence of Pseudomonas aeruginosa in 1 g | Absent |
Presence of Candida albicans in 1 g | Absent |
Count of aerobic mesophilic bacteria at 32.5 °C | <1.0 × 101 CFU/g |
Count of yeasts and molds at 25.0 °C | <1.0 × 101 CFU/g |
Test | Result |
---|---|
Presence of Staphylococcus aureus in 1 g | Absent |
Presence of Escherichia coli in 1 g | Absent |
Presence of Pseudomonas aeruginosa in 1 g | Absent |
Presence of Candida albicans in 1 g | Absent |
Count of aerobic mesophilic bacteria at 32.5 °C | <1.0 × 101 CFU/g |
Count of yeasts and molds at 25.0 °C | <1.0 × 101 CFU/g |
Shampoo Tested | Contact Angle [°] |
---|---|
S01 | 40.4 ± 0.3 |
S02 | 33.4 ± 0.5 |
S11 | 44.7 ± 2.6 |
S15 | 38.1 ± 0.5 |
S23 | 42.0 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, B.; Wawrzyńczak, A.; Nowak, I. Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos. Coatings 2025, 15, 907. https://doi.org/10.3390/coatings15080907
Woźniak B, Wawrzyńczak A, Nowak I. Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos. Coatings. 2025; 15(8):907. https://doi.org/10.3390/coatings15080907
Chicago/Turabian StyleWoźniak, Bartosz, Agata Wawrzyńczak, and Izabela Nowak. 2025. "Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos" Coatings 15, no. 8: 907. https://doi.org/10.3390/coatings15080907
APA StyleWoźniak, B., Wawrzyńczak, A., & Nowak, I. (2025). Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos. Coatings, 15(8), 907. https://doi.org/10.3390/coatings15080907