Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating
Abstract
1. Introduction
2. Materials and Methods
2.1. Carbon Fiber Cathode Preparation and Cell Assembly
2.2. Carbon Fiber Full Cell Assembly
2.3. Electrochemical Testing
3. Results
3.1. Dip-Coated Fiber-Based Half-Cells
3.2. Full Cells with Dip-Coated Fibers
Cell Type and Cycle Number: | Lithium Iron Phosphate: | Lithium Cobalt Oxide: | Lithium Nickel Aluminum Cobalt Oxide: | Lithium Nickel Manganese Cobalt Oxide: |
---|---|---|---|---|
Half Cell: 1 | 41.1 Ah kg−1 | 63.9 Ah kg−1 | 73.5 Ah kg−1 | 72.2 Ah kg−1 |
Half Cell: 50 | 39.8 Ah kg−1 | 50.7 Ah kg−1 | 64.7 Ah kg−1 | 64.5 Ah kg−1 |
Full Cell: 1 | 20.3 Ah kg−1 | 26.0 Ah kg−1 | 31.4 Ah kg−1 | 33.3 Ah kg−1 |
Full Cell: 50 | 18.9 Ah kg−1 | 23.5 Ah kg−1 | 27.2 Ah kg−1 | 28.2 Ah kg−1 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CB | Carbon Black |
PVDF | Polyvinylidene Fluoride |
NMP | 1-Methyl-2-Pyrrolidone |
LFP | Lithium Iron Phosphate |
LCO | Lithium Cobalt Oxide |
NCA | Lithium Nickel Cobalt Aluminum Oxide |
NMC | Lithium Nickel Manganese Cobalt Oxide |
NMC811 | Lithium Nickel Manganese Cobalt Oxide (8:1:1 composition) |
SEM | Scanning Electron Microscope |
EDX or EDS | Energy-Dispersive X-ray (Spectroscopy) |
EV | Electric Vehicle |
UAV | Unmanned Aerial Vehicle |
ARL | Army Research Laboratory |
PAN | Polyacrylonitrile |
EPD | Electrophoretic Deposition |
CV | Cyclic Voltammetry |
OCP | Open Circuit Potential |
SEI | Solid Electrolyte Interface |
CF | Carbon Fiber |
RPM | Revolutions Per Minute |
V | Volt |
GPa | Gigapascal |
MPa | Megapascal |
Ω-cm | Ohm-centimeter |
ND | Not Detected |
References
- Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Chin, J.; Schnulo, S.L.; Miller, T.; Prokopius, K.; Gray, J.S. Battery Performance Modeling on Sceptor X-57 Subject to Thermal and Transient Considerations. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Asp, L.E.; Mats, J.; Lindbergh, G.; Xu, J.; Zenkert, D. Structural Battery Composites: A Review. Funct. Compos. Struct. 2019, 1, 042001. [Google Scholar] [CrossRef]
- Snyder, J.F.; Carter, R.H.; Wong, E.L.; Nguyen, P.A.; Xu, K.; Ngo, E.H.; Wetzel, E.D. Multifunctional Structural Composite Batteries. In Proceedings of the Society for the Advancement of Material and Process Engineering, Dallas, TX, USA, 6–8 December 2006. [Google Scholar]
- Thomas, J.P.; Qidwai, M.A. The Design and Application of Multifunctional Structure-Battery Materials Systems. JOM 2005, 57, 18–24. [Google Scholar] [CrossRef]
- Ladpli, P.; Nardari, R.; Kopsaftopoulos, F.; Chang, F.K. Multifunctional Energy Storage Composite Structures with Embedded Lithium-Ion Batteries. J. Power Sources 2019, 414, 517–529. [Google Scholar] [CrossRef]
- Asp, L.E.; Johansson, M.; Lindbergh, G.; Xu, J.; Zenkert, D. Structural Power Composites. Compos. Sci. Technol. 2014, 101, 41–61. [Google Scholar] [CrossRef]
- Wetzel, E.D. Reducing Weight: Multifunctional Composites Integrate Power, Communications, and Structure. AMPTIAC Q. 2004, 8, 91–95. [Google Scholar]
- Wetzel, E.D.; O’Brien, D.J.; Snyder, J.F.; Carter, R.H.; South, J.T. Multifunctional Structural Power and Energy Composites for U.S. Army Applications. In Proceedings of the AVT-141 Specialists’ Meeting, Vilnius, Lithuania, 2–4 October 2006. [Google Scholar]
- Snyder, J.F.; Carter, R.H.; Wetzel, E.D. Electrochemical and Mechanical Behavior in Mechanically Robust Solid Polymer Electrolytes for Use in Multifunctional Structural Batteries. Chem. Mater. 2007, 19, 3793–3801. [Google Scholar] [CrossRef]
- Liu, P.; Sherman, E.; Jacobsen, A. Design and Fabrication of Multifunctional Structural Batteries. J. Power Sources 2009, 189, 646–650. [Google Scholar] [CrossRef]
- Ekstedt, S.; Wysocki, M.; Asp, L.E. Structural Batteries Made from Fibre Reinforced Composites. Plast. Rubber Compos. 2010, 39, 148–150. [Google Scholar] [CrossRef]
- Johannisson, W.; Zenkert, D.; Lindbergh, G. Model of a Structural Battery and Its Potential for System Level Mass Savings. Multifunct. Mater. 2019, 2, 035002. [Google Scholar] [CrossRef]
- Shirshova, N.; Qian, H.; Shaffer, M.S.; Steinke, J.H.; Greenhalgh, E.S.; Curtis, P.T.; Kucernak, A.; Bismarck, A. Structural Composite Supercapacitors. Compos. Part A Appl. Sci. Manuf. 2013, 46, 96–107. [Google Scholar] [CrossRef]
- Asp, L.E.; Bouton, K.; Carlstedt, D.; Duan, S.; Harnden, R.; Johannisson, W.; Johansen, M.; Johansson, M.K.G.; Lindbergh, G.; Liu, F.; et al. A Structural Battery and Its Multifunctional Performance. Adv. Energy Sustain. Res. 2021, 2, 2000093. [Google Scholar] [CrossRef]
- Moyer, K.; Boucherbil, N.A.; Zohair, M.; Eaves-Rathert, J.; Pint, C.L. Polymer Reinforced Carbon Fiber Interfaces for High Energy Density Structural Lithium-Ion Batteries. Sustain. Energy Fuels 2020, 4, 2661. [Google Scholar] [CrossRef]
- Kühnelt, H.; Beutl, A.; Mastropierro, F.; Laurin, F.; Willrodt, S.; Bismarck, A.; Guida, M.; Romano, F. Structural Batteries for Aeronautic Applications—State of the Art, Research Gaps and Technology Development Needs. Aerospace 2022, 9, 7. [Google Scholar] [CrossRef]
- Kjell, M.H.; Jacques, E.; Zenkert, D.; Behm, M.; Lindbergh, G. PAN-Based Carbon Fiber Negative Electrodes for Structural Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, A1455. [Google Scholar] [CrossRef]
- Shellikeri, A.; Watson, V.; Adams, D.; Kalu, E.; Read, J.; Jow, T.; Zheng, J.; Zheng, J. Investigation of Pre-Lithiation in Graphite and Hard-Carbon Anodes Using Different Lithium Source Structures. J. Electrochem. Soc. 2017, 14, A3914. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Feng, X. Carbon Materials for Ion-Intercalation Involved Rechargeable Battery Technologies. Chem. Soc. Rev. 2021, 50, 2388–2443. [Google Scholar] [CrossRef]
- Hagberg, J.; Maples, H.A.; Alvim, K.S.; Xu, J.; Johannisson, W.; Bismarck, A.; Zenkert, D.; Lindbergh, G. Lithium Iron Phosphate Coated Carbon Fiber Electrodes for Structural Lithium Ion Batteries. Compos. Sci. Technol. 2018, 162, 235–243. [Google Scholar] [CrossRef]
- Petrushenko, D.; Rahmati, Z.; Barazanchy, D.; De Backer, W.; Mustain, W.E.; White, R.E.; Ziehl, P.; Coman, P.T. Dip-Coating of Carbon Fibers for the Development of Lithium Iron Phosphate Electrodes for Structural Lithium-Ion Batteries. Energy Fuels 2022, 37, 711–723. [Google Scholar] [CrossRef]
- Snyder, J.F.; Wong, E.L.; Hubbard, C.W. Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications. J. Electrochem. Soc. 2009, 156, A215–A224. [Google Scholar] [CrossRef]
- Hagberg, J.; Leijonmarck, S.; Lindbergh, G. High Precision Coulometry of Commercial PAN-Based Carbon Fibers as Electrodes in Structural Batteries. J. Electrochem. Soc. 2016, 163, A1790–A1797. [Google Scholar] [CrossRef]
- Fredi, G.; Jeschke, S.; Boulaoued, A.; Wallenstein, J.; Rashidi, M.; Liu, F.; Harnden, R.; Zenkert, D.; Hagberg, J.; Lindbergh, G.; et al. Graphitic Microstructure and Performance of Carbon Fibre Li-Ion Structural Battery Electrodes. Multifunct. Mater. 2018, 1, 015003. [Google Scholar] [CrossRef]
- Jacques, E.; Kjell, M.H.; Zenkert, D.; Lindbergh, G.; Behm, M.; Willgert, M. Impact of Electrochemical Cycling on the Tensile Properties of Carbon Fibres for Structural Lithium-Ion Composite Batteries. Compos. Sci. Technol. 2012, 72, 792–798. [Google Scholar] [CrossRef]
- Sanchez, J.S.; Xu, J.; Xia, Z.; Sun, J.; Asp, L.E.; Palermo, V. Electrophoretic Coating of LiFePO4/Graphene Oxide on Carbon Fibers as Cathode Electrodes for Structural Lithium Ion Batteries. Compos. Sci. Technol. 2021, 208, 108768. [Google Scholar] [CrossRef]
- Duygu, Y.; Yucel, D.; Lindbergh, G.; Zenkert, D. Carbon Fiber Based Positive Electrodes in Laminated Structural Li-Ion Batteries. ECS Meet. Abstr. 2020, 983, MA2020-02. [Google Scholar]
- Danzi, F.; Salgado, R.M.; Oliveira, J.E.; Arteiro, A.; Camanho, P.P.; Braga, M.H. Structural Batteries: A Review. Molecules 2021, 26, 2203. [Google Scholar] [CrossRef]
- Bouton, K.; Chen, B.; Zenkert, D.; Lindbergh, G. Structural Positive Electrodes for Multifunctional Composite Materials. In Proceedings of the 22nd International Conference on Composite Materials, Melbourne, Australia, 11–16 August 2019. [Google Scholar]
- Tang, X.; Yan, X. Dip-Coating for Fibrous Materials: Mechanism, Methods and Applications. J. Sol-Gel Sci. Technol. 2017, 81, 378–404. [Google Scholar] [CrossRef]
- Yadav, A.; De, B.; Singh, S.K.; Sinha, P.; Kar, K.K. Facile Development Strategy of a Single Carbon-Fiber-Based All-Solid-State Flexible Lithium-Ion Battery for Wearable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 7974–7980. [Google Scholar] [CrossRef]
- Li, D.; Zhou, H. Two-Phase Transition of Li-Intercalation Compounds in Li-Ion Batteries. Mater. Today 2014, 17, 451–463. [Google Scholar] [CrossRef]
- Wang, H.; Jang, Y.-I.; Huang, B.; Sadoway, D.R.; Chiang, Y.-M. TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1999, 146, 473. [Google Scholar] [CrossRef]
- Flores, E.; Vonruti, N.; Novak, P.; Aschauer, U.; Berg, E.J. Elucidation of LixNi0.8Co0.15Al0.05O2 Redox Chemistry by Operando Raman Spectroscopy. Chem. Mater. 2018, 30, 4694–4703. [Google Scholar] [CrossRef]
- Kumar, R. Review of Cobalt Oxide (CoO) Thin Films Prepared by Various Techniques. J. Phys. Conf. Ser. 2022, 2267, 012002. [Google Scholar] [CrossRef]
- Nakaoka, K.; Nakayama, M.; Ogura, K. Electrochemical Deposition of Spinel-Type Cobalt Oxide from Alkaline Solution of Co2+ with Glycine. J. Electrochem. Soc. 2002, 149, C159. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal Runaway of Commercial 18650 Li-Ion Batteries with LFP and NCA Cathodes—Impact of State of Charge and Overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef]
Cell Chemistry | Elastic Modulus | Tensile Strength | Energy Density Range |
---|---|---|---|
LFP | 25 GPa | 300 MPa | 23.6–58 Wh/kg |
Type of Fiber | T800S |
Number of Filaments per Fiber Tow | 12,000 |
Tensile Strength | 5880 MPa |
Tensile Modulus | 294 GPa |
Density | 1.80 g cm−3 |
Filament Diameter | 5 μm |
Yield | 515 g 1000 m−1 |
Specific Heat Capacity | 0.740 J (g-K)−1 |
Thermal Conductivity | 0.113 J (cm-s-K)−1 |
Electrical Resistivity | 1.3 × 10−3 Ω-cm |
Chemical Composition | >96% Carbon |
Slurry Component: | Mass Percent: | Source: |
---|---|---|
Active Cathode Material | 80% | See Table 4 |
Carbon Black | 11% | Denka Company Limited, (Chuo City, Tokyo, Japan) |
Polyvinylidene Fluoride | 9% | Solvay Specialty Polymers, (Bollate, Milan, Italy) |
1-Methyl-2-Pyrrolidone (Liquid solvent) | 10:1 (solvent to powders by weight) | TCI, (Portland, OR, USA) |
Active Material: | Chemical Ratio: | Supplier: |
---|---|---|
Lithium Iron (II) Phosphate (LFP) | 1:1:1 | Solvay Specialty Polymers, (Alphretta, GA, USA) |
Lithium Cobalt (III) Oxide (LCO) | 1:1 | Sigma-Aldrich, (Saint-Louis, MO, USA) |
Lithium Nickel Cobalt Aluminum Oxide (NCA) | 8.15:1.5:0.35 | MTI Corporation, (Richmond, CA, USA) |
Lithium Nickel Manganese Cobalt Oxide (NMC) | 8:1:1 | MTI Corporation, (Richmond, CA, USA) |
Cell Type: | Lower Switching Potential (V): | Upper Switching Potential (V): | , (V s−1): |
---|---|---|---|
Half-Cells | 2.500 | 4.500 | 0.001 |
Full Cells | 1.500 | 4.500 | 0.001 |
Cell Type: | Lower Cycling Potential (V): | Upper Cycling Potential (V): | Rest Period (s): |
---|---|---|---|
LFP Half-Cell | 2.750 (Li/Li+) | 4.000 (Li/Li+) | 600 |
LFP Full Cell | 2.000 | 3.600 | 600 |
LCO, NCA, NMC Half-Cells | 2.500 (Li/Li+) | 4.500 (Li/Li+) | 600 |
LCO, NCA, NMC Full Cells | 2.000 | 4.200 | 600 |
Element: | Lithium Iron Phosphate: | Lithium Cobalt Oxide: | Lithium Nickel Aluminum Cobalt Oxide: | Lithium Nickel Manganese Cobalt Oxide: |
---|---|---|---|---|
Hydrogen | ND | ND | ND | ND |
Lithium | ND | ND | ND | ND |
Carbon | 39.8% ± 1.6% | 38.1% ± 2.6% | 68.2% ± 1.2% | 34.7% ± 1.6% |
Oxygen | 32.8% ± 1.5% | 28.1% ± 2.7% | 12.7% ± 1.0% | 22.7% ± 0.9% |
Florine | 5.8% ± 1.7% | ND | 7.9% ± 0.9% | 10.1% ± 1.2% |
Aluminum | - | - | 0.29% ± 0.06% | - |
Phosphorus | 8.0% ± 0.3% | - | - | - |
Manganese | - | - | - | 3.1% ± 0.5% |
Iron | 13.7% ± 0.7% | - | - | - |
Cobalt | - | 33.9% ± 2.2% | 1.8% ± 0.3% | 4.0% ± 0.5% |
Nickel | - | - | 9.1% ± 0.6% | 25.3% ± 1.5% |
Cell Type: | Energy Density of Commercial Cell: | Energy Density of Cell in This Study: |
---|---|---|
LFP | 52.8 Ah kg−1 | 18.9 Ah kg−1 |
NCA | 99.9 Ah kg−1 | 27.2 Ah kg−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrushenko, D.; Burns, T.; Ziehl, P.; White, R.E.; Coman, P.T. Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating. Energies 2025, 18, 4354. https://doi.org/10.3390/en18164354
Petrushenko D, Burns T, Ziehl P, White RE, Coman PT. Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating. Energies. 2025; 18(16):4354. https://doi.org/10.3390/en18164354
Chicago/Turabian StylePetrushenko, David, Thomas Burns, Paul Ziehl, Ralph E. White, and Paul T. Coman. 2025. "Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating" Energies 18, no. 16: 4354. https://doi.org/10.3390/en18164354
APA StylePetrushenko, D., Burns, T., Ziehl, P., White, R. E., & Coman, P. T. (2025). Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating. Energies, 18(16), 4354. https://doi.org/10.3390/en18164354