Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (144)

Search Parameters:
Keywords = clean power investment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1739 KiB  
Article
Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions
by Nikolay Hinov
Energies 2025, 18(15), 3993; https://doi.org/10.3390/en18153993 - 27 Jul 2025
Viewed by 549
Abstract
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart [...] Read more.
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 232
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 460
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

27 pages, 1431 KiB  
Article
Environmental and Behavioral Dimensions of Private Autonomous Vehicles in Sustainable Urban Mobility
by Iulia Ioana Mircea, Eugen Rosca, Ciprian Sorin Vlad and Larisa Ivascu
Clean Technol. 2025, 7(3), 56; https://doi.org/10.3390/cleantechnol7030056 - 7 Jul 2025
Viewed by 461
Abstract
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of [...] Read more.
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of Automotive Engineers Levels 4 and 5, into focus as promising solutions for mitigating road congestion and reducing greenhouse gas emissions. However, the extent to which Autonomous Vehicles can fulfill this potential depends largely on user acceptance, patterns of use, and their integration within broader green energy and sustainability policies. The present paper aims to develop an integrated conceptual model that links behavioral determinants to environmental outcomes, assessing how individuals’ intention to adopt private autonomous vehicles can contribute to sustainable urban mobility. The model integrates five psychosocial determinants—perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control—with contextual variables such as energy source, infrastructure availability, and public policy. These components interact to predict users’ intention to adopt AVs and their perceived contribution to urban sustainability. Methodologically, the study builds on a narrative synthesis of the literature and proposes a framework applicable to empirical validation through structural equation modeling (SEM). The model draws on established frameworks such as Technology Acceptance Model (TAM), Theory of Planned Behavior, and Unified Theory of Acceptance and Use of Technology, incorporating constructs including perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control, constructs later to be examined in relation to key contextual variables, including the energy source powering Autonomous Vehicles—such as electricity from mixed or renewable grids, hydrogen, or hybrid systems—and the broader policy environment (regulatory frameworks, infrastructure investment, fiscal incentives, and alignment with climate and mobility strategies and others). The research provides relevant directions for public policy and behavioral interventions in support of the development of clean and smart urban transport in the age of automation. Full article
Show Figures

Figure 1

17 pages, 2261 KiB  
Article
Impact of Multiple Factors on Temperature Distribution and Output Performance in Dusty Photovoltaic Modules: Implications for Sustainable Solar Energy
by Weiping Zhao, Shuai Hu and Zhiguang Dong
Energies 2025, 18(13), 3411; https://doi.org/10.3390/en18133411 - 28 Jun 2025
Viewed by 350
Abstract
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting [...] Read more.
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting power generation performance and optimizing cleaning schedules in PV power plants. To investigate the combined effects of multiple factors on the temperature distribution and output power of dusty PV modules, a heat transfer model was developed. Validation against experimental data and comparisons with the NOCT model demonstrated the validity and advantages of the proposed model in accurately predicting PV module behavior. This validated model was then employed to simulate and analyze the influence of various parameters on the temperature of dusty modules and to evaluate the module output power, providing insights into sustainable PV energy generation. Results indicate that the attenuation of PV glass transmittance due to dust accumulation constitutes the primary determinant of the lower temperature observed in dusty modules compared to clean modules. This highlights a significant factor impacting long-term performance and resource utilization efficiency. Dusty module temperature exhibits a positive correlation with irradiance and ambient temperature, while displaying a negative correlation with wind speed and dust accumulation. Notably, alignment of wind direction and module orientation enhances module heat dissipation, representing a passive cooling strategy that promotes efficient and sustainable operation. At an ambient temperature of 25 °C and a wind speed of 3 m/s, the dusty module exhibits a temperature reduction of approximately 11.0% compared to the clean module. Furthermore, increasing the irradiance from 200 W/m2 to 800 W/m2 results in an increase in output power attenuation from 51.4 W to 192.6 W (approximately 30.4% attenuation rate) for a PV module with a dust accumulation of 25 g/m2. This underscores the imperative for effective dust mitigation strategies to ensure long-term viability, economic sustainability, and optimized energy yields from solar energy investments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

8 pages, 2145 KiB  
Proceeding Paper
Tunnel Oxide Passivated Contact and Passivated Emitter Rear Cell Solar Module Testing
by Tzong-Jiy Tsai, Jun-You Lu and Ming-Hung Lin
Eng. Proc. 2025, 92(1), 90; https://doi.org/10.3390/engproc2025092090 - 3 Jun 2025
Viewed by 385
Abstract
The tunnel oxide passivated contact (TOPCon) solar cell utilizes an ultra-thin tunnel oxide layer in its passivation layer structure. The performance difference between TOPCon and passivated emitter and rear cell (PERC) solar cells is obvious due to differences in their structure and operational [...] Read more.
The tunnel oxide passivated contact (TOPCon) solar cell utilizes an ultra-thin tunnel oxide layer in its passivation layer structure. The performance difference between TOPCon and passivated emitter and rear cell (PERC) solar cells is obvious due to differences in their structure and operational characteristics. Compared with PERC, TOPCon involves additional processes such as boron diffusion, tunnel oxide deposition, polysilicon doping, and cleaning, while eliminating the need for laser grooving. PERC production lines can be converted to TOPCon production lines which reduces equipment investment costs. Therefore, it is beneficial to replace PERC products in the future. On two different manufacturing technologies for TOPCon and PERC solar modules, we conducted electroluminescence (EL) tests to analyze power degradation in the solar modules. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

33 pages, 4373 KiB  
Article
Nuclear–Thermal Power Generation: Multicriteria Optimization of the Economic Sustainability
by Stylianos A. Papazis
Sustainability 2025, 17(11), 4781; https://doi.org/10.3390/su17114781 - 22 May 2025
Viewed by 516
Abstract
As is well known, due to carbon dioxide emissions, the combustion of lignite in power plants creates environmental pollution. In contrast, nuclear fuels do not produce carbon dioxide emissions. This paper investigates the effects of replacing lignite thermal power plants with small modular [...] Read more.
As is well known, due to carbon dioxide emissions, the combustion of lignite in power plants creates environmental pollution. In contrast, nuclear fuels do not produce carbon dioxide emissions. This paper investigates the effects of replacing lignite thermal power plants with small modular nuclear reactors (SMRs) of equivalent rated power and related characteristics. In terms of the emissions criterion, nuclear fuels belong to the same category of clean sources as the sun and wind. A second criterion is the economic one and concerns the operating cost of the nuclear–thermal power plant. Based on the economic criterion, although nuclear reactors require a higher initial invested capital, they have lower fuel costs and lower operating costs than lignite plants, which is important due to their long service life. A third criterion is the effect of the operation mode of an SMR, constant or variable, on the cost of energy production. In terms of the operation mode criterion, two cycles were investigated: the production of a constant amount of energy and the production of a variable amount of energy related to fluctuations in the electric load demand or the operation load-following. Using multi-criteria managerial scenarios, the results of the research demonstrate that the final mean minimal cost of energy generated by hybrid thermal units with small nuclear reactors in constant power output operation is lower than the mean minimal cost of the energy generated in the load-following mode by 2.45%. At the same time, the carbon dioxide emissions in the constant power output operation are lower than those produced in the load-following mode by 2.14%. In conclusion, the constant power output operation of an SMR is more sustainable compared to the load-following operation and also is more sustainable compared to generation by lignite thermal power plants. Full article
Show Figures

Figure 1

27 pages, 3598 KiB  
Article
Sustainable Wind Energy Security: Assessing the Impact of False Data Injection on Wind Turbine Performance
by Mohammad Hassan Tanha, Zahra Tanha, Ali Aranizadeh and Mirpouya Mirmozaffari
Sustainability 2025, 17(10), 4654; https://doi.org/10.3390/su17104654 - 19 May 2025
Viewed by 510
Abstract
As the global transition to sustainable energy accelerates, wind power remains pivotal in reducing carbon emissions and achieving renewable energy targets. However, greater reliance on wind energy systems increases susceptibility to cyberattacks, notably False Data Injection (FDI) attacks, which manipulate operational data and [...] Read more.
As the global transition to sustainable energy accelerates, wind power remains pivotal in reducing carbon emissions and achieving renewable energy targets. However, greater reliance on wind energy systems increases susceptibility to cyberattacks, notably False Data Injection (FDI) attacks, which manipulate operational data and undermine the decision-making critical for efficient energy production. This study introduces a novel analytical framework to assess the impact of FDI attacks on variable-speed wind turbine output power. Simulations, conducted using a MATLAB-based induction generator model, evaluate the effects of injecting false data into parameters such as wind speed, blade pitch angle, and generator angular speed. Results demonstrate that FDI attacks targeting wind speed induce significant power output deviations, causing decision-making errors that threaten operational reliability. In contrast, pitch angle manipulations have negligible effects on power generation. These findings emphasize the urgent need for robust cybersecurity measures to protect wind energy infrastructure from evolving cyber-threats. This research advocates advanced detection and mitigation strategies to enhance system resilience, ensuring wind power’s role in a low-carbon future. By identifying critical vulnerabilities, the analysis informs policymakers and industry stakeholders, guiding investments in cybersecurity to safeguard renewable energy systems. Such efforts are essential to maintain operational stability and support global sustainability goals, reinforcing wind power’s contribution to clean energy transitions. Full article
Show Figures

Figure 1

16 pages, 1403 KiB  
Article
Assessing the Availability and Adoption of Advanced Battery Storage Systems for Solar Photovoltaic Applications in Saudi Arabia Residential Buildings
by Bashar Alfalah
Energies 2025, 18(10), 2503; https://doi.org/10.3390/en18102503 - 13 May 2025
Viewed by 467
Abstract
The use of solar photovoltaic systems for power generation requires efficient battery energy storage systems to ensure a steady and constant supply for self-sufficient power generation and off-grid areas. “Vision 2030” is Saudi Arabia’s strategy for reducing the country’s dependence on oil by [...] Read more.
The use of solar photovoltaic systems for power generation requires efficient battery energy storage systems to ensure a steady and constant supply for self-sufficient power generation and off-grid areas. “Vision 2030” is Saudi Arabia’s strategy for reducing the country’s dependence on oil by 50% through investment in clean, renewable resources by 2030. This paper reviews the latest advancements in battery technologies designed for solar photovoltaic panels through a detailed comparative analysis of performance, energy storage capacity, efficiency, lifespan, cost, safety, and environmental impact for residential applications in the Kingdom of Saudi Arabia and those available in the United States of America. The performance of the advanced lithium-ion battery technology available in the USA surpasses that in the Kingdom of Saudi Arabia. The findings underscore the need for investments by the Kingdom of Saudi Arabia in advanced battery manufacturing technologies to improve the availability of different battery types and capacities and achieve the objectives outlined in the Kingdom of Saudi Arabia’s Vision 2030. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 7107 KiB  
Article
A Synergistic Planning Framework for Low-Carbon Power Systems: Integrating Coal-Fired Power Plant Retrofitting with a Carbon and Green Certificate Market Coupling Mechanism
by Zifan Tang, Yue Yin, Chao Chen, Changle Liu, Zhuoxun Li and Benyao Shi
Energies 2025, 18(9), 2403; https://doi.org/10.3390/en18092403 - 7 May 2025
Viewed by 444
Abstract
The intensifying impacts of climate change induced by carbon emissions necessitate the implementation of urgent mitigation strategies. Given that the power sector is a major contributor to global carbon emissions, strategic decarbonization planning in this sector is of paramount importance. This study proposes [...] Read more.
The intensifying impacts of climate change induced by carbon emissions necessitate the implementation of urgent mitigation strategies. Given that the power sector is a major contributor to global carbon emissions, strategic decarbonization planning in this sector is of paramount importance. This study proposes a synergistic planning framework for low-carbon power systems that integrates coal-fired power plants (CFPPs) and a carbon and green certificate market coupling mechanism, thereby facilitating a “security–economic–low-carbon” tri-objective transition in power systems. The proposed framework facilitates dynamic decision-making regarding the retrofitting of CFPPs, investments in renewable energy resources, and energy storage systems. By evaluating three distinct CFPP retrofitting pathways, the framework enhances economic efficiency and reduces carbon emissions, achieving reductions of 28.67% in total system costs and 2.96% in CO2 emissions. Implementing the carbon–green certificate market coupling mechanism further unlocks the market value of green certificates, thereby providing economic incentives for clean energy projects and increasing flexibility in the allocation of carbon emission quotas for enterprises. Relative to cases that consider only carbon trading or only green certificate markets, the coupled mechanism reduces the total cost by 10.96% and 15.56%, and decreases carbon emissions by 27.10% and 47.36%, respectively. The collaborative planning framework introduced in this study enhances economic performance, increases renewable energy penetration, and reduces carbon emissions, thus facilitating the low-carbon transition of power systems. Full article
(This article belongs to the Special Issue New Power System Planning and Scheduling)
Show Figures

Figure 1

45 pages, 9372 KiB  
Article
Low-Carbon Optimization Operation of Rural Energy System Considering High-Level Water Tower and Diverse Load Characteristics
by Gang Zhang, Jiazhe Liu, Tuo Xie and Kaoshe Zhang
Processes 2025, 13(5), 1366; https://doi.org/10.3390/pr13051366 - 29 Apr 2025
Cited by 1 | Viewed by 451
Abstract
Against the backdrop of the steady advancement of the national rural revitalization strategy and the dual-carbon goals, the low-carbon transformation of rural energy systems is of critical importance. This study first proposes a comprehensive architecture for rural energy supply systems, incorporating four key [...] Read more.
Against the backdrop of the steady advancement of the national rural revitalization strategy and the dual-carbon goals, the low-carbon transformation of rural energy systems is of critical importance. This study first proposes a comprehensive architecture for rural energy supply systems, incorporating four key dimensions: investment, system configuration, user demand, and policy support. Leveraging the abundant wind, solar, and biomass resources available in rural areas, a low-carbon optimization model for rural energy system operation is developed. The model accounts for diverse load characteristics and the integration of elevated water towers, which serve both energy storage and agricultural functions. The optimization framework targets the multi-energy demands of rural production and daily life—including electricity, heating, cooling, and gas—and incorporates the stochastic nature of wind and solar generation. To address renewable energy uncertainty, the Fisher optimal segmentation method is employed to extract representative scenarios. A representative rural region in China is used as the case study, and the system’s performance is evaluated across multiple scenarios using the Gurobi solver. The objective functions include maximizing clean energy benefits and minimizing carbon emissions. Within the system, flexible resources participate in demand response based on their specific response characteristics, thereby enhancing the overall decarbonization level. The energy storage aggregator improves renewable energy utilization and gains economic returns by charging and discharging surplus wind and solar power. The elevated water tower contributes to renewable energy absorption by storing and releasing water, while also supporting irrigation via a drip system. The simulation results demonstrate that the proposed clean energy system and its associated operational strategy significantly enhance the low-carbon performance of rural energy consumption while improving the economic efficiency of the energy system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

36 pages, 6438 KiB  
Article
Accelerating Small Modular Reactor Deployment and Clean Energy Transitions: An Algebraic Model for Achieving Net-Zero Emissions
by Elaheh Shobeiri, Filippo Genco, Daniel Hoornweg and Akira Tokuhiro
Sustainability 2025, 17(8), 3406; https://doi.org/10.3390/su17083406 - 11 Apr 2025
Viewed by 726
Abstract
This study addresses the urgent need for transitioning to clean energy systems to achieve net-zero emissions and mitigate climate change. It introduces an algebraic modeling framework inspired by the nuclear fission six-factor formula to optimize the construction rates of clean power plants, with [...] Read more.
This study addresses the urgent need for transitioning to clean energy systems to achieve net-zero emissions and mitigate climate change. It introduces an algebraic modeling framework inspired by the nuclear fission six-factor formula to optimize the construction rates of clean power plants, with a focus on Small Modular Reactors (SMRs). The framework integrates four key factors affecting SMR deployment: Public Acceptance (PA), Supply Chain Readiness (SC), Human Resource (HR) Availability, and Land Availability (LA), including their associated sub-factors. The proposed algebraic formula optimizes projections from the existing Dynamic Integrated Climate-Economy (DICE) model. By capturing socio-economic and environmental constraints, the model enhances the accuracy of clean energy transition scenarios. In the case of Ontario’s pathway to achieving net-zero emissions, the results indicate that incorporating the algebraic formula reduces the SMR construction rate projected by the DICE model from 5.2 to 3.7 units per year by 2050 and from 2.7 to 1.9 units per year by 2100. This reduction highlights the need for accelerated readiness in key deployment factors to avoid delays in reaching net zero targets, reinforcing the importance of strategic investments in PA, SC, HR, and LA. Validation against historical nuclear deployment data from the U.S., Japan, and Canada confirms the model’s ability to reflect real-world trends, with PA and SC emerging as the most influential factors. In addition to informing SMR planning, this approach offers a structured tool for prioritizing policy actions and can be adapted to other clean technologies, enhancing strategic decision making in support of net-zero goals. Full article
Show Figures

Figure 1

34 pages, 2370 KiB  
Review
Enhancing the Performance of Natural Ester Insulating Liquids in Power Transformers: A Comprehensive Review on Antioxidant Additives for Improved Oxidation Stability
by Esther Ogwa Obebe, Yazid Hadjadj, Samson Okikiola Oparanti and Issouf Fofana
Energies 2025, 18(7), 1690; https://doi.org/10.3390/en18071690 - 28 Mar 2025
Cited by 2 | Viewed by 1139
Abstract
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with [...] Read more.
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with a global shift toward sustainability, renewable insulating materials like natural esters are gaining attention due to their environmental and fire safety benefits. These biodegradable liquids are poised to replace hydrocarbon-based oils in transformers, aligning with Sustainable Development Goals 7 and 13 by promoting clean energy and climate action. Despite their advantages, natural esters face challenges in high-voltage applications, particularly due to oxidation stability issues linked to their fatty acid composition. Various antioxidants have been explored to address this, with synthetic antioxidants proving more effective than natural ones, especially under high-temperature conditions. Their superior thermal stability ensures that natural esters retain their cooling and dielectric properties, essential for transformer performance. Furthermore, integrating machine learning and artificial intelligence in antioxidant development and monitoring presents a transformative opportunity. This review provides insights into the role of antioxidants in natural ester-filled power equipment, supporting their broader adoption and contributing to a more sustainable energy future. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

22 pages, 6765 KiB  
Review
O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review
by Andreas Nascimento, Diunay Zuliani Mantegazini, Mauro Hugo Mathias, Matthias Reich and Julian David Hunt
Energies 2025, 18(7), 1608; https://doi.org/10.3390/en18071608 - 24 Mar 2025
Cited by 1 | Viewed by 1161
Abstract
Developing clean and renewable energy instead of the ones related to hydrocarbon resources has been known as one of the different ways to guarantee reduced greenhouse gas emissions. Geothermal systems and native hydrogen exploration could represent an opportunity to diversify the global energy [...] Read more.
Developing clean and renewable energy instead of the ones related to hydrocarbon resources has been known as one of the different ways to guarantee reduced greenhouse gas emissions. Geothermal systems and native hydrogen exploration could represent an opportunity to diversify the global energy matrix and lower carbon-related emissions. All of these natural energy sources require a well to be drilled for its access and/or extractions, similar to the petroleum industry. The main focuses of this technical–scientific contribution and research are (i) to evaluate the global energy matrix; (ii) to show the context over the years and future perspectives on geothermal systems and natural hydrogen exploration; and (iii) to present and analyze the importance of developing technologies on drilling process optimization aiming at accessing these natural energy resources. In 2022, the global energy matrix was composed mainly of nonrenewable sources such as oil, natural gas, and coal, where the combustion of fossil fuels produced approximately 37.15 billion tons of CO2 in the same year. In 2023, USD 1740 billion was invested globally in renewable energy to reduce CO2 emissions and combat greenhouse gas emissions. In this context, currently, about 353 geothermal power units are in operation worldwide with a capacity of 16,335 MW. In addition, globally, there are 35 geothermal power units under pre-construction (project phase), 93 already being constructed, and recently, 45 announced. Concerning hydrogen, the industry announced 680 large-scale project proposals, valued at USD 240 billion in direct investment by 2030. In Brazil, the energy company Petroleo Brasileiro SA (Petrobras, Rio de Janeiro, Brazil) will invest in the coming years nearly USD 4 million in research involving natural hydrogen generation, and since the exploration and access to natural energy resources (oil and gas, natural hydrogen, and geothermal systems, among others) are achieved through the drilling of wells, this document presents a technical–scientific contextualization of social interest. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

24 pages, 2403 KiB  
Article
Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia
by Zac Cesaro, Rasmus Bramstoft, René Bañares-Alcántara and Matthew C. Ives
Energy Storage Appl. 2025, 2(2), 4; https://doi.org/10.3390/esa2020004 - 21 Mar 2025
Cited by 1 | Viewed by 1826
Abstract
Green hydrogen and ammonia are forecast to play key roles in the deep decarbonization of the global economy. Here we explore the potential of using green hydrogen and ammonia to couple the energy, agriculture, and industrial sectors with India’s national-scale electricity grid. India [...] Read more.
Green hydrogen and ammonia are forecast to play key roles in the deep decarbonization of the global economy. Here we explore the potential of using green hydrogen and ammonia to couple the energy, agriculture, and industrial sectors with India’s national-scale electricity grid. India is an ideal test case as it currently has one of the most ambitious hydrogen programs in the world, with projected electricity demands for hydrogen and ammonia production accounting for over 1500 TWh/yr or nearly 25% of India’s total electricity demand by 2050. We model the ambitious deep decarbonization of India’s electricity grid and half of its steel and fertilizer industries by 2050. We uncover modest risks for India from such a strategy, with many benefits and opportunities. Our analysis suggests that a renewables-based energy system coupled with ammonia off-take sectors has the potential to dramatically reduce India’s greenhouse emissions, reduce requirements for expensive long-duration energy storage or firm generating capacity, reduce the curtailment of renewable energy, provide valuable short-duration and long-duration load-shifting and system resilience to inter-annual weather variations, and replace tens of billions of USD in ammonia and fuel imports each year. All this while potentially powering new multi-billion USD green steel and maritime fuel export industries. The key risk for India in relation to such a strategy lies in the potential for higher costs and reduced benefits if the rest of the world does not match their ambitious investment in renewables, electrolyzers, and clean storage technologies. We show that such a pessimistic outcome could result in the costs of green hydrogen and ammonia staying high for India through 2050, although still within the range of their gray counterparts. If on the other hand, renewable and storage costs continue to decline further with continued global deployment, all the above benefits could be achieved with a reduced levelized cost of hydrogen and ammonia (10–25%), potentially with a modest reduction in total energy system costs (5%). Such an outcome would have profound global implications given India’s central role in the future global energy economy, establishing India’s global leadership in green shipping fuel, agriculture, and steel, while creating an affordable, sustainable, and secure domestic energy supply. Full article
Show Figures

Graphical abstract

Back to TopTop