Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia
Abstract
:1. Introduction
India’s Energy System and Visions
2. Materials and Methods
2.1. Beyond State-of-the-Art Energy System Modeling
2.2. Energy System Model Setup and Scenarios
2.2.1. Balmorel—A Comprehensive Long-Term Energy System Model
2.2.2. Optiflow—Generalized Spatio-Temporal Network Optimization Model
2.2.3. Scenarios
2.2.4. Spatial and Temporal Aggregation
2.3. Supply-Side Technologies
2.3.1. Technical Potential for Solar and Wind
2.3.2. Green Hydrogen and Ammonia Production and Storage
2.3.3. Dispatchable Power Generation Requirements
2.4. Demand Scenario
3. Results
3.1. Network Effects: Why Connect Power-to-X to the Electricity Grid?
3.2. Dispatchable Electricity Generation Requirements for Seasonal Storage and System Resilience
3.3. Renewable Dominance and Decarbonization
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEV | Battery Electric Vehicle |
CCGT | Combined Cycle Gas Turbine |
CCS | Carbon Capture and Storage |
EPS | Electric Power Survey |
ER | Eastern Region |
ESM | Energy System Model |
FCEV | Fuel Cell Electric Vehicle |
GT | Gas Turbine |
GW | Gigawatt |
HB | Haber Bosch |
IAM | Integrated Assessment Model |
IEA | International Energy Agency |
IRENA | International Renewable Energy Agency |
LCOA | Levelized Cost of Ammonia |
LCOH | Levelized Cost of Hydrogen |
LNG | Liquefied Natural Gas |
MMT | Million Metric Tons |
NEP | National Electricity Plan |
NER | Northeastern Region |
NHM | National Hydrogen Mission |
NIWE | National Institute of Wind Energy |
NR | Northern Region |
NREL | National Renewable Energy Laboratory |
NZE | IEA Net-Zero Emission Scenario |
PtX | Power to X |
SDS | IEA Sustainable Development Scenario |
SPS | IEA Stated Policy Scenario |
SR | Southern Region |
TERI | The Energy and Resources Institute |
TMY | Typical Meteorological Year |
VRE | Variable Renewable Electricity |
WEO | IEA World Energy Outlook |
WR | Western Region |
WY | Weather Year |
References
- IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar] [CrossRef]
- Franz, S.; Campion, N.; Shapiro-Bengtsen, S.; Bramstoft, R.; Keles, D.; Münster, M. Requirements for a maritime transition in line with the Paris Agreement. iScience 2022, 25, 105630. [Google Scholar] [CrossRef] [PubMed]
- IEA. The Future of Hydrogen Seizing Today’s Opportunities; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Ge, L.; Zhang, B.; Huang, W.; Li, Y.; Hou, L.; Xiao, J.; Mao, Z.; Li, X. A review of hydrogen generation, storage, and applications in power system. J. Energy Storage 2024, 75, 109307. [Google Scholar] [CrossRef]
- United Nations. Net Zero Coalition; United Nations: New York, NY, USA, 2022. [Google Scholar]
- IEA. Global Hydrogen Review. In Global Hydrogen Review 2023; IEA: Paris, France, 2023. [Google Scholar]
- European Commission. REPowerEU Plan. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; Technical Report; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Ministry of New and Renewable Energy. National Green Hydrogen Mission; Ministry of New and Renewable Energy: New Delhi, India, 2023. [Google Scholar]
- IEA. Hydrogen Production Projects Interactive Map; Technical Report; IEA: Paris, France, 2024. [Google Scholar]
- IRENA. Geopolitics of the Energy Transformation the Hydrogen Factor; Technical Report; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Gils, H.C.; Gardian, H.; Schmugge, J. Interaction of hydrogen infrastructures with other sector coupling options towards a zero-emission energy system in Germany. Renew. Energy 2021, 180, 140–156. [Google Scholar] [CrossRef]
- Victoria, M.; Zeyen, E.; Brown, T. Speed of technological transformations required in Europe to achieve different climate goals. Joule 2022, 6, 1066–1086. [Google Scholar] [CrossRef]
- Gea-Bermúdez, J.; Jensen, I.G.; Münster, M.; Koivisto, M.; Kirkerud, J.G.; kuang Chen, Y.; Ravn, H. The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050. Appl. Energy 2021, 289, 116685. [Google Scholar] [CrossRef]
- Bounitsis, G.L.; Charitopoulos, V.M. The value of ammonia towards integrated power and heat system decarbonisation. Sustain. Energy Fuels 2024, 8, 2914–2940. [Google Scholar] [CrossRef]
- Göke, L.; Weibezahn, J.; Kendziorski, M. How flexible electrification can integrate fluctuating renewables. Energy 2023, 278, 127832. [Google Scholar] [CrossRef]
- Neumann, F.; Zeyen, E.; Victoria, M.; Brown, T. The potential role of a hydrogen network in Europe. Joule 2023, 7, 1793–1817. [Google Scholar] [CrossRef]
- Kountouris, I.; Bramstoft, R.; Madsen, T.; Gea-Bermúdez, J.; Münster, M.; Keles, D. A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production. Nat. Commun. 2024, 15, 5517. [Google Scholar] [CrossRef]
- Serpell, O.; Hsain, Z.; Chu, A.; Johnsen, W. Ammonia’s Role in a Net-Zero Hydrogen Economy; Kleinman Center for Energy Policy: Philadelphia, PA, USA, 2023; pp. 1–9. [Google Scholar]
- Cesaro, Z.; Ives, M.; Nayak-Luke, R.; Mason, M.; Bañares-Alcántara, R. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Appl. Energy 2021, 282, 116009. [Google Scholar] [CrossRef]
- Englert, D.; Losos, A.; Raucci, C.; Smith, T. The Potential of Zero-Carbon Bunker Fuels in Developing Countries; Technical Report; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- LR. First Movers in Shipping’s Decarbonisation; Technical Report; The Lloyd’s Register Maritime Decarbonisation Hub: London, UK, 2021. [Google Scholar]
- Royal Society. Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store; Royal Society: London, UK, 2020. [Google Scholar]
- IMO. Fourth IMO GHG Study 2020; Technical Report; International Maritime Organization: London, UK, 2021. [Google Scholar]
- IEA. The Role of Low-Carbon Fuels in the Clean Energy Transitions of the Power Sector; Technical Report; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Yiakoumi, D.; Williams, L.; Murrant, D.; Ivanova, V.; Griffa, A. Storage and Flexibility Net Zero Series: Vehicle to Grid; Technical Report; Energy Systems Catapult: Birmingham, UK, 2020. [Google Scholar]
- Langevin, J.; Harris, C.B.; Satre-Meloy, A.; Chandra-Putra, H.; Speake, A.; Present, E.; Adhikari, R.; Wilson, E.J.; Satchwell, A.J. US building energy efficiency and flexibility as an electric grid resource. Joule 2021, 5, 2102–2128. [Google Scholar] [CrossRef]
- Zhang, X.; Strbac, G.; Shah, N.; Teng, F.; Pudjianto, D. Whole-system assessment of the benefits of integrated electricity and heat system. IEEE Trans. Smart Grid 2018, 10, 1132–1145. [Google Scholar] [CrossRef]
- Abhyankar, N.; Deorah, S.M.; Phadke, A.A. Least-Cost Pathway for India’s Power System Investments Through 2030; Technical Report; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA, USA, 2021. [Google Scholar]
- He, G.; Mallapragada, D.S.; Bose, A.; Heuberger-Austin, C.F.; Gençer, E. Sector coupling via hydrogen to lower the cost of energy system decarbonization. Energy Environ. Sci. 2021, 14, 4635–4646. [Google Scholar] [CrossRef]
- Dowling, J.A.; Rinaldi, K.Z.; Ruggles, T.H.; Davis, S.J.; Yuan, M.; Tong, F.; Lewis, N.S.; Caldeira, K. Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems. Joule 2020, 4, 1907–1928. [Google Scholar] [CrossRef]
- Sepulveda, N.A.; Jenkins, J.D.; de Sisternes, F.J.; Lester, R.K. The role of firm low-carbon electricity resources in deep decarbonization of power generation. Joule 2018, 2, 2403–2420. [Google Scholar]
- Brown, T.; Hampp, J. Ultra-long-duration energy storage anywhere: Methanol with carbon cycling. Joule 2023, 7, 2414–2420. [Google Scholar] [CrossRef]
- Cole, W.J.; Greer, D.; Denholm, P.; Frazier, A.W.; Machen, S.; Mai, T.; Vincent, N.; Baldwin, S.F. Quantifying the challenge of reaching a 100% renewable energy power system for the United States. Joule 2021, 5, 1732–1748. [Google Scholar] [CrossRef]
- Liu, J.; Sang, L.; Xu, Y. Low carbon collaborative planning of integrated hydrogen-ammonia system and power distribution network. Int. J. hydrogen Energy 2024, 87, 1510–1521. [Google Scholar] [CrossRef]
- Ikäheimo, J.; Kiviluoma, J.; Weiss, R.; Holttinen, H. Power-to-ammonia in future North European 100% renewable power and heat system. Int. J. Hydrogen Energy 2018, 43, 17295–17308. [Google Scholar] [CrossRef]
- Nayak-Luke, R.M.; Bañares-Alcántara, R. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production. Energy Environ. Sci. 2020, 13, 2957–2966. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, B.; Wu, Q.; Chung, C.Y.; Li, C.; Huang, S.; Chen, S. Integrated Modelling and Enhanced Utilization of Power-to-Ammonia for High Renewable Penetrated Multi-Energy Systems. IEEE Trans. Power Syst. 2020, 35, 4769–4780. [Google Scholar] [CrossRef]
- Liu, X.; Modarresi, A.; Kiboma, L.; Wu, H.; Symons, J.; Hill, M. Budget-Constrained Sizing of Renewable and Energy Storage Systems for Farm-Scale Ammonia Production Within the Food-Energy-Water Nexus. In Proceedings of the 2024 IEEE Green Technologies Conference (GreenTech), Springdale, AR, USA, 3–5 April 2024; pp. 218–222. [Google Scholar] [CrossRef]
- Palys, M.J.; Daoutidis, P. Renewable ammonia for islanded energy storage. Curr. Opin. Green Sustain. Chem. 2024, 48, 100946. [Google Scholar] [CrossRef]
- IEA. Renewables Integration in India; Technical Report; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Way, R.; Ives, M.C.; Mealy, P.; Farmer, J.D. Empirically grounded technology forecasts and the energy transition. Joule 2022, 6, 2057–2082. [Google Scholar] [CrossRef]
- Ministry of External Affairs, Government of India. National Statement by Prime Minister Shri Narendra Modi at COP26 Summit in Glasgow; Ministry of External Affairs, Government of India: New Delhi, India, 2021. [Google Scholar]
- Ministry of New and Renewable Energy. Budget 2021-22 Augments Capital of SECI and IREDA to Promote Development of RE Sector; National Hydrogen Mission Proposed; Press Information Bureau (PIB), Government of India: New Delhi, India, 2021. [Google Scholar]
- Observatory of Economic Complexity (OEC). Ammonia; 2023. Available online: https://oec.world/en/profile/hs/ammonia (accessed on 24 October 2024).
- Hall, W.; Spencer, T.; Renjith, G.; Dayal, S. The Potential Role of Hydrogen in India: A Pathway for Scaling-up Low Carbon Hydrogen Across the Economy; Technical Report; The Energy and Resources Institute (TERI): New Delhi, India, 2020. [Google Scholar]
- UN. India to Overtake China as World’s Most Populous Country in April 2023, United Nations Projects; United Nations: New York, NY, USA, 2023. [Google Scholar]
- IEA. India Energy Outlook 2021; Technical Report; International Energy Agency (IEA): Paris, France, 2021. [Google Scholar] [CrossRef]
- Palchak, D.; Cochran, J.; Deshmukh, R.; Ehlen, A.; Soonee, R.; Narasimhan, S.; Joshi, M.; McBennett, B.; Milligan, M.; Sreedharan, P.; et al. Volume I—National study. In GREENING THE GRID: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid; National Renewable Energy Laboratory: Golden, CO, USA, 2017. [Google Scholar]
- Palchak, D.; Chernyakhovskiy, I.; Bowen, T.; Narwade, V. India 2030 Wind and Solar Integration Study: Interim Report; Technical Report NREL/TP-6A20-73854; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2019. [Google Scholar]
- Spencer, T.; Rodrigues, N.; Pachouri, R.; Thakre, S.; Renjith, G. Renewable Power Pathways: Modelling the Integration of Wind and Solar in India by 2030; TERI Discussion Paper; The Energy and Resources Institute (TERI): New Delhi, India, 2020. [Google Scholar]
- CEA. Report on Optimal Generation Capacity Mix for 2029-30; Technical Report; Central Electricity Authority: New Delhi, India, 2020. [Google Scholar]
- Chernyakhovskiy, I.; Joshi, M.; Palchak, D.; Rose, A. Energy Storage in South Asia: Understanding the Role of Grid-Connected Energy Storage in South Asia’s Power Sector Transformation; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [Google Scholar]
- Lu, T.; Sherman, P.; Chen, X.; Chen, S.; Lu, X.; McElroy, M. India’s potential for integrating solar and on-and offshore wind power into its energy system. Nat. Commun. 2020, 11, 4750. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Guivarch, C.; Kriegler, E.; van Ruijven, B.; van Vuuren, D.P.; Krey, V.; Schwanitz, V.J.; Thompson, E.L. Evaluating process-based integrated assessment models of climate change mitigation. Clim. Change 2021, 166, 3. [Google Scholar] [CrossRef]
- Mercure, J.F.; Sharpe, S.; Vinuales, J.E.; Ives, M.; Grubb, M.; Lam, A.; Drummond, P.; Pollitt, H.; Knobloch, F.; Nijsse, F.J. Risk-opportunity analysis for transformative policy design and appraisal. Glob. Environ. Change 2021, 70, 102359. [Google Scholar] [CrossRef]
- Bramstoft, R.; Pizarro-Alonso, A.; Jensen, I.G.; Ravn, H.; Münster, M. Modelling of renewable gas and renewable liquid fuels in future integrated energy systems. Appl. Energy 2020, 268, 114869. [Google Scholar] [CrossRef]
- Lester, M.S.; Bramstoft, R.; Münster, M. Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study. Energy 2020, 199, 117408. [Google Scholar] [CrossRef]
- Ives, M.; Righetti, L.; Schiele, J.; De Meyer, K.; Hubble-Rose, L.; Teng, F.; Kruitwagen, L.; Tillmann-Morris, L.; Wang, T.; Way, R.; et al. A New Perspective on Decarbonising the Global Energy System; Technical Report; Smith School of Enterprise and the Environment: Oxford, UK, 2021. [Google Scholar]
- Franz, S.; Bramstoft, R. Impact of endogenous learning curves on maritime transition pathways. Environ. Res. Lett. 2024, 19, 054014. [Google Scholar] [CrossRef]
- Farmer, J.D.; Lafond, F. How predictable is technological progress? Res. Policy 2016, 45, 647–665. [Google Scholar]
- Meng, J.; Way, R.; Verdolini, E.; Anadon, L.D. Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proc. Natl. Acad. Sci. USA 2021, 118, e1917165118. [Google Scholar] [CrossRef] [PubMed]
- IEA. World Energy Outlook 2020; International Energy Agency: Paris, France, 2020. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2020; Technical Report; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Wiese, F.; Bramstoft, R.; Koduvere, H.; Pizarro Alonso, A.; Balyk, O.; Kirkerud, J.G.; Åsa Grytli Tveten; Bolkesjø, T.F.; Münster, M.; Ravn, H. Balmorel open source energy system model. Energy Strategy Rev. 2018, 20, 26–34. [Google Scholar] [CrossRef]
- ERI. China Energy Transformation Outlook 2021; Technical Report; Energy Research Institute (ERI) of Chinese Academy of Macroeconomic Research, Danish Energy Agency (DEA), Center for Global Energy Policy: Beijing, China, 2021. [Google Scholar]
- Secretariat General of the National Energy Council. Indonesia Energy Outlook (IEO) 2019; Technical Report; Secretariat General of the National Energy Council: New Delhi, India, 2019. [Google Scholar]
- EREA; DEA. Vietnam Energy Outlook Report 2019; Technical Report; Electricity and Renewable Energy Authority in Vietnam (EREA), Danish Energy Agency (DEA): Hanoi, Vietnam, 2019. [Google Scholar]
- Candas, S.; Muschner, C.; Buchholz, S.; Bramstoft, R.; van Ouwerkerk, J.; Hainsch, K.; Löffler, K.; Günther, S.; Berendes, S.; Nguyen, S.; et al. Code exposed: Review of five open-source frameworks for modeling renewable energy systems. Renew. Sustain. Energy Rev. 2022, 161, 112272. [Google Scholar] [CrossRef]
- van Ouwerkerk, J.; Hainsch, K.; Candas, S.; Muschner, C.; Buchholz, S.; Günther, S.; Huyskens, H.; Berendes, S.; Löffler, K.; Bußar, C.; et al. Comparing open source power system models—A case study focusing on fundamental modeling parameters for the German energy transition. Renew. Sustain. Energy Rev. 2022, 161, 112331. [Google Scholar] [CrossRef]
- Gea-Bermúdez, J.; Bramstoft, R.; Koivisto, M.; Kitzing, L.; Ramos, A. Going offshore or not: Where to generate hydrogen in future integrated energy systems? Energy Policy 2023, 174, 113382. [Google Scholar] [CrossRef]
- Sifnaios, I.; Møller Sneum, D.; Jensen, A.; Fan, J.; Bramstoft, R. The impact of large-scale thermal energy storage in the energy system. Appl. Energy 2023, 349, 121663. [Google Scholar] [CrossRef]
- Jensen, I.G.; Wiese, F.; Bramstoft, R.; Münster, M. Potential role of renewable gas in the transition of electricity and district heating systems. Energy Strategy Rev. 2020, 27, 100446. [Google Scholar] [CrossRef]
- Ravn, H. The OptiFlow Model Structure; Technical; DTU: Lyngby, Denmark, 2017. [Google Scholar]
- CEA National Electricity Plan (NEP) Volume 1 Generation. Central Electricity Authority, Ministry of Power, Government of India, 2018, p. 1. Available online: https://mnre.gov.in/en/document/national-electricity-plan-volume-i-generation-by-cea/ (accessed on 24 October 2024).
- CEA. 19th Electric Power Survey (EPS); Technical Report; Central Electricity Authority (CEA) in the Ministry of Power of India: New Delhi, India, 2017. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (c3s) Climate Data Store (CDS). 2018; Volume 10. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 24 October 2024).
- NIWE. India’s Wind Potential Atlas at 120m agl; Technical Report; National Institute of Wind Energy (NIWE): Chennai, India, 2019. [Google Scholar]
- Tran, J.; Grue, N.; Cox, S. Renewable Energy Data Explorer User Guide; Technical Report NREL/TP-6A20-71532; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018. [Google Scholar]
- Fasihi, M.; Weiss, R.; Savolainen, J.; Breyer, C. Global potential of green ammonia based on hybrid PV-wind power plants. Appl. Energy 2021, 294, 116170. [Google Scholar] [CrossRef]
- Salmon, N.; Bañares-Alcántara, R. Impact of grid connectivity on cost and location of green ammonia production: Australia as a case study. Energy Environ. Sci. 2021, 14, 6655–6671. [Google Scholar] [CrossRef]
- Ostuni, R.; Zardi, F. Method for Load Regulation of an Ammonia Plant. U.S. Patent 9,463,983, 11 October 2016. [Google Scholar]
- Cheema, I.I.; Krewer, U. Operating envelope of Haber-Bosch process design for power-to-ammonia. RSC Adv. 2018, 8, 34926–34936. [Google Scholar] [CrossRef]
- Mitsubishi Power, Ltd. Mitsubishi Power Commences Development of World’s First Ammonia-Fired 40MW Class Gas Turbine System–Targets to Expand Lineup of Carbon-Free Power Generation Options, with Commercialization Around 2025; Mitsubishi Power, Ltd.: Tokyo, Japan, 2021. [Google Scholar]
- Nutrien. Fact Book 2020; Technical Report; Nutrien: Saskatoon, SK, Canada, 2020. [Google Scholar]
- IEA. Global Hydrogen Review. In Global Hydrogen Review 2021; IEA: Paris, France, 2021. [Google Scholar]
- IEA. World Energy Outlook; International Energy Agency: Paris, France, 2023; pp. 23–28. [Google Scholar]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef] [PubMed]
- CEA. Growth of Electricity Sector in India from 1947 to 2020; Technical Report; Central Electricity Authority: New Delhi, India, 2020. [Google Scholar]
- Ministry of Power. Ministry of Power Notifies Green Hydrogen/Green Ammonia Policy; Ministry of Power: New Delhi, India, 2022. [Google Scholar]
- Salmon, N.; Bañares-Alcántara, R.; Nayak-Luke, R. Optimization of green ammonia distribution systems for intercontinental energy transport. iScience 2021, 24, 102903. [Google Scholar] [CrossRef] [PubMed]
- Gulagi, A.; Ram, M.; Breyer, C. Role of the transmission grid and solar wind complementarity in mitigating the monsoon effect in a fully sustainable electricity system for India. IET Renew. Power Gener. 2019, 14, 254–262. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 2010, 87, 03062619. [Google Scholar] [CrossRef]
- Hall, L.M.H.; Buckley, A.R. A review of energy systems models in the UK: Prevalent usage and categorisation. Appl. Energy 2016, 169, 607–628. [Google Scholar] [CrossRef]
- Ringkjøb, H.-K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Brown, T.; Schlachtberger, D.; Kies, A.; Schramm, S.; Greiner, M. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 2018, 160, 720–739. [Google Scholar] [CrossRef]
- Victoria, M.; Zhu, K.; Brown, T.; Andresen, G.B.; Greiner, M. The role of storage technologies throughout the decarbonisation of the sector-coupled European energy system. Energy Convers. Manag. 2019, 201, 111977. [Google Scholar] [CrossRef]
- Ravn, H.F. The Balmorel Model Structure v3.03. Available online: http://balmorel.com/images/downloads/model/BMS303-20160907.pdf (accessed on 24 October 2024).
- Government of India, Ministry of Power. Interconnection with Neighbouring Countries. 2023. Available online: https://powermin.gov.in/en/content/interconnection-neighbouring-countries (accessed on 24 October 2024).
- Jiang, H.; Yang, Y.; Bai, Y.; Wang, H. Evaluation of the Total, Direct, and Diffuse Solar Radiations From the ERA5 Reanalysis Data in China. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 47–51. [Google Scholar] [CrossRef]
- De Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Sci. Total. Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef]
- EEIST. The New Economics of Innovation and Transition: Evaluating Opportunities and Risks; Technical Report; EEIST, 2021. [Google Scholar]
- Great Britain & Treasury Green Book: Central Government Guidance on Appraisal and Evaluation. 2020. Available online: https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-government (accessed on 24 October 2024).
- Samadi, S. The experience curve theory and its application in the field of electricity generation technologies—A literature review. Renew. Sustain. Energy Rev. 2018, 82, 2346–2364. [Google Scholar] [CrossRef]
- City of Austin & Travis County 2021 Winter Storm Uri After-Action Review: Findings Report. 2021, p. 11. Available online: https://www.austintexas.gov/sites/default/files/files/HSEM/2021-Winter-Storm-Uri-AAR-Findings-Report.pdf (accessed on 24 October 2024).
- Morison, R.; Shiryaevskaya, A.U.K. Power Surges to Record 400 Pounds as Wind Fails to Blow Bloomberg 2021, p. 9. Available online: https://www.bloomberg.com/news/articles/2021-09-13/u-k-power-prices-hit-record-as-outages-low-winds-cut-supply (accessed on 24 October 2024).
- Technical University of Denmark (DTU) Global Wind Atlas. Global Wind Atlas; World Bank Group, Utilizing Data Provided by Vortex, Using Funding Provided by the Energy Sector Management Assistance Program (ESMAP). Available online: https://globalwindatlas.info (accessed on 24 October 2024).
- Camargo, L.; Schmidt, J. Simulation of multi-annual time series of solar photovoltaic power: Is the ERA5-land reanalysis the next big step? Sustain. Energy Technol. Assess. 2020, 42, 100829. [Google Scholar]
- Holmgren, W.; Hansen, C.; Mikofski, M. pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Ministry of Power Stressed/Non-Performing Assets in Gas based Power Plants: Forty Second Report. Standing Committee on Energy, 2019, p. 1. Available online: https://eparlib.nic.in/handle/123456789/783386?view_type=search (accessed on 24 October 2024).
- CEA Hydro Electric Potential Development-Region Wise. Central Electricity Authority of India. 2022. Available online: https://cea.nic.in/hepr-report/?lang=en (accessed on 24 October 2024).
- POSOCO Electricity Demand Pattern Analysis. Power System Operation Corporation Ltd., (POSOCO). 2016. Available online: https://posoco.in/en/reports/electricity-demand-pattern-analysis/ (accessed on 24 October 2024).
- Department of Fertilizers Indian Fertilizer Scenario—2018. Ministry of Chemicals, 2019, p. 5. Available online: https://www.fert.nic.in/sites/default/files/2019-09/Fertilizers-Scenario-2018.pdf (accessed on 24 October 2024).
- Tongia, R.; Gross, S. Coal in India: Adjusting to Transition. Brookings India. 2019. Available online: https://www.brookings.edu/wp-content/uploads/2019/03/fp_20190731_coal_in_india.pdf (accessed on 24 October 2024).
- CERC CERC RE Tariff Order for FY 2019-20. Central Electricity Regulatory Commission, Government of India, 2019, p. 11. Available online: https://cercind.gov.in/2019/orders/Draft%20RE%20Tariff%20Order%20for%20FY%202019-20.pdf (accessed on 24 October 2024).
- Leighty, W.; Holbrook, J. Alternatives to electricity for transmission, firming storage, and supply integration for diverse, stranded, renewable energy resources: Gaseous hydrogen and anhydrous ammonia fuels via underground pipelines. Energy Procedia 2012, 29, 332–346. [Google Scholar]
- Nayak-Luke, R.; Forbes, C.; Cesaro, Z.; Bañares-Alcántara, R.; Rouwenhorst, K. Chapter 8—Techno-Economic Aspects of Production, Storage and Distribution of Ammonia. In Techno-Economic Challenges Of Green Ammonia as An Energy Vector. 2021, pp. 191–207. Available online: https://www.sciencedirect.com/science/article/pii/B9780128205600000084 (accessed on 24 October 2024).
- Technology Data—Energy Storage. Danish Energy Agency (DEA) and Energinet. 2018. Available online: https://ens.dk/en/analyses-and-statistics/technology-data-energy-storage (accessed on 24 October 2024).
- Danish Energy Agency Technology Data for Energy Plants for Electricity and District Heating Generation. 2020. Available online: https://ens.dk/sites/ens.dk/files/Statistik/technology_data_catalogue_for_el_and_dh_-_0009.pdf (accessed on 24 October 2024).
- Bates, C.; Read, A. BEIS: CCUS Technical Advisory—Report on Assumptions. Uniper Technologies. 2018. Available online: https://assets.publishing.service.gov.uk/media/65ddc4e8b8da630011c86284/ccus-technical-advisory-assumptions-report.pdf (accessed on 24 October 2024).
- DGE Technology Data for the Indonesian Power Sector: Catalogue for Generation and Storage of Electricity. Directorate General Electricity (DGE) of Indonesia, Danish Energy Agency (DEA), 2021, p. 2. Available online: https://wipogreen.wipo.int/wipogreen-database/articles/138826 (accessed on 24 October 2024).
- EIA Capital Cost Estimates for Utility Scale Electricity Generating Plants. U.S. Energy Information Administration, 2016, p. 11. Available online: https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capcost_assumption.pdf (accessed on 24 October 2024).
- IRENA Renewable Power Generation Costs in 2018. International Renewable Energy Agency. 2019. Available online: https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018 (accessed on 24 October 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesaro, Z.; Bramstoft, R.; Bañares-Alcántara, R.; Ives, M.C. Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia. Energy Storage Appl. 2025, 2, 4. https://doi.org/10.3390/esa2020004
Cesaro Z, Bramstoft R, Bañares-Alcántara R, Ives MC. Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia. Energy Storage and Applications. 2025; 2(2):4. https://doi.org/10.3390/esa2020004
Chicago/Turabian StyleCesaro, Zac, Rasmus Bramstoft, René Bañares-Alcántara, and Matthew C. Ives. 2025. "Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia" Energy Storage and Applications 2, no. 2: 4. https://doi.org/10.3390/esa2020004
APA StyleCesaro, Z., Bramstoft, R., Bañares-Alcántara, R., & Ives, M. C. (2025). Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia. Energy Storage and Applications, 2(2), 4. https://doi.org/10.3390/esa2020004